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Abstract This paper explores the potential for use of an
unaugmented commodity technology—the mobile phone—
as a health promotion tool. We describe a prototype
application that tracks the daily exercise activities of
people, using an Artificial Neural Network (ANN) to
analyse GSM cell signal strength and visibility to estimate
a user’s movement. In a short-term study of the prototype
that shared activity information amongst groups of friends,
we found that awareness encouraged reflection on, and
increased motivation for, daily activity. The study raised
concerns regarding the reliability of ANN-facilitated activ-

ity detection in the ‘real world’. We describe some of the
details of the pilot study and introduce a promising new
approach to activity detection that has been developed in
response to some of the issues raised by the pilot study,
involving Hidden Markov Models (HMM), task modelling
and unsupervised calibration. We conclude with our
intended plans to develop the system further in order to
carry out a longer-term clinical trial.
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1 Introduction

The decreasing levels of daily activity undertaken by the
general public form an ongoing challenge for those in-
volved in public health, and are of concern to both primary
and secondary healthcare. The benefits of physical activity
are well documented and widely acknowledged, and yet the
World Health Organisation states that 60% of the world-
wide population are not active enough to profit from these
benefits [22]. Pervasive and ubiquitous computing technol-
ogies are well-suited for use within the healthcare industry
and have the potential to be far-reaching and effective. This
paper presents a prototype application that runs on arguably
the most pervasive computing technology of all, the mobile
phone. By detecting patterns in signal strength fluctuation
and changes in the visibility of GSM cells, the application
uses an ANN to infer whether the carrier of the phone is
sitting still, walking, or travelling in a car. This information
is then used to calculate the carrier’s daily activity level,
which can then be shared with and compared to the activity
levels of others.
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Rather than being driven by experimental hypothesis or
outcomes, we took a more exploratory approach. A short-
term pilot study gauged information regarding usability,
user response and attitudes toward the prototype, and will
inform the future refinement of the system so that it is
suitable for longer-term clinical trials.

Since the pilot study took place, further work has been
done to improve the reliability of the system’s activity
detection which, although performing adequately for the
purposes of the trial, seemed to have difficulties when
processing GSM data from disparate environments: the
patterns of GSM behaviour obviously differed for similar
physical activity when situated in rural as opposed to urban
environments. To overcome this issue, automated unsuper-
vised calibration based on HMM enables the dynamic
learning of mappings between GSM behaviour and physical
activity. This method is explained in detail and compared to
our original approach in Section 7.

1.1 Background

Augmentation of traditional exercise technologies and
practices with more pervasive and ubiquitous computing
is becoming an established area in both research and
commercial arenas. Gym-based equipment such as tread-
mills and rowing machines has been complemented with
virtual reality environments to motivate and stimulate users
during their workout http://www.fpgamerunner.com). Some
of this equipment also facilitates the downloading of
workout data onto an individual’s PDA, so that personal
workout programs may be monitored and adapted http://
www.acrocat.com). Positioning technology is now also
being used to extend such services beyond the gym
environment to benefit walkers, cyclists and road-runners.
These technologies assist individuals who have already
taken steps to get fit or remain healthy. However, there is
relatively little in the way of assistive or motivational tech-
nologies that are aimed at the more sedentary adult/child.

Self-monitoring is a well established behavioural change
technique [13]. Pedometers are illustrative of this technique
and are a widely used fitness-related technology that
does not demand a vested interest in health in order to be
used. Although their accuracy may be volatile, they have
been found to motivate individuals taking early steps
towards a more active lifestyle [19]. As pervasive technol-
ogies advance, so does the ability to detect and monitor the
physiology and physical activity levels of an individual or
community to an increasingly fine granularity. A multi-
modal sensor board can now distinguish between eight
physical activities [11], and commercially available tech-
nology can be worn on the body to monitor blood pressure,
heart rate, and stress levels. These technologies are

unarguably useful, but their specialist nature may prove to
be a barrier to widespread adoption and utilisation.

The recommended level of activity for an adult is at
least 30 min of moderate activity, five times a week.
Although prolonged periods of activity are most advanta-
geous, the daily amount of 30 min can be accumulated
throughout the day in shorter periods of 10 min or more
[6]. Most adults who do not currently reach this level of
activity may be able to achieve this target by making
small changes to their everyday routine. By capturing
and acknowledging everyday activity in an accessible and
noninvasive manner, and facilitating the sharing and com-
parison of that information between peers, we hope that
awareness will be raised in such a way that it motivates
users to become more active on a day-to-day basis. Shakra
is our first prototype of such a system, and it runs on an
unmodified mobile phone. Although not everybody owns a
mobile phone, it is the most uniformly adopted technology
throughout all social classes [8], and so this platform
hopefully overcomes the aforementioned barrier to adop-
tion and, therefore, effect.

The following section reviews conceptual approaches to
behavioural change in physical activity, alongside current
technical approaches to fitness tracking and motivation.
The resultant design and implementation detail of Shakra
follows, before the pilot study is presented and discussed.
Following the discussion of our study, refinements and
implications for further development are presented, which
are aimed at improving the Shakra system for a larger
clinical trial. These are also presented as guidelines for
future development of similar health related systems.

2 The problems of motivating exercise

Numerous studies show how just a minimal amount of
daily activity can increase general health [15, 18]. Having a
lifestyle that promotes regular exercise seems to be a
challenge in the western world, since our daily lives are
busy and many of us draw upon transportation systems,
such as cars, trains and buses. Studies suggest that around
70% of the UK population fails to meet minimum
recommendations for physical activity [1].

In view of the aforementioned recommendations, many
approaches to increasing fitness propose an increase in
moderate activity, such as brisk walking, in order to
improve people’s health [7]. Moderate activity is generally
defined as when a person’s heartbeat is increased to 55–
69% of maximum heart rate, which for most people would
occur when walking at about 4 mi/h. One important factor
for consideration is that many people have difficulties
making sure that their activity is in fact moderate and not
just light, i.e. that they are achieving the health benefits
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stated above [14]. It is therefore important for individuals to
not only be aware of their overall amount of exercise but
also its intensity.

2.1 Tracking and motivating fitness and moderate activity

Many technical methods have been developed to measure
fitness and physical activity. In contrast to physiology-
oriented systems such as Qualcomm’s Cardionet http://
www.qualcomm.com) and low-cost pulse oximeters that
enable users to monitor their blood pressure, heart rate and
blood oxygen saturation, more behaviour-oriented systems
focus on raising awareness of their users’ behavioural state.
One common device is the pedometer, a small device that
measures each stride the wearer takes. One recent report
indicates that just the presence of the pedometer can
motivate people to be more active [19]; another study
showed that sharing daily step count within a small group
of friends was more satisfying and motivating compared to
a control group who measured but did not share their
information [5].

One of the most advanced commercial technologies in
this area is the BodyBugg http://www.bodybugg.com), also
known as SenseWear. The BodyBugg measures an array of
values such as relative body temperature, step count and
acceleration, in order to estimate how many calories the
wearer is burning. It has been shown to work reliably in
controlled tests for measuring calories burned, with an
accuracy of 89–98%, however it is limited in its determi-
nation of the actual context of the wearer [11]. Also, it has
to be worn on the upper arm for 24 h a day; it can therefore
easily disrupt sleeping and collide with everyday clothing—
a particular disadvantage among women who often wear
tighter or lighter clothes.

A less direct means to motivate activity is taking part in
mobile games. Most mobile games involve infrequent play
over a relatively short period, with limited health benefits,
but some games such as Mogi Mogi http://www.mogimogi.
com) and Feeding Yoshi [4] take place over a longer period
of time and are more ‘interwoven into everyday life’. A
study of Mogi Mogi showed that players would frequently
take detours from their normal routes, and that “many alight
at an unusual metro station on the way home if they notice
an object on their mobile screen, even if this means walking
much further to get home. Many players also said they went
out at night because the mobile screen had indicated objects
in the vicinity” [12]. Similarly, Bell et al. report that players
adjusted their everyday routines of work and travel so as to
spend more time playing the game, often walking a good
deal more than they would do normally. A disadvantage of
this approach is its relative lack of clarity or precision about
the exercise undertaken. While players increase their
activity as part of playing the game, this is not directly

connected to or encouraged by the game—instead it is a
useful but indirect benefit of the game.

2.2 Theories and studies of change in activity

Numerous studies have explored how to motivate people in
increasing their activity level, and there are two well-cited
theoretical approaches: the Transtheoretical Model, where
behaviour change is described as a multistage process [21]
and Social Cognitive Theory, based on the individual’s
outcome expectancy and self-efficacy [18].

The Transtheoretical Model is one of the more common
theories referred to in the health literature. It focuses on the
individual stages people go through with regard to physical
exercise regimes, such as pre-contemplation, contempla-
tion, preparation, action and maintenance. Although it is
possible to determine people’s individual stage at a given
time with a standard questionnaire, the theory does not
account for individuals’ different levels of exercise and it
does not address the possibility for individuals to skip
between the stages. One critique has also been that it is
focused on attitude rather than behaviour, although in
observational terms both seem to be significant. For exam-
ple, it has been pointed out that the difference between the
stages of pre-contemplation and contemplation only refers
to a change in attitude rather than actual change in physical
activity. Moreover, recent research points to the theory’s
weakness in showing long-term changes [1].

The Social Cognitive Theory focuses on increasing the
individual’s self-efficacy by different means, in relation to
keeping fit, leaning on studies that show how intrinsic
motivation (enjoyment, feeling good about the exercise)
rather than extrinsic motivation (external pressures or
immediate rewards) increase the likelihood that the person
will stick to a routine [14]. Examples of intervention using
this approach include giving health advice over the phone,
either by health professionals or via an automated service,
and through an Internet service [10]. Studies showed that
human interaction for example was successful in promoting
increased physical activity among middle-aged and elderly
when compared against a control group [9].

Other research has addressed social aspects of sharing
information about activity and found that exercising
together can also motivate individuals to do more activity;
people increase their activity level as they engage in the
light competition [20]. Similarly, when people receive tailor-
ed information that is personally relevant, it is more likely to
stimulate change, adding to people’s self-efficacy and out-
come expectancy [21]. It is evident that intrinsic motivation
is influenced but not determined by wider social interaction.

Behavioural change is difficult to promote, and many
researchers point to the combinations of internal and
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external influences that are complicated to trace, target and
categorise in individual cases. One critique that has been
made of the physical activity literature, for example, is that
it does not separate between individual environmental
values (such as age, social class, health status) and social
environmental values (such as family, school/work and com-
munity) [7]. The social cognitive theory addresses aspects of
community, contrasting to the Transtheoretical model al-
though it focuses on internal values as main motivator to
increase individuals’ level of exercise. Interestingly enough,
social factors such as poverty and neighbourhood have been
found to highly influence people’s level of exercise [7].
Again, such categorisations abstract over individual cases,
but it is reasonable to conclude that an individual’s exercise
is often affected by interactions with his or her surrounding
group. In our work, we therefore focus on social and com-
munal aspects of exercise; the light pressure from the sur-
rounding community is a great motivational factor not to be
underestimated in relation to intrinsic motivational factors.
Also, rather than taking a broad survey and relying on social
categories such as class, in our evaluation we focus on the
details of particular individuals’ experience. Based on our
understanding of related theories and studies, our system de-
sign is directed towards a long-term goal of achieving greater
public health. We assume that a member of the general public
is likely to make only minor behavioural changes, and that
this will be based on individual awareness as well as social
interaction.

3 The Shakra prototype

Our overall aim is to design and implement a system that will
help to motivate adults who do not currently achieve the
minimum recommended daily activity level, and who can
benefit from a raised awareness of their current levels of
activity: a system that can track and categorise an individual’s
daily activity into accumulative time spent in inactivity, light,
moderate, and vigorous activity. In acknowledgement of the
influence that social networks can have on the actions of an
individual, the system should facilitate the sharing and
comparison of data between peers. In order to evaluate user
response to such a system and general usability, a basic
prototype was created that determined whether a user was
active or inactive, accumulated daily totals, and allowed the
sharing and comparison of the daily totals.

A client–server architecture was used in Shakra (see
Fig. 1). The client was built for Windows smartphones
running Windows Mobile 5 (WM5). In the system trial the
particular phones used were i-mate sp5s, which had SIM
cards enabling them to connect to a commercial mobile
phone network for data transfer. The client was imple-
mented in C# using the .NET compact framework. A web

service was used so that clients could upload their own and
download others’ data. The web service ran on a server
running Windows Server 2003 and the data uploaded was
stored in a MySQL database.

Our key design goal for Shakra was that it could be
carried around in a nonintrusive manner, requiring little or
no extra equipment for users. Minimal user intervention is
required in order for it to function effectively; the system
tracks the activity of the user without direct manual input.
The application tracks users’ general level of activity,
showing the current mobility state: no movement (‘station-
ary’), moderate activity (‘walking’) and travelling in a car,
bus or train (collectively labelled here as ‘driving’). The
moderate activity is then used to display a ‘minutes of
activity per day’, with a historical view supporting compar-
ison of activity across the previous week. This supports a user
monitoring his or her own activity and exercise levels, with
the exception that stationary exercise (such as working out at a
gym) is not tracked.

When running the application for the first time, the user
is prompted to provide a name, used to identify himself or
herself within the system and to other users. The applica-
tion records up to seven visible GSM cells and their signal
strengths, once per second. The current activity of the user
is then classified every 30 s by the application’s neural
network, as described in more detail below. Using a web
service, each phone uploads the recorded activity of the
user via GPRS and stores it in a MySQL database, while
simultaneously downloading information about other par-
ticipants for later review. The system updates this shared
information automatically every hour. If a user does not

Figure 1 System architecture
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want to wait for an update, he or she can manually
synchronise via the Sync menu option.

Users specify in advance the peers they wish to share
results with, but at any time they can change this list.
Figure 2a shows the Compare Daily Activity screen that
users can view to assess their performance in relation to
their peers. For a week’s overview of their own activity,
users may use the Week’s Activity screen shown in Fig. 2b.
In order to provide real time feedback to the user, an
animated representation of the user’s current mode of
activity runs continuously on the main screen of the
application. This is shown in Fig. 2c and d.

3.1 Sensing activity

The current activity of the user is inferred using patterns of
fluctuation in GSM signal strength and changes to the IDs
of detected cells. This method has been demonstrated as a
reliable and unobtrusive way of sensing current activity [2],
and has the advantage over the more traditional approach of
using an accelerometer in that it does not require additional
sensor hardware as in Sensay [17] and the multimodal
sensor board of [11]. Similarly, while the processing of
physiological and biometric data could complement our
approach, the benefits of encapsulating the system within a
mobile phone would be lost. An alternative approach would
be to utilise the positioning information available from
some mobile phone networks, however this approach
frequently involves prohibitive cost, as well as depending
upon much of the same technology as our client based
monitoring.

Rather like a traditional accelerometer, the levels of
signal strength fluctuation change when a mobile phone is
moved. For example, Fig. 3 shows the total signal strength
fluctuation across all monitored cells during successive 30-s
time periods whilst walking, remaining still and travelling

in a motor car. The figure illustrates that it is relatively easy
to distinguish between moving and remaining stationary,
but at times, the pattern of fluctuation whilst walking will
match that of driving and vice versa. This is due to the
stop–start nature of both walking and travelling in a motor
car in urban areas. When driving, a greater geographical
distance will typically be covered over a given time period
when compared to that of running or walking. As such it is
possible to use the rate of change of neighbouring cells to
infer travel by car.

To classify these patterns we use an artificial neural
network. The network inputs are the sum of signal strength
fluctuation across all monitored cells, and the number of
distinct cells monitored over a given time interval. The
network consists of a single layer of eight hidden neurons;
weights are learnt using back propagation. The network
outputs the currently sensed activity for the given input
values. The network is trained by repeatedly presenting data
collected during each method of movement.

The current activity of the user is conditionally depen-
dent upon their previous activity. In order to provide instant
feedback to the user interface, the neural network deliber-
ately does not model this behaviour. Instead, when deter-
mining if any additional minutes have been earned, we
apply task knowledge based upon the output from the
neural network over the previous two and a half minutes.
This enables noise to be filtered out and a more accurate
representation of the users’ activities achieved. For exam-
ple, periods of low signal strength fluctuation such as
stopping at traffic lights whilst driving can be ignored when
placed between periods of high fluctuation where many
distinct neighbouring cells were monitored. It could be
argued that activity would be more accurately inferred if a
longer rolling filter had been applied to the GSM data.
Introducing longer filters would have increased the likeli-
hood of active minutes ‘disappearing’ from the users’

Figure 2 The phone interface. Images a and b show screens for examining relative and individual activity levels: compare Daily Activity and
This Week’s Activity Images. c and d show two of the screens showing the estimated current activity level: Stationary and Walking
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activity totals. A decision was made that, for the purpose of
this study, priority would be given to user experience, with the
intention that this trade-off would be addressed in future work.

4 The user study

The Shakra application was evaluated with three groups, to
detail its use, to determine whether it increased users’
awareness of their activity level and if this could potentially
motivate them to be more active, and to derive implications
for future work. Naturally, a longitudinal clinical study
lasting months or years would be needed to rigorously assess
long-term changes in users’ behaviour and health, but our
one week trial served as a pilot evaluation of a potentially
powerful activity promoting application. The focus was on
the users’ experiences with both the activity tracking and the
sharing feature; it was important to find if sharing informa-
tion was good for increasing awareness and motivating a
more active lifestyle.

Before the trial, a base neural network had been con-
structed by using GSM data collected by the development
team while sitting still, walking and driving. In order to
determine whether or not further personalisation of the
network was required for each of the trial participants, the
system was given to each participant for a 2-day training
period. During this period, the participants were asked to
record whenever their activity mode changed. Functionally,
this was a simple task supported in the application’s main
interface that users learned to do quickly. For the training
days, we asked the participants to take the phones with them
as they went about a normal day’s activity. This trained the
system for the areas in which they usually go throughout the
course of a day.

Following the initial system-training period, the data
collected by the trial participants were analysed. We found
that only minor changes to the previously trained neural
network were required by three of the nine volunteers. This

was due to them living and working in urban areas that
exhibited different levels of signal fluctuation to those
where the initial training data had been collected by the
research team.

4.1 Method

Overall, the trial took place over 10 days. The participants
initially filled in a simple activity diary for 3 days, to
determine their present levels of activity and to compare
activity to the week of using the application. Immediately
after, they trained the system for 2 days and then finally
used the system for a 5-day working week, filling in a diary
describing their use of the system and whereabouts for each
day. We kept in touch with the participants by phoning
them once during the week, and sending text messages in
the few cases where it looked like the phone was not
uploading properly. At the end of the study, each participant
was interviewed individually to expand on the use and
reflect on the experiences with and opinion of Shakra.

The participants were recruited as groups of friends and/
or coworkers who had daily interaction with each other and
would enjoy sharing their exercise information. Although
the target users for the final system are inactive people, it is
unrealistic to expect that only inactive people will use the
system. This is especially true when the system is aimed
towards peer groups who will naturally include individuals
of differing levels of activity. We therefore aimed to study
the use of the system among a diverse set of people, and the
nine participants varied in the degree of their normal
activity. Two were highly active, with purposeful exercise
at least 3 days a week, four were moderately active people,
working out one to two times a week, and three were fairly
inactive, walking but not doing any purposeful exercise1.
Table 1 provides an overview of the three groups.

1 Naturally this is a very broad characterisation from the participant’s
own statements and diary reports. It is not necessarily a true reflection
of their level of health or level of fitness.

Figure 3 Distinguishable pat-
terns of GSM signal strength
fluctuation over successive 30 s
samples are used in identifying
the activity levels Stationary,
Walking, and Driving
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After the study, the system logs were analysed. First of
all, the activity times were compared to the self-reported
diaries and the interviews, to make sure there was a fair
level of accuracy in measuring activity. Secondly, the logs
were scrutinised to see how participants used the applica-
tion, how often they compared their activity to others’, and
how often they looked at their weekly chart. The interviews
were transcribed immediately and the parts were catego-
rised according to major topics and themes. They were used
to elaborate on the diary, such as precise times of commute,
actual transport methods, and more detailed experiences
and impressions of the application during the week. In the
next section, we report the results in relation to three topics,
one relating to precision or reliability of the application’s
measurements, a second looking at users’ individual
experiences, and the third exploring the participants’
experiences of information sharing.

5 Reliability of Shakra in the real world

Although previous tests had shown highly accurate deter-
mination of activity [2], the real test of the application
would be using it in an uncontrolled environment among
many different people. We did not expect to get as high
accuracy, because of the unstructured and diverse behaviour
of people leading their everyday lives. Overall, the applica-
tion showed very good determination of activity and the
participants found it very useful as a tool for measuring their
activities. After analysing the diaries and annotating them
with information gained through interviews, we compared
each day of each participant with a log-generated activity
timeline. It was easy to see participants commute to work,
break for lunch, and commute back from work; two
examples, with diary annotations, are shown in Fig. 4. A
rough analysis was done to determine the rate of correct
labelling of activity. We chose three sample days for two

different participants because their diary entries for those
days were particularly comprehensive, i.e. 6 days in total.
From the unfiltered data we analysed short stretches of 60
to 90 min with varied activity; this was done to refrain from
considering the long hours of inactivity, which occurred
during their work day where participants were mostly sitting
at their desk. Including this would have given unrealistic
ally optimistic numbers. Results showed a minimum of
70% accuracy, during users’ commute when fluctuations are
highest. The misinterpretations often occurred during
changes between different methods of transportation such
as getting off a bus or a train. However since there would
often be a delay both before and after transportation, the
misinterpretations would cancel each other out, correcting
the accumulated minutes of exercise. One more problematic
finding was that running would occasionally register as
driving. During one participant’s 45-min lunch run, 15 of the
minutes were registered as driving. For another participant
with a long commute, for example, it meant that he gained a
maximum of seven active minutes each day due to error. This
was the maximum error we found from looking at participants’
commutes.

Some of the diary entries assisted in showing when still
or walking activity was misidentified. For example, one
woman from group 3 explained that she went on a walk for
30 min, but had only increased her overall activity count by
22 min when she returned. It should be noted that this
particular participant lived in the countryside where we
knew that the neural network would be less accurate.
Similarly, a male participant reported that his 10 min walk
to work sometimes only gave him 7 to 8 min of activity.
This may in part be attributable to a lag in activity
determination, as well as the participants stopping at road
crossings, etc. Since the application is aimed towards
increasing awareness rather then measuring physical exer-
cise precisely, and offered useably accurate overall mea-
sures, we suggest that the small moment-by-moment lags
and jitters in classification were not problematic for the
purpose of the trial. Real-world reliability is, however,
essential to enabling a broader range of applications,
especially those involving moment-by-moment tracking
and display. Since the pilot study took place, alternative
methods of activity detection have been evaluated and
Hidden Markov Models have been found to be a promising
substitute to the current Artificial Neural Network imple-
mentation. Our findings are presented in detail in Section 7.

6 User experience

The participants all took the phones with them every day,
carrying the phones around with them wherever they went

Table 1 Participants in each group

Characteristics Group 1 Group 2 Group 3

N 2 3 4
Age range 52–54 28–30 19–37
Sex Female/male Male Female
Activity level Fairly

inactive
Two
moderately
and one
highly active

One inactive, two
moderately active
and one highly
active

Occupation Teacher and
administrator

Technical
administrators

Manager,
administrative
staff and student

Mobile Netw Appl (2007) 12:185–199 191



for the vast majority of the day. The application was found
to be both reliable and stable overall, and everyone found it
easy to use. Where group 2 had the chance to use it during
most of their working day, and therefore checked it and
compared extensively (between 11 and 34 times a day), the
other groups had busy days where they would mostly check
their numbers and compare in the evening, therefore
checking fewer times (between 1 and 20 times).

Participants reported that the application was fun to use
and gave them good—and sometimes surprising—aware-
ness of their activity level. Two participants (from groups 2
and 3) reported it to be highly ‘addictive’, in particular the
sharing aspect. Another participant repeatedly explained
how it made him see how ‘lazy’ he was. Although only
four of the nine participants reported doing more activity
than usual in the interviews (and attributed it to the
application’s sharing functionality as well as more general
competitiveness), the diaries show that the other partic-
ipants were also more active compared to the initial three
day ‘base’ diary. The short-term nature of this pilot study
does not allow for observation or inferences to be made about
the initial novelty value of the system. As we discuss further
in the Conclusion and Future Research section, a longitudinal
clinical trial will determine long-term use and effects.

6.1 Individual use and motivation

The participants described how they would enjoy checking
how much walking and running activity they did during the
day. Most of them checked their own minutes regularly and
were astonished how they gained minutes during busy
days. One woman from group 3 was surprised that she had
accumulated 177 min one day, but when looking back
though the diary, she realised that she had been busy
commuting between two different work places (which
involved walking to and from a bus and a ferry), as well
as walking her dogs in the morning and evening. We were

able to detect most of her activities in the data log, except
for some of her transport that had a few small gaps of 30 s
walking when she was in fact driving. This error, however,
did not add more than 7 min of walking to the whole day.
This participant was busy and already highly active, and did
not feel the application had made her change her activity
level during the study.

One participant from group 2 on the other hand, was
very active that week in particular, and attributed this to the
application. He explains how he increased his activity that
week:

[I]t probably encouraged me to go running Monday,
Wednesday and Friday, because I always have the
intention of going running at the beginning of the
week. [...] and I sort of set out Monday, okay right, I
will take my stuff and I will go, you know, just
Monday, Wednesday and Friday. [It also encouraged
me to] just walk a couple of extra bus stops [...]

He was very keen on increasing his activity level, and had
tried to get into running 3 days a week for a while, without
complete success. The weather had sometimes deterred him
before, but with Shakra, he went out every planned day
despite it being very rainy two of those days.

Although the participants seemed to be motivated from
just the awareness of their activity, the effect was not
unanticipated; often merely the knowledge that others can
detect one’s activity (either from a fill in diary or a tracking
system) makes one more active. However, it was important
to explore whether the use affected users’ awareness and
attitude towards moderate exercise. Behavioural change is a
slow and often long-term process, but the necessary first
steps have been taken here, in that awareness and
motivation increased. Other issues affect motivation and
awareness in return; therefore it should be related to social
factors such as competition and collaboration—as the next
section discusses.

Figure 4 Example timelines
of activity for two participant’s
days with colour showing the
activity level and text showing
the participants’ diary
annotations
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6.2 Shared experience

The groups did not only enjoy the increased awareness of
their individual activity levels, they also enjoyed competing
among themselves. Group 2 were quite determined in their
competition, in particular one participant who would spend
much of his working day walking around taking calls on his
wireless headset, much more than he usually did. Another
of his group’s members explains:

...[W]e would be sitting in calls and he would be
walking by [showing the phone to us]. Maybe there
was a meeting round that side of the building
(pointing), he would walk all around the building to
get there (the building is doughnut shaped) ... Me and
Colin would sort of check more often to see. Ewan just
rubbed it in front of our noses, how far he went.

This group enjoyed the competition despite a very
different number of accumulated active minutes as Fig. 5
shows. Since the ‘overachiever’ described above had a
wireless headset and was not confined to his desk, he could
work while walking around—or walk while working. The
other two group members were more confined to their
desks during the day and only reached about half of his
minutes every day. Where the first of these two said that he
realised how ‘lazy’ he was. The participant second explained
that he did not care that much, since he worked out at the
gym about three times a week. He was quite content with his
activity level, and did not see his 10-min walk to and from
work as ‘exercise’. In this case there was more concern from
the less active of the two, who was in the category that the
application is most focused on, although he was constrained
in changing this awareness into greater activity—at least
during the trial.

Group 3 also started competing, with two women
particularly competitive with each other. One wanted to
beat her very active friend. For example, one evening when
she came back from a run with 112 min, she saw her friend
had 177 min of activity. In an attempt to catch her friend
up, she asked her neighbour if she could take the latter’s

dogs for a walk. She therefore managed to get 137 min—
not quite enough to beat her friend, but a respectable
amount of exercise to say the least.

Group 1 did not compete much, but they did enjoy the
fact that they could see each other’s activity when they
were apart. The oldest of the study participants and also a
married couple, they mostly used the system to keep an eye
on their own activity levels.

6.3 Sharing the fun

One distinct difference between our application and mobile
games is the designed purpose of promoting exercise versus
promoting play. However, we found that the difference in
use is not necessarily so distinct. Where other games have
been shown to promote exercise, we found that playfulness
can be a side effect of health-focused applications.

Participants had fun competing as described above and
they did not only use it for teasing each other and as a
conversation topic: some of them saw it as a game. One of
the participants commented that his buddy “wanted to win
so much. Before we could even get it to a certain level, he
was flying”, he said. ‘Walking around’ with the sole
purpose of gaining active minutes was common behaviour
among some participants, which not only shows their
competitiveness but also how they wanted to ‘play’ the
system. In essence, the application has game-like character-
istics for those who like to play: the winner is the person
who accumulates the most activity in a day.

7 Post trial enhancements

Although generally not perceived as a problem during the
pilot study, issues of accuracy were raised by the apparent
lags and jitters in the system’s classification of the user’s
current activity. Sudden spikes and troughs in GSM cell
strength and visibility contribute to the level of difficulty
associated with GSM cell-based activity inference. In
Section 5 we discussed the need to analyse previous mea-
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surements alongside those currently detected in order to
filter the noise associated with the GSM data. During the
trial this was implemented as a simple smoothing algorithm
using the output from the neural network. In this section we
process data obtained during the trial using a Hidden
Markov Model (HMM) and present an unsupervised
approach to calibration. We demonstrate how a HMM
based approach to inferring activity is more appropriate
than an ANN because the HMM can directly model the task
knowledge. We conclude this section by comparing results
from the HMM and the ANN obtained by processing the
same trial data.

7.1 Hidden markov model (HMM)

The problem that we are trying to solve is that we wish to
infer activity of the cell phone carrier from observations of
the GSM data. The GSM data provides with an indication
of the activity, but this needs to be smoothed out by
knowledge of “normal” behaviour. For example, it is usual
for a person to drive for a prolonged period of time, and
then to walk; it is unusual for a person to switch between
driving and sitting frequently. We can model this activity
using a Hidden Markov Model (HMM). A HMM l is
defined as follows:

l ¼ A;B; pð Þ
A is the transition matrix representing the probabilities of

moving from one state (activity) to another. In the context
of HMMs, the activity of a cell phone carrier is referred to
by the term state, that is, the hidden nonobservable state.
Therefore for the rest of this section we use the term state to
refer to carrier's activity. B is the observation matrix
representing the probability of being in a state given an
observation and : is the initial probability distribution. S
represents the set of states that the carrier can be in (the
state alphabet), in our case:

S ¼ still;walking; drivingð Þ
V is the set of discrete observations. It comprises n

elements (v1, v2,...,vn). In our case, we map measurements
of the signal strength fluctuation and the cell fluctuation
onto a set of 15 discrete observations. This process is
described in detail in the following section. During
operation of the HMM we will have a sequence of
observations which will lead to a sequence of states. There
are t observations O, and t matching inferred states Q:

O ¼ o1; o2; . . . ; otð Þ Q ¼ q1; q2; . . . ; qtð Þ
The strength of a Hidden Markov Model is that it uses

knowledge of previous states in order to predict the most
probable current state. In our case, we remember five prior
states, and this is represented in the transition matrix A.

Hence, the probability of qt depends on states (qt−5, qt−4,...
qt−1):

P qt=q1t�1ð Þ ¼ P qt=qt�5; qt�4; . . . ; qt�1ð Þ

The matrix A captures these probabilities: it contains the
probability of transitioning to state j given the previous five
states of activity in a sequence, qt−5, qt−4,...,qt−1, that is:

aij ¼ P qt ¼ si=qt�5; qt�4; . . . ; qt�1ð Þ
where qt is the future state in a sequence. The observation
matrix B contains the probabilities of an observation k
being produced whilst currently in state j:

bjk ¼ vk
�
sj

� �

In order to infer the most likely state sequence given a
sequence of observations we can use the Viterbi algorithm
[16, 23].

7.2 Unsupervised calibration

In this section we present a method for unsupervised
calibration using the HMM described in the previous
section. We use the Baum-Welch method to learn A, B,
and : [3]. By presenting the Baum-Welch algorithm with a
sequence of observations it will populate A, B, and : . It will
not however help us consistently map signal strength and
cell fluctuations to the observation alphabet. If this mapping
is not consistent across environments then the inferred
hidden state may imply a different meaning such as walking
when the user is actually driving. To avoid an arduous data
collection and calibration procedure we use an automated,
unsupervised process to learn the mapping between cell and
signal strength fluctuation and the observation alphabet
mapping. In this section we describe that process.

Each of the activities we aim to distinguish between
produces a different pattern of signal and cell fluctuation.
The pattern of fluctuation depends upon the environment.
By identifying the mean fluctuation values for activities in
specific environments we can determine the GSM fluctu-
ation to observation alphabet mapping. In the context of a
HMM we use the distance from the means to discretise the
continuous range of signal strength and cell fluctuation.
Fluctuation measurements that are close to the activity means
indicate a stronger probability of undertaking a particular
activity as opposed to those that, in terms of Euclidean
distance, are positioned further away. Hence we map these
levels of fluctuation to observations contained within the
observation alphabet that reflect this likelihood.

In order to learn the levels of fluctuation we collect a
series of data points. A data point comprises a cell and
signal strength fluctuation measurement. Data points can be
collected at random, that is, the cell phone carrier does not
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need to declare current activities. In the context of the trial,
we can use data from participants who engaged in all
activities; walking, driving and remaining still. We do not
ask participants to label the data and instead automatically
partition the data points into three sets, reflecting the three
activities. To partition the data we use K-means with k=3,
with the assumption that the participant will perform all
three activities. If this is not the case then k is adjusted to
reflect this.

In Fig. 6a we plot the mean cell and signal strength
fluctuations for an urban area on the outskirts of Bristol in the
UK. In this figure the amount of fluctuation increases with
the speed of the activities, that is, driving produced a greater
level than walking, and walking a greater level than
remaining stationary. Whilst this relationship is not linear,
the positions of these means do lie along an approximately
straight line. We have taken approximately 85,000 measure-
ments of cell and signal strength fluctuation from different
areas of metropolitan and urban environments and have
always found this behaviour to be consistent. That is, the
activity means have typically lain along a straight line. On
occasion we found the driving mean to rise slightly above the
line due to a proportionally greater level of cell fluctuation.
Perhaps the most useful aspect of the relationship between
the means is that, in terms of Euclidean distance, the driving
activity mean will always be greater than the walking activity
mean and closer to the walking mean than the still mean and
that the still mean will always be closer to and smaller than
the walking mean. Hence, given the means produced by K-
means, we are able to easily match means to their
corresponding activities. This approach would fail if driving
produced less fluctuation than walking or if remaining
stationary produced a greater fluctuation than walking. We
are however happy to take this shortcut because, having
conducted extensive experiments in multiple heterogeneous
environments we have never found this situation to occur nor
do we expect it to. This is due to the nature of GSM handoff
strategies and the behaviour of signal strength fluctuation,

i.e. driving creates a greater level of fluctuation than that
created by remaining stationary.

Using the mean fluctuation levels learnt for activities in a
given environment we are able to define the mappings
between GSM cell and signal measurements, and the
observation alphabet. We have found the best way to do
this is by slicing the 2D measurement space up using the
means and variances of the three activities along the two
dimensions. An example of this is illustrated in Fig. 6b.
Each zone created by slicing the measurement space
represents a discrete subsection of the continuous measure-
ment space. Hence each zone represents the membership
criteria for an observation. Membership is determined by
finding the zone that a current measurement lies in. In
Fig. 6b, for clarity, just four observations have been
superimposed (v0, v1, v2, v3). In practice we define 15
observations and subdivide the measurement space into 15
distinct zones.

This approach to learning the optimum settings for a
given environment avoids the need to relearn B. Instead we
update the mapping between cell and signal strength fluc-
tuation and the observation alphabet. This enables us to
provide consistent mappings between GSM measurements
and the observation alphabet. This mapping reflects the
probability of observations occurring in specific hidden states,
matrix B. The alternative approach, relearning B, would
require the use of fixed cell and signal strength fluctuation
boundaries for mappings to observations. The probability of
these observations occurring in specific states for a given
environment would then need to be learnt. In order to learn
these probabilities would still require the use of K-means to
learn the activity variances and means. The primary
disadvantage of this approach is that the discretised 2D
space that represents the observation alphabet mappings
needs to be exhaustive in order to operate in all types of
environments. That is, the measurement space needs to be
discretised in a manner fine enough to allow operation in
environments with low levels of fluctuation as well as those

Figure 6 a The activity means and b creating the discrete observation alphabet
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with high levels such as metropolitan environments. This
requires a much larger observation alphabet. This has a
negative impact on the computational overhead of running the
Viterbi algorithm to determine the most likely hidden state.

7.3 HMM performance

To assess performance we compared the HMM that was
trained using the unsupervised calibration procedure de-
scribed in the previous section with the Artificial Neural
Network (ANN) approach presented in Section 3.1. In order
to do this comparison we used the labelled trial calibration
data collected before the Shakra user study started.

Both the HMM and the ANN were exposed to approx-
imately 15 min of training data for each activity. As before
cell and signal strength fluctuation was measured over 15-s
intervals. In the case of the ANN training was conducted
by repeatedly presenting data collected during each method
of movement. This needs to be carried out on a desktop
PC, not directly on the cell phone. The HMM was trained
using Baum-Welch to populate A, B and : , and the GSM
mappings to the observation alphabet were learnt using the
method presented in the previous section. The HMM
comprised an observation alphabet of 15 distinct observa-
tions. Both the trained ANN and HMM ran on the cell
phone in real time.

In order to compare the performance of the ANN and the
HMM we presented both algorithms with the same GSM
data. We used approximately 2 h test data while undertak-
ing each activity. Data was collected at different times of
the day on different days of the week. The results of the
ANN and HMM are shown in Table 2.

The ANN did not perform as well as the HMM when
sensing if the carrier was stationary. We suspect this is
partly due to the nature of the environment. We found
signal strength fluctuation to, on occasion, behave in a
sporadic manner despite the cell phone carrier remaining
stationary. In addition the task knowledge was applied
using a simple averaging filter in the ANN whilst a superior
5-step Markov model was used in the HMM.

Whilst walking we found the ANN to perform slightly
better than the HMM. We suggest that if the HMM were
given more training data a level similar to that of the ANN
would be achieved. Inferring that the cell phone carrier is
driving is the hardest of the three activities to sense. This is
represented in the confusion matrix for the ANN and HMM.
The reason that this activity is so hard to sense is due to the
nature of driving in metropolitan environments. The self-
calibrating HMM performed slightly better than the ANN.

In summary, we have found that a HMM using an
unsupervised calibration process to learn the settings for a
given environment is able to offer a similar level of per-
formance to that of an ANN that has been manually trained.

We believe that this simple approach to calibration and
modelling task will increase performance and usability even
in disparate environments, although further experimentation
will be needed to validate this claim, as discussed in
following section.

8 Conclusion

The development of Shakra is a first step towards creating a
low cost physical activity monitor and health promotion
application that is easily accessible to the general public.
Shakra’s real-time collaborative aspects and its lack of
sensors beyond the mobile phone differentiate it from other
research and products in this area. The initial reaction to Shakra
during its pilot study was very encouraging; however, some
issues with accuracy, feedback, privacy and awareness were
raised. We have made some first steps towards resolving
problems of accuracy, and of training the system to be accurate,
with the introduction of unsupervised calibration and task
modelling, the remaining issues of feedback, privacy and
awareness must be addressed in future implementations.

All of the study participants responded positively towards
the system and were tolerant of the momentary lags and
jitters in activity classification (as discussed in Section 5).
Many of the participants were excited to see their own
activity levels, expressing higher motivation and increased
awareness. We observed some of the same features that
have been seen in more traditional collaboration in exercise
to lead to more exercise being done, such as encouragement
among ‘buddies’ and, in some cases, strong competition.
The way in which the application was used varied between
individuals and groups: it was used variously as a mutual
awareness tool, a self-monitoring device and as a game.
This highlights the need for a degree of flexibility within
the design of a health-promoting system that has a broad
user demographic; enabling individuals and groups to use
the system in such a way that suits and benefits them.

As with any pilot study, there are limitations to the
validity of any resultant claims made. It is not possible, for

Table 2 Confusion matrix

Stationary Walking Driving

ANN (supervised calibration: metro environment)
Stationary 83% 16% 1%
Walking 5% 87% 8%
Driving 3% 24% 73%

HMM (unsupervised calibration: metro environment)
Stationary 92% 8% 0%
Walking 12% 80% 8%
Driving 4% 22% 74%
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example, to claim that over a longer period of time the
participants would remain enthused and continue to feel
motivated by the system. What we do infer from the pilot
study is that Shakra is usable and can initiate such positive
responses, and suggest that with further development the
system may prove to be an effective health promotion tool.

In addition to improving the accuracy of activity
inference, the granularity of activity inference must be
increased if we are to more finely categorise the various
levels of activity intensity. We believe that this is achiev-
able following the introduction of the new activity detection
methods discussed in Section 7. Instead of training the
system to recognise walking at any speed, it should be
trained at the various intensity cut-off points, e.g. low
intensity below 4 mph, moderate intensity above 4 mph.
Similarly, work will be done to detect other activities such
as cycling, with equivalent distinction between low, moder-
ate, and high intensity cycling. That is not to suggest that a
system such as ours that can only distinguish between
walking, driving and being stationary is without practical
use. Indeed our pilot study showed that this level of
granularity was enough to raise awareness and generate
discussion about activity levels. Pedometers have been
proved to increase the activity levels of users while only
monitoring step-count. If any remaining types of activities
or contributing factors to intensity are to be acknowledged
by the system, or indeed the achievable level of accuracy
is deemed inappropriate for long-term use, then we
envision the need to utilise additional technology. We
intend to explore new sensing and analysis techniques that
can run on commodity phones, especially as they evolve
to contain such previously exotic hardware as WiFi, GPS
and, in phones such as the Nokia 3220, accelerometers.

As the focus of the system is to primarily encourage small
changes in behavior, no attention has been made so far to the
minimum recommended session length of 10 min. This
could be easily introduced by a post-processing 10 min
rolling filter, earning users additional accreditation when a
10 min session is completed. Another potential avenue of
exploration is that of an adaptive system that evolves
alongside a user’s activity pattern; the 10 min session
accreditation being introduced when the system detects
substantial levels of intermittent activity throughout the day.

Once completed the system will be the subject of a
clinical trial to determine the extent of any resulting
changes in attitude, behaviour and health. We expect to
use both qualitative evaluation techniques to assess these
changes in objective terms, and qualitative evaluation tech-
niques, to explore the detail of individual and social inter-
action around the system. In particular, we are interested in
how people weave such technology into everyday life [4],
and expect users to develop tactics and strategies for use
beyond our expectations, appropriating or even ‘hacking’

the technology to suit their own goals, desires and contexts.
There is clearly great potential in technical explorations
using highly accurate specialised assemblies of hardware
and software, such as the multimodal sensor board and
iMote of [10], but our study illustrated the pragmatic
advantages of a lightweight application running on a mobile
phone with no such specialised sensors, and no cumber-
some attachments, e.g. being strapped to the body. We
suggest that a commodity platform will help such a health
promoting application be more readily integrated into the
lives of the wider population sooner rather than later.
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