
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Research outputs 2014 to 2021 

2021 

Shale wettability: Data sets, challenges, and outlook Shale wettability: Data sets, challenges, and outlook 

Muhammad Arif 

Yihuai Zhang 

Stefan Iglauer 
Edith Cowan University 

Follow this and additional works at: https://ro.ecu.edu.au/ecuworkspost2013 

 Part of the Engineering Commons 

10.1021/acs.energyfuels.0c04120 
Arif, M., Zhang, Y., & Iglauer, S. (2021). Shale wettability: Data sets, challenges, and outlook. Energy & Fuels, 35(4), 
2965-2980. https://doi.org/10.1021/acs.energyfuels.0c04120 
This Journal Article is posted at Research Online. 
https://ro.ecu.edu.au/ecuworkspost2013/9890 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworkspost2013
https://ro.ecu.edu.au/ecuworkspost2013?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F9890&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F9890&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1021/acs.energyfuels.0c04120
https://doi.org/10.1021/acs.energyfuels.0c04120


Shale Wettability: Data Sets, Challenges, and Outlook

Muhammad Arif,* Yihuai Zhang, and Stefan Iglauer

Cite This: Energy Fuels 2021, 35, 2965−2980 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: The wetting characteristics of shale rocks at
representative subsurface conditions remain an area of active
debate. A precise characterization of shale wettability is essential
for enhanced oil and gas recovery, containment security during
CO2 geo-storage, and flow back efficiency during hydraulic
fracturing. While several methods were utilized in the literature
to evaluate shale wettability (e.g., contact angle measurements,
spontaneous imbibition method ,and NMR method), we here
review the recently published data sets on shale contact angle
measurements. The objectives of this review are to (a) develop a
repository of the recent shale wettability data sets using contact
angle measurements at high pressure and temperature (HPHT)
conditions, (b) explore the factors influencing shale wettability, (c)
identify potential limitations associated with contact angle
methods, and (d) provide a research outlook for this area. On
the basis of the data reviewed here, we conclude the following: (1)
Shale/oil/brine systems demonstrate water-wet to strongly oil-wet wetting behaviors. (2) Shale/CO2/brine systems are usually
weakly water-wet to CO2-wet. (3) Shale/CH4/brine systems are weakly water-wet. The key contributing factors that underpin this
high shale wettability variability include, but are not limited to, operating pressure and temperature conditions, total organic content
(TOC), mineral matter, and thermal maturity conditions. Thus, this review provides a succinct analysis of the shale wettability
contact angle data sets and affords an overview of the current state of the art technology and possible future developments in this
area to enhance the understanding of shale wettability.

1. INTRODUCTION

Shale rocks have received enormous attention from the global
scientific community, especially in the past decade.1−3 This is
arguably due tomassive worldwide proven oil and gas reserves in
shales.4 The global technically recoverable reserves (based on
technology readiness level and availability) are estimated at 214
trillion m3 of gas and 419 billion barrels of oil.5

Shale oil and gas reservoirs belong to the class of
unconventional reservoirs,6−8 while other unconventional
resources include tight oil and gas,9 coal bed methane,10−12

and gas hydrates.13 Shale reservoirs are characterized by an
ultralow permeability (order of 10−21 m2 = 1 nano Darcy) and
low porosity,14 and thus, production at economic rates requires
advanced technology such as hydraulic fracturing and horizontal
drilling.15 While the “shale revolution” prompted a considerable
change in the global energy outlook, the estimates might be
widely optimistic,16 and there are environmental controversies,
too.15 Shales were previously renowned as conventional source
rock and caprock. They are now very well established (although
poorly understood) as storage media for hydrocarbon
accumulations;17,18 they are also a target for possible CO2

geo-sequestration and geo-thermal energy production and
nuclear waste repositories.19−24

From a fundamental perspective, wettability of rock/fluids
systems is a physicochemical parameter that governs the fluid
distribution and multiphase flow of fluids in a porous medium.
Specifically, shale rock wettability is essential due to several
aspects. For instance, several enhanced hydrocarbon recovery
methods have been proposed and evaluated recently for
incremental production from shale reservoirs, e.g., CO2 flooding
in shale oil reservoirs,25,26 miscible gas injection,27,28 and CO2

and N2 huff-and-puffmethods.29,30 In this context, wettability of
shale rock is a key parameter that influences the choice of the
appropriate recovery scheme and the associated relative
permeability curves for oil−water and oil−gas systems for
modeling production from shales. In addition, during CO2 geo-
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storage, the injected CO2 is rendered immobile by an almost
impermeable shale caprock if the shale is water-wet.31 This
structural trapping capacity (of a caprock) is thus a function of
shale/CO2/brine system wettability,32 and a greater water-
wettability of caprock renders structural trapping more efficient.
Moreover, shale rocks have recently been evaluated for their
potential to act as CO2 sinks where shale can trap CO2 by
adsorption (“adsorption trapping”). This is attributed to
significantly higher CO2 adsorption capacities than those of
methane, as evidenced by several experimental observations33

and theoretical molecular dynamic predictions.34 This process
thus offers dual benefits, i.e., enhanced methane recovery and
simultaneous CO2 storage.35,36 Furthermore, spontaneous
imbibition of water (which depends on wettability) and thus
the water uptake tendency of shales are relevant to the flowback
efficiency of fracturing fluid during hydraulic fracturing
treatment.37

Thus, it is clear that a precise evaluation of shale wettability is
extremely important for successful hydrocarbon exploitation
from shale reservoirs. Currently, the contact angle method is
frequently used to measure shale wettability under different
operating conditions,19,38−40 while spontaneous imbibition has
also been extensively studied recently,41−44 and some NMR
investigations have been conducted.45,46 However, only a few
studies have used molecular dynamics simulations to examine
shale wettability.8,47 One key factor that limits the under-
standing of shale rocks is their complex microstructure,1,48−52

including organic matter, minerals, and microfractures.1,53,54

Consequently, a precise shale wettability characterization may
not be possible without a detailed understanding of the
associated shale microstructure. Furthermore, no single imaging
technique is capable to capture the shale rock microstructure
fully and accurately, rather a multiscale correlative imaging
approach is required.1,53,54

The current literature suggests that shale rocks demonstrate a
mixed-wet behavior where the inorganic mineral matter is
hydrophilic, while the organic matter is hydrophobic,55 and this
hydrophobicity increases with shale total organic carbon
(TOC).19,40 However, there are other observations too where
shales were found to be water-wet, and the associated wetting
behavior was not influenced by shale TOC,38 thus suggesting a
complex wetting behvaior of shales. On the contrary, the
wettability of conventional geomaterials, for example, sand-
stones, and pure minerals are relatively better understood and
evaluated.56−60 For instance, a wide body of literature agrees
that pure clean quartz surfaces are strongly water-wet,61−63while
pure calcite is relatively less water-wet (at ambient conditions),
and the water-wetness is typically reduced at elevated CO2

injection pressures.32,64−67

Key factors that influence shale wettability include the TOC,
kerogen maturity, and mineral matter.19,38,39,68 Moreover,
contradictions between contact angle and spontaneous
imbibition methods (to evaluate shale wettability) were also
recently debated. For a review of shale wettability using
spontaneous imbibition, the reader is referred to a recent
review.69

Thus, due to the significance of shale wettability, we here
review shale wettability data sets based on the contact angle
measurements at high pressure and high temperature con-
ditions. Here, we discuss the impact of pressure, temperature,
and TOC for shale/oil/brine systems, shale/CO2/brine
systems, shale/CH4/brine systems, and shale/CH4/CO2/brine
systems. Note that a few studies also reported wettability

alteration of shales using surfactants;70,71 however, these data
sets are out of scope of this review. This review is intended to act
as an entry point for new researchers in this area and to give a
state-of-the-art summary of the current understanding of shale
wettability.

2. WETTABILITY ASSESSMENT METHODS

Traditionally, wettability of geomaterials (i.e., rocks and
minerals) is assessed using a range of methods that include,
but are not limited to, contact angle measurements using the
sessile drop/captive drop procedure,56,57,63 spontaneous
imbibition method,72,73 Amott−Harvey and U.S. Bureau of
Mines (USBM) methods,74 capillary rise method,75 nuclear
magnetic resonance (NMR)method,76 and flotationmethods,77

while relative permeability and capillary pressure curves also
provide insights into wettability.78

Theoretical molecular dynamic simulations have also been
used to characterize wettability of geomaterials by simulating
contact angles79−82 and spontaneous imbibition83 at amolecular
scale.

2.1. ShaleWettability AssessmentMethods.There is no
single reliable and affordable method for assessing shale
wettability, and each method has certain advantages and
limitations. The core flooding methods (Amott and USBM
tests) to assess shale wettability are notoriously difficult and
prone to error (mainly due to the ultralow permeability of the
shale and associated long measurement times).
Furthermore, spontaneous imbibition (SI) has been used to

determine shale wetting characteristics.41−43 This method is
based on the natural imbibition of water and oil to determine
their relative wetting tendencies. The key advantage of SI is that
it can assess mixed-wettability behavior of shale surfaces for
shale/brine/oil systems,84 while for a shale/CO2/brine system
forced imbibition may be required which is challenging,
especially at high pressure. Wettability characterization using
NMR is based on the relative water absorption and oil
absorption capacities of brine-saturated and oil-saturated core
samples, respectively.45,46 While NMR spectroscopy is an
attractive technique in terms of quantitative evaluation of
shale wettability, one key disadvantage is that NMR requires
separation of the wetting and nonwetting phase signals and
information about the pore size distribution.76 The contact
angle method, which is the focus of this review, is discussed in
more detail below.

2.2. Contact Angle Measurement Method. Contact
angle measurements are a well-established technique that allows
a direct and quantitative assessment of wettability of a given
rock/fluid system.32,57,74,85 In particular, the contact angle
method is suitable when pure fluids and clean cores/minerals are
used.86 Another advantage of the contact angle method is that it
can provide relatively rapid measurements for a wide spectrum
of operating conditions, for example, pressure, temperature,
salinity, surface chemistry, and surface roughness of the rock
surface. However, caution must be taken during contact angle
measurements as surface contamination and surface cleaning
methods can lead to a significant bias in reported data.87

Moreover, contact angle is not a bulk measurement.88

The experimental methodology used for contact angle
measurements is based on sessile drop or captive bubble
configurations; these two approaches are most common in the
petroleum industry.56,86,89 More recently, micromodels are also
used for contact angle measurement-associated microscale
images; this literally works as a “lab-on-a-chip”,90,91 while X-
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ray μ-CT imaging allows real-time localized contact angle
measurements at the millimeter scale.88,92 These methods have

the advantage that the fluids reside inside a porous medium;
however, experiments are more difficult and costly.

Figure 1. Schematic of different contact angle measurement methods: (a) sessile dropmethod, (b) captive bubble method, (c) sessile drop tilting plate
method, (d)micro-CT imagingmethod, (e)micromodel method, and (f)molecular dynamic simulationmethod. Panel (c) is adapted fromArif et al.56

with permission from Elsevier. Panel (d) is adapted from Iglauer et al.98 with permission from the American Geophysical Union. Panel (f) is adapted
from Iglauer et al.80 with permission from Elsevier.

Figure 2. High pressure, high temperature contact angle measurement setup: (a) brine injector, (b) brine feed, (c) crude oil/gas injector, (d) crude
oil/gas feed, (e) brine storage, (f) crude oil storage, (g) high pressure, high temperature (HPHT) cell, (h) operating needle, (i) adjustable sample
holder, (j) rock sample, (k) pressure and temperature display, (l) video camera, (m) light source, and (n) image visualization software. Adapted from
Arif et al.93 with permission from Elsevier.
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Specifically, the captive bubble method (Figure 1) utilizes a
flat clean rock sample positioned in a pressure cell. For shale/
oil/brine systems, the equipment utilizes two mechanically
operated pumps (one for the test fluid to dispense a drop, and
another pump for the bulk fluid93). The system pressure is
gradually increased via mechanical adjustment of the bulk-fluid
piston. After stabilization within the brine-filled cell, a droplet of
crude oil is dispensed beneath the rock surface via a needle.86

The droplet forms a contact angle at the three-phase contact line
(the intersection of the rock surface and crude oil and brine
phases). A similar approach has been utilized to measure contact
angles for shale/CO2/brine systems.19

The sessile drop method works in a quasi-opposite way; i.e., a
droplet of brine is dispensed in the presence of a gaseous (or oil)
environment onto the substrate in the pressure cell. Note that a
tilted plate design19,31,61 allows for the synchronized measure-
ment of water advancing and receding angles.85 Addition and
removal of drop volumes58 is another way of measuring
advancing and receding contact angles. Water advancing contact
angles (θa) are measured at the leading edge and just before the
droplet begins to move and water receding contact angles “θr”
are measured at the trailing edge of the droplet (where CO2 is
displacing the aqueous phase in a CO2/brine system).
Moreover, the water advancing angle corresponds to the
imbibition mechanism, while the water receding angle
corresponds to the “drainage”, hence the advantage of
measuring advancing and receding contact angles over static
contact angles.94 Characteristically, the advancing contact angle
is higher than receding contact angles due to “hysteresis”, a
phenomenon that arises due to surface roughness, chemical or
structural heterogeneity, or adsorption/desorption of molecules
on “nonideal surfaces”.95−97 Note that if θa and θr are not
measured, and instead only one contact angle is measured on a
flat surface, then it is most likely that a metastable drop is

observed (the contact angle then lies anywhere between θa and
θr). Figure 1 shows a schematic illustration of the contact angle
measurement method, while Figure 2 shows the high pressure
equipment that can measure shale/oil/brine contact angles.

3. REVIEW OF SHALE WETTABILITY DATA

Several data sets were identified where shale wettability was
measured at high pressure and temperature conditions (Table
1). While there are several other data sets which reported
contact angles of shale at ambient conditions,99 these were not
included in this review, albeit included for a comparison purpose
only.
It is clear from Table 1 that shale wettability at high pressure

conditions has only been recently investigated, and the data is
sparse. It is also evident that the key systems investigated are
shale/CO2/brine systems, shale/oil/brine systems, and shale/
CH4/brine systems.

3.1. Influence of Pressure. The contact angle and thus
wettability of shale surfaces are influenced by the injection
pressure (or generally the prevailing reservoir pressure). This is
particularly true for shale/CO2/brine systems as evident from
Arif et al.’s19 study, where advancing and receding contact angles
for several shales were measured, and a notable impact of
pressure on contact angles was found. For instance, when the
CO2 injection pressure was increased from ambient to 10 MPa,
θa increased from 88° to 132° and θr increased from 78° to 123°
at a constant temperature of 323 K for a shale sample with 23.4
wt % TOC (Figure 3). These observations suggest that if this
shale (TOC = 23.4%) were a caprock during CO2 storage, the
structural trapping capacities of CO2 will be reduced due to a
corresponding reduction in the capillary sealing efficiency of the
caprock (for estimation of structural trapping capacities, the
reader is referred to Arif et al.105 and Iglauer106). On the

Table 1. Experimental Studies of Contact Angles on Shale Samples at High Pressure and High Temperature Conditions

ref Sample description TOC System considered
Operating
conditions Method Wetting statea

Kaveh et al.100 Shaly caprock from
North Sea

Not reported Shale/CO2/brine 1−14 MPa; 318 K;
1 M NaCl brine

Static contact angles
using captive bubble
method

Strongly to weakly water-wet

Iglauer et al.101 Caprock shale, Australia 0.08% Shale/CO2/brine 15 MPa; 323 K Advancing and reced-
ing angles using tilt-
ing plate method

Weakly water-wet

Roshan et al.102 Perth Basin shale, Aus-
tralia

0.08% Shale/air/brine 0.1−20 MPa;
308−243 K

Advancing and reced-
ing angles using tilt-
ing plate method

Strongly to weakly water-wet

Arif et al.19 Three USA shales and
Wessex Coast shale,
southern England

0.16−23.4 wt % Shale/CO2/brine 0.1−20 MPa;
323−343 K

Advancing and reced-
ing angles using tilt-
ing plate method

Weakly CO2-wet

Guiltinan et al.38 Barnett Shale, USA 3.27−7.88 mass % Shale/CO2/brine up to 13.79 MPa;
293−333 K

X-ray CT scan Strongly water-wet

Mirchi et al.70 Two shale samples ∼1−8.3 wt % Shale/oil/brine Ambient and 20.6
MPa at 353 K;
0.1−5 M brine

Captive bubble Strongly water-wet

Qin et al.103 Longmaxi Formation,
China

3.74% Shale/CO2/water 6−18 MPa;
313−353 K; up to
12 days treatment

Sessile drop method Weakly water-wet to inter-
mediate-wet

Pan et al.39 Shengli shale, China 3 wt % Shale/CO2/brine;
Shale/CH4/brine

0−20 MPa;
298−343 K

Sessile drop method Strongly CO2-wet

Pan et al.104 USA and China shales 1.2−20 wt % Shale/CH4/brine;
Shale/CO2/n-do-
decane

0−25 MPa; 323 K Sessile drop method Strongly oil-wet and strongly
CO2-wet

Yekeen et al.40 Carbonaceous shale from
Malaysia

4.77 wt % Shale/oil/brine;
Shale/CO2/brine

8−22 MPa;
353−453 K;
0−7 wt %

Captive bubble and
sessile drop method

Shale/oil/brine system was
oil-wet; shale/CO2/brine
system was CO2-wet

aWettability is classified as follows: 0° = completely water-wet, 0°−50° = strongly water-wet, 50°−70° = weakly water-wet, 70°−110° =
intermediate-wet, 110°−130° = weakly nonwetting, 130°−180° = strongly nonwetting, 180° = completely nonwetting.32
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contrary, for CO2 storage in shale (via adsorption trapping), a
higher CO2 wettability of shale may be more suitable; however,
further research is required to confirm this effect.
While Arif et al.’s19 observations suggested an influence of

pressure on shale wettability, Guiltinan et al.’s38 measurements
revealed little or no impact of pressure on contact angles of
Barnett Shale samples. Interestingly, here the Barnett Shale
samples remained strongly water-wet throughout all test
conditions (up to 13.79 MPa;38 Figure 3). This discrepancy
may be due to different surface conditions or types of surface
cleaning methods use; note that quartz surfaces cleaned with
different cleaning agents demonstrated remarkably different
contact angle,87 although it is still an open question how shales
containing organics can be cleaned appropriately (see also

Fauziah et al.107). The subsequent data sets for shale/CO2/brine
systems reported by Qin et al.,103 Pan et al.,39 and Yekeen et al.40

demonstrated a clear increase in contact angles with increasing
pressure, and overall wettability remained intermediate-wet to
weakly CO2-wet (Figure 3), consistent with Arif et al.19

Interestingly, Pan et al.39 found a complete CO2-wetting state
as the observed contact angle reached 180° (Figure 3).
Only a limited amount of studies reported contact angles for

shale/air/brine and shale/methane/brine systems as a function
of pressure. The contact angles on shale/air brine systems were
reported by Roshan et al.,102 while contact angles for shale/
CH4/brine systems were reported by Pan et al.39 Notably, the
average values of shale/air/brine and shale/methane/brine
contact angles are much lower than those for shale/CO2/brine

Figure 3. Contact angle (through water) measurements on shale surfaces for various fluid combinations as a function of fluid pressure.
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(Figure 3). For example, at the same pressure (10 MPa) and
temperature (343 K), the receding angles for shale/CO2/brine,
shale/air/brine, and shale/CH4/brine systems were 122°, 52°,
and 21° respectively (Figure 3), suggesting that a shale/CO2/
brine system is the least nonwetting out of the three systems.
This can be attributed to the high CO2 density (CO2 density at
10 MPa and 343 K = 248 kg/m3),61,108,109 although TOC also
plays a key role (see discussion below).
Note that similar effects have also been observed for pure

calcite minerals,65,67 coal surfaces,110,111 organic-acid aged
calcite surfaces,112 and mica surfaces113,105 or quartz.61

Furthermore, shale/oil/brine systems, which are relevant to
shale oil reservoirs, have only recently been investigated, and the
trend indicates an increase in oil-wetness of rocks with
increasing pressure.40 Interestingly, the relative effect of pressure
on shale wettability in the presence of oil is much higher than for
a comparable carbonate system.93

Thus, in summary, there is a consensus that shale tends to lose
its water wettability at higher pressures and is relatively more
water-wet at lower pressures.

3.2. Influence of Temperature. Wettability of all rock
surfaces is influenced by temperature as agreed by classical74 and
recent observations.93 Thus, shale wettability is also expected to
be influenced by changing temperatures. Figure 4 shows the
current literature data sets on wettability of shale as a function of
temperature.
The data are more limited, and scattering is substantial. It is

therefore concluded that the influence of temperature on shale
wettability is not well established.
Specifically, Arif et al.19 reported advancing and receding

contact angles for four shale samples (with varying TOC). For
medium and high TOC samples, θa and θr decreased with the
increase in temperature; for example, for the shale sample with
11.7 wt % TOC, when the system temperature increased from
323 to 343 K at a fixed pressure 20MPa, θa decreased from 143°
to 140°, while θr decreased from 134° to 130°, suggesting a small

Figure 4. Contact angles (through water) measured on shale surfaces for various fluid combinations as a function of temperature.
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decrease in CO2-wettability of the system with increasing
temperature. This is consistent with Yekeen et al.’s40 recent
measurements on aMalaysian shale sample (TOC = 4.77 wt %).
Pan et al.39 analyzed the influence of temperature on shale/

CO2/brine and shale/CH4/brine contact angles and found that
these systems turned more water-wet at elevated temperatures
(Figure 4). This decrease in contact angle with temperature may
be attributed to a corresponding adjustment in the interfacial
energies as depicted by Young’s equation.114

However, for the shale sample with low TOC (TOC= 0.16 wt
%), θa and θr increased with increasing temperature; for example,

θa increased from 69° to 78°, and θr increased from 60° to 68°,
when the system temperature was elevated from 323 to 343 K
(Figure 4).19 Thus, it appears that temperature increases the
water-wettability of medium and high TOC shales, while a low-
TOC shale becomes less water-wet with increasing temperature.
This agrees with Roshan et al.’s102 observations where an
increase in θa and θr with increasing temperatures was reported;
for example, θa increased from 31° to 48° when the system
temperature increased from 308 to 343 K (TOC of their sample
was 0.08 wt %). However, this area requires further
investigations to better understand the fundamental aspects.

Figure 5. Contact angles (through water) measured on shale surfaces for various fluid combinations as a function of shale TOC.
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3.3. Influence of Total Organic Content (TOC). The
composition and thermal maturity of shale organic matter
(kerogen) governs the likelihood of hydrocarbon generation in
oil and gas shales.115 Technically, organic matter can be
quantified via chemical measurements or novel machine
learning methods,116 while Ro (vitrinite reflectance) or Tmax

(pyrolysis measurements) are used to determine maturity.1,54

Shale wettability is also clearly influenced by its total organic
content as suggested by recent experimental studies (Table 1;
Figure 5). The shale/CO2/brine system examined by Arif et al.19

transitioned from a weakly water-wet state at low TOC (= 0.16
wt %) to a strongly CO2-wet state at high TOC (= 23.4 wt %) as
evidenced by a drastic increase in the water advancing angle
from 68° to 151° (Figure 1). This trend was fairly similar at
different pressures and temperatures, although the contact
angles were generally much lower when the measurements were
conducted at lower CO2 injection pressures. However, there are
some contradictory observations, too. For instance, Guiltinan et
al.’s38 X-ray CT observations on the Barnett Shale sample
demonstrated no effect of TOC on shale wettability despite
TOC varying between 3.27−7.88 wt % (Table 1; Figure 5).
Moreover, and interestingly, all Barnett Shale samples remained
strongly water-wet, which is consistent with Mirchi et al.’s70

results, where a shale sample with∼8 wt %TOCwas found to be
strongly water-wet (Figure 5). On the contrary, Yekeen et al.’s40

recent investigation on a shale sample (with TOC = 4.77 wt %)

demonstrated a strongly oil-wet (hydrophobic) behavior (θa =
168°), while the low-TOC shale samples analyzed by Iglauer et
al.101 and Roshan et al.102 demonstrated weakly water-wet
behavior.
In terms of wettability, the classical observations of Larter et

al.117 revealed that shales turn intermittently oil-wet due to in
situ maturation of organic matter or due to exposure to organic
compounds found in formation water. Furthermore, relatively
recent investigations confirmed that organic pores tend to be
hydrophobic, while inorganic pores are hydrophilic,118 which is
consistent with theoretical molecular dynamics calculations for
alkylated versus nonalkylated quartz surfaces79 (see also
discussion in Section 4). Consequently, the composite wetting
behavior of shale may be controlled by the connectivity and
distribution of organic and inorganic matter.19,47 Thus, a CO2-
wet high TOC shale may have a a larger fraction of
interconnected organic matter pores, while hydrophilic shales
appear to have mineral matter as a dominant (surface) phase.
However, Peng’s and Xiao’s119 observations on Eagle Ford and
Barnett Shale samples revealed preferential oil-wet surfaces (oil
phase used was diiodomethane (CH2I2) and water phase was a
10 wt % KI solution). Notably, however, imbibition measure-
ments (using Micro-CT) by Peng and Xiao119 showed that
water displaced oil from microfractures even in the organic
matter layers, indicating water-wet behavior and thus contra-
dicting the contact angle measurements. It was hypothesized

Figure 6. Contact angle on shale surfaces as a function of brine salinity. All data is for NaCl brine unless otherwise stated.
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that the formation of a thin water film on the microfracture
surface caused the actual contact angle at the microscale to be
much smaller.
Another factor that contradicts the theory of “high contact

angle for high organic matter content” is that the Barnett Shale
sample despite having 90% organic matter pores120 was found to
be water-wet,38 suggesting that shale wettability may not be
controlled by just the fraction of organic matter pores but rather
the distribution and connectivity of the organic phase inside the
shale.
Other observations also suggest that microstructure and

characteristics of organic matter pores may be related to
wettability. Thus, Yassin and co-workers68,121 and Begum et al.84

analyzed the influence of kerogen matter-hosted pores on shale
wettability for a broad range of samples (16 Upper Duvernay
and 147 Lower Duvernay shale samples). A cross plot of ϕeff

(effective porosity) and kDecay (permeability) vs TOC was
created which demonstrated that ϕeff generally increased with
increasing TOC, suggesting that most pores were located inside
the organic matter (OM). Moreover, the samples with higher
TOC generally had higher kDecay, suggesting that the pores
within OM were relatively well connected. The positive
correlations of ϕeff and kDecay with TOC suggest an abundance
of pores within the oil-wet OM, which led to strongly oil-wet
characteristics of the shale samples.
In summary, further investigations are required to better

understand the influence of shale TOC on its wettability.
3.4. Influence of Salinity. Only a few studies investigated

the effect of brine salinity on shale wettability (Figure 6). To
elucidate this, Arif and co-workers19,122 found an increase in
contact angle for increasing salinity for shale rocks. For instance,
at 10 MPa and 343 K, the measured θa for 1 M NaCl (∼6 wt %)
brine was 120°, while θa for 0 M NaCl (0 wt %) brine was
110°.19,122Under the same operating pressure and temperature,
θr was 111° for shale/CO2/1 M NaCl brine and 95° for shale/
CO2/DI-water (Figure 6). Furthermore, Pan et al.39 also found
an increase in contact angle with increasing salinity for shale
surfaces (Figure 6). At 10 MPa and 298 K, θa for a shale/CO2/
brine system increased from 90° to 180° when brine salinity
increased from 0 wt % NaCl to 5 wt % NaCl, suggesting a
considerable increase in contact angle with increasing ionic
strength of brine. Similar trends were reported by Yekeen et al.40

who found a clear increase in contact angle with salinity; for
example, θa increased from 90° to 122° when brine salinity
increased from 0 wt % NaCl to 7 wt % NaCl at 353 K and 10
MPa (Figure 6). However, the absolute values of contact angles
were different in each of the aforementioned studies. This is
because the shale samples in each study had different TOC and
different mineralogy. The shift in wettability from water-wet to
less water-wet (or even CO2-wet) with increasing brine salinity
is related to a corresponding change in zeta potential and the
associated screening effect of electric double layer at shale/brine
interfaces39,40 (compare also Iglauer60). However, Kaveh et
al.100 observed a different trend where contact angles were found
to decrease with increasing salinity.
Furthermore, Pan et al.39 also examined the effect of cation

type on contact angles for shale/CO2/brine systems. For
instance, at 343 K and 10MPa, the measured θa values for brines
comprising 1 wt % NaCl, 1 wt % CaCl2, and 1 wt % MgCl2 were
90°, 100°, and 102°, respectively, indicating that contact angles
were highest for MgCl2 brine and lowest for NaCl brine at the
same salinity.

3.5. Influence of Shale Minerology. The influence of
minerology is more clearly established, and nowadays, quite well
understood for pure minerals, for example, calcite,58,59,67mica,31

quartz,61 and dolomitic carbonate rocks.93 However, shale is
remarkably more complex than pure minerals or conventional
rocks. This is partly due to shale rocks exhibiting (a) inorganic
nanoporosity caused by the fine dispersion of small-scale
(micrometer and nanometer scale) clay and nonclay minerals,
(b) organic matter porosity due to heterogeneous kerogen
distribution, and (c) fracture porosity due to microfracture
networks.1,118,123 According to Loucks et al.,123 shale pore sizes
are categorized into picopores (<1 nm), nanopores (1 nm to 1
μm), micropores (1 μm to 62.5 1 μm), mesopores (62.5 μm to 4
mm), and macropores (>4mm). Indeed, a range of average pore
sizes are evident from several common shale plays, for example,
Bakken Shale (= 5 nm), Monterey Shale (= 10−16 nm),
Anadarko Basin shales (≥ 50 nm), and Appalachian Devonian
shales (= 7−24 nm).124

The key mineral constituents of a shale rock include clay
minerals (such as kaolinite, chlorite, illite), quartz, and calcite,
while traces of carbonates, pyrite, and feldspars are also found.1,2

One vital factor that potentially controls the variability in
distinct wetting behavior of shale samples (as discussed above,
compare Figures 3−6) is the varying mineralogy and its
associated surface chemistry. For instance, the high TOC
Kimmeridge shale from Wessex Coast, Southern England, was
found to be strongly CO2-wet as reported by Arif et al.,

19 while
the Barnett Shale was found to be strongly water-wet.38 The
minerology of the Kimmeridge shale is 5%−30% quartz, 5%−
20% carbonate, 50%−90% clay minerals + mica, and 5% pyrite,
while the Barnett Shale is composed of 45% quartz, 5%−7%
feldspar, 15%−25% carbonate, 20%−40% clay minerals, and 5%
pyrite.125 Thus, these differences in minerology may be
responsible for the distinct wetting behavior of Kimmeridge
shale and Barnett Shale samples under similar operating
conditions of pressure and temperature. Notably, however, the
TOCs of the Kimmeridge shale and Barnett Shale are also
remarkably different (23.4 vs 2−8 wt %; Figure 5).
Clay type and content of a shale sample can also have a

significant impact on its wettability;107,126 typically clay reduced
the water-wettability of the systems tested. In a recent review,
Siddiqui et al.99 discussed this effect (effect of clay content on
shale wettability), although shale rocks tend be generally more
water-wet with increasing clay-content.127,128 However, meta-
analysis on contact angle data did not reveal any statistically
significant relation between clay content and the shale surface
contact angle.99

4. MOLECULAR DYNAMICS STUDIES ON SHALE
WETTABILITY

Nanoscale fluid flow and distribution in shale is of key
importance for reserve and productivity estimates. To evaluate
shale at this scale, molecular dynamics simulations offer a virtual
experiment on the rock/fluid interactions by modeling pores of
varying surface chemistry and aperture. MD simulations are
particularly useful when experimental investigations are
challenging, for example, very high pressure and temperatures,
use of hazardous materials (e.g., H2S, CH4 etc.), or very small
length scales. A typical MD model computes intermolecular
interaction using nonbonded interactions, bonding potentials,
and force calculations, and such models can predict the behavior
of three-phase systems (i.e., rock, brine and CO2) under
consideration.80,129,130
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However, molecular dynamics simulations for shale/brine
systems are currently very limited (Table 2). Note that previous
studies have utilized pure and oxidized graphene models to
represent an organic pore surface in shales.47,131,132

4.1. Effect of Pressure and Temperature on Shale
Wettability Predicted via Molecular Dynamics Simula-
tions. There are not many studies on molecular dynamic
simulations of shale wettability. However, recently, Yu et al.131

investigated shale wetting behavior as a function of pressure,
temperature, salinity, and CH4 concentration using graphene as
a model surface (Figure 7). Their results indicated a clear
increase in contact angle with increasing pressure, consistent
with experimental measurements by Arif et al.19 and Pan et al.39

The absolute values of contact angles reported by Yu et al.131

also demonstrated a reasonable consistency with experimental
contact angle data (Figure 5). Moreover, the influence of
variable CH4 concentration was also investigated by simulating
contact angles for graphene/CO2/CH4/brine systems. Such
investigations elucidate the wetting behavior pertinent during

CO2 injection into a shale gas reservoir. At 20 MPa and 323 K,
the contact angle for the graphene/CH4/water system was 135°
for pure CH4, and it increased to 145° at 50% CO2 and 50%
methane concentration (Figure 7). This result suggests that
shale gas reservoirs tend to be relatively more CO2-wet in the
presence of CO2. The increase in contact angle with increasing
CO2 fraction can be attributed a decrease in interfacial tension
with increasing CO2 mole fraction as evident from independent
experimental measurements.133,134 Furthermore, contact angles
predicted via molecular dynamics simulations decreased with
increasing temperature, thus consistent with most experimental
observations (see above). Similarly, the influence of salinity
suggested an increase in contact angle with increasing salinity
(and cationic charge, consistent with other experimental
observations; see Iglauer60 for a more detailed discussion on
this).

4.2. Impact of Thermal Maturity on Shale Wettability.
Kerogen is the organic material in shale that provides storage of
hydrocarbons in shales by means of adsorption.34,135 Studies on

Table 2. Molecular Dynamic Studies of Contact Angles on Shale

ref Sample description TOC System considered
Operating
conditions Method Wetting state

Hu et al.47 Pure and oxidized
graphene surfaces

O/C ratios from
0% to 20%

Shale/octane/water 0.1 MPa;
300 K

MD simulation using
GROMACS

Mixed-wet

Yu et al.131 Pure and oxidized
graphene surface

100% carbon Shale/CO2/water;
Shale/CO2/CH4/water

0−40 MPa;
296−343 K

MD simulation using
LAMMPS

Surfaces with lower O/C ratios
were more hydrophobic

Figure 7.Contact angles (through water) on shale surfaces for various fluid combinations as a function of operating conditions, predicted via molecular
dynamics simulations.
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shale microstructure via multiscale correlative imaging provide
insights into the complex kerogen, distribution, and associated
organic matter connectivity.1,54

From a geological perspective, heating of kerogen under
geothermal pressure and temperature leads to certain changes in
the chemical composition of kerogen which in turn leads to
different kerogenmaturity levels.136During kerogenmaturation,
H/C and O/C ratios tend to decrease due to the loss of
hydrocarbons and functionalized molecules.47 A characteristic
van Krevelen diagram, which is a plot of H/C versus O/C ratios,
is used to diagnose the thermal maturity and the associated
hydrocarbon generation tendency of kerogen.
The level of organic kerogen maturity can have an impact on

wettability and thus on the storage of hydrocarbons in organic
nanopores.47 Thus, Hu et al.47 investigated the wettability of
shale/oil/brine systems using a molecular dynamics simulation
approach. The shale surfaces were modeled by embedding
oxygenated functionalized groups on a graphene surface. The
carbonyl (−CO) group was considered as a representative
oxygenated group,47 and the degree of maturation was
quantified by 4-by-4, 6-by-6, and 8-by-8 carbonyl pairs which
corresponded to O/C ratios percentages of 5%, 11.25%, and
20%, respectively. Note that the highest O/C ratio represents
the least mature shale, while the lowest O/Cmol ratio represents
highly matured shale.47 The carbonyl groups were distributed
uniformly or randomly on the surface to model homogeneous
and heterogeneous kerogen surfaces. The resulting contact
angles are shown in Figure 8.
It is clear that with decreasing O/C ratio, contact angles

increased; this suggests that with an increase in shale rock
maturity, the surface becomes more oil-wetting (hydrophobic).
Moreover, at the same maturity level, shale surfaces with
heterogeneous distribution of functionalized groups tended to
be less oil-wet (Figure 8). Interestingly, for the 20% O/C ratio,
the kerogen surfaces turned completely water wetting.47This is a
remarkable observation, which tends to disagree with the
experimental contact angle data (Figure 5). While the
experimental contact angle data generally agrees that shale
with high organic content is more oil-wet, MD simulations
demonstrate that contact angles are also affected by the
distribution of organic matter rather than TOC alone.

This shows that higher kerogen heterogeneity (i.e., random
distribution of the O/C groups and thus heterogeneous surface
activated sites) tends to decrease water contact angles, leading to
more water-wet kerogen surfaces.47 This is consistent with
Jagadisan and Heidari,137 who found that kerogen becomes
more oil-wet with increasing maturity; for example, the shale/
air/water contact angle increased from 44° to 122°when the O/
C ratio decreased from 11% to 7%.
These observations are somewhat comparable to Yang et

al.’s138 study where shale/air/water contact angles were
measured as a function of vitrinite reflectance, and it was
found that the shales with the highest Ro values (2.2%−3.1%)
were most hydrophilic, and those with intermediate Ro values
(1.5%−1.58%) were the least hydrophilic. It was concluded that
the highly matured shales were relatively less hydrophilic, while
overmatured and low maturity shales were water-wet. These
observations are to some extent consistent with Yassin et al.68

who found that the Duvemay Shale samples were oil-wet, and
the oil-wetness was associated with a large number of
hydrophobic organic nanopores in the organic matter (observed
via SEM and MICP data, the diameters of organic nanopores
were less than 100 nm).
These observations are slightly consistent with Arif et al.’s110

observations on coals of various ranks; for example, when
vitrinite reflectance of the coal samples increased from 0.35 to
3.9, the water advancing contact angle increased from 116° to
140°, suggesting a decrease in water-wettability with increasing
vitrinite reflectance. However, some contradictory observations
were found, too. For example, Guiltinan et al.38 evaluated the
impact of thermal maturity on shale wettability, and they used
vitrinite reflectance to quantify thermal maturity. It was found
that shales with low and high vitrinite reflectance demonstrate
the most water-wetting behavior, while those with intermediate
vitrinite reflectance exhibited less water-wetting behavior.
Notably the increase in shale hydrophobicity with increasing

rock maturity is consistent with spontaneous imbibition
measurements, where a general decrease in oil wetting index
(WIo) with increasing oxygen index was measured, suggesting
that higher kerogen maturity leads to a higher wetting affinity to
oil.84

Thus, in summary, kerogen maturity and spatial kerogen
distribution have a clear impact on wettability, albeit more

Figure 8. Contact angles (through water) on shale surfaces for various kerogen maturity conditions predicted via molecular dynamics simulations
(data from Hu et al.47).
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experimental work is needed to fully understand the underlying
correlations and mechanisms responsible.

5. IMPLICATIONS FOR SHALE WETTABILITY DATA
AND CHALLENGES

Shale wettability characterization has direct implications for
several key upstream applications including enhanced oil
recovery from shale oil rocks and enhanced gas recovery from
shale gas formations, CO2 coupled enhanced oil recovery and
geo-storage operations, structural trapping capacity during CO2

or H2 geo-storage when shale is a caprock, and water uptake in
shales during hydraulic fracturing.
Wetting characteristics of a shale/oil/brine system determine

the fluid distributions and associated multiphase flow in a shale
oil reservoir. A water-wet shale oil rock may favor the flow of oil
owing to an improved relative permeability to oil. Recently,
Huang et al.55 predicted three phase (oil, water, and hydro-
carbon gas) relative permeability and the associated multiphase
flow and transport behavior in shale using digital rock samples
reconstructed from scanned images. The oil production was
lower when the shale matrix was uniformly oil-wet (compared to
mixed-wet shale). It was pointed out that the difference in oil
recovery in mixed-wet and oil-wet shale systems was caused by
the inorganic matrix, which is water-wet in mixed-wet shale but
oil-wet in oil-wet shale.55

Similarly, the wetting behavior of a shale gas reservoir governs
the initial fluid distribution of the system while the wettability
alteration after CO2 injection, governed by a shale/CH4/CO2/
brine system, explains the fluid distribution during CO2

enhanced methane recovery. The current literature reviewed
here, although very limited, indicates an increase in shale CO2

wettability with increasing injection pressures and CO2 mole
fractions.131 This can be attributed to a higher adsorption
capacity of CO2 in shales when compared to CH4 under the
same thermophysical conditions as evidenced by experimental
observations139,140 and theoretical predictions.135,141

Furthermore, wettability characterization of shale/CO2/brine
systems is relevant to CO2 geo-storage given that structural
trapping capacity is a strong function of wettability of shaly
caprock.32 Several studies agree that a strongly water-wet
caprock has a better capillary sealing efficiency and thus prevents
the upward migration and leakage of CO2 through the caprock,
while CO2 may leak through a CO2-wet caprock.

106 There are a
few data sets published in this context, and generally, CO2-
wettability increased with increasing pressure and shale
TOC.19,39,40

In summary, the key challenges associated with shale
wettability characterization identified here include, but are not
limited to, influence of operating pressure and temperature
conditions, influence of TOC and minerology of shale samples,
and organic matter connectivity and distribution. Practically,
however, in terms of the reliability of the contact angle method
for wettability characterization, caution must be taken during
contact angle measurements as contact angles can change
significantly with surface contamination, surface cleaning
methods, and surface roughness.56,60,87 It is therefore, due to
the serious lack of data, advisible to conduct additional bulk
measurements.

6. FUTURE RESEARCH

Despite recent investigations into shale wettability using contact
angle measurements, a few aspects for future research are
identified and outline as under:

1. Temperature showed contradictory trends, i.e. an increase
in contact angle and a decrease in contact angle with
increasing temperature were both measured.19 This effect
needs to be further investigated using better theoretical
approaches.56

2. The complexity of organic matter connectivity and the
associated impact on wettability is difficult to quantify
with contact angle measurements. Thus, better ap-
proaches are required to elucidate this behavior. One
possible approach could be comparison between
spontaneous imbibition measurements vs contact angles
measured.99

3. Molecular dynamic simulation data for shale wettability is
sparse, and future studies are needed in this area.

4. Shale wettability alteration (due to different wettability
alteration agents) has not been investigated much, and
such investigations can provide insights into enhanced oil
and gas recovery potential from shale rocks.

7. CONCLUSIONS

This review provided an overview and critical analysis of the
literature data on shale wettability at high pressure and high
temperature conditions. Experimental contact angle data sets
were reviewed, and it was found that shale wettability data sets
are limited which restricts our understanding of shale wettability.
Nevertheless, the following conclusions are drawn from this
review:

(1) Shale surfaces tend to dewet with increasing pressure.
Also, pressure usually has a pronounced effect on
wettability of shale/gas systems, while the associated
impact is much lower on shale/oil systems.

(2) There is more consensus on the effect of temperature on
shale wettability such that the shale surface becomes more
water-wet with increasing temperature; however, some
exceptions were found for low TOC shales.

(3) Water wettability of several shale systems was found to
decrease with increasing TOC. However, some novel
observations suggest that it is not the amount of organic
matter, rather it is the OM’s connectivity and maturity
that impacts wettability.

(4) Shale rocks tend to become more oil-wet with increasing
thermal maturity as suggested by experimental observa-
tions and molecular dynamics simulations. Indeed, for an
O/C ratio of 20% (i.e., immature shale), the kerogen
surfaces were found to be completely water wetting.

In summary, further research is required to examine the
wettability of shale surfaces at realistic reservoir conditions, and
with a particular focus on enhanced oil and gas recovery
methods, to successfully exploit these resources.
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