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Abstract

Among radiological imaging data, Chest X-rays (CXRs) are of great use in observing COVID-19 manifestations. For mass

screening, using CXRs, a computationally efficient AI-driven tool is the must to detect COVID-19-positive cases from

non-COVID ones. For this purpose, we proposed a light-weight Convolutional Neural Network (CNN)-tailored shallow

architecture that can automatically detect COVID-19-positive cases using CXRs, with no false negatives. The shallow

CNN-tailored architecture was designed with fewer parameters as compared to other deep learning models. The shallow

CNN-tailored architecture was validated using 321 COVID-19-positive CXRs. In addition to COVID-19-positive cases,

another set of non-COVID-19 5856 cases (publicly available, source: Kaggle) was taken into account, consisting of normal,

viral, and bacterial pneumonia cases. In our experimental tests, to avoid possible bias, 5-fold cross-validation was followed,

and both balanced and imbalanced datasets were used. The proposed model achieved the highest possible accuracy of

99.69%, sensitivity of 1.0, where AUC was 0.9995. Furthermore, the reported false positive rate was only 0.0015 for 5856

COVID-19-negative cases. Our results stated that the proposed CNN could possibly be used for mass screening. Using the

exact same set of CXR collection, the current results were better than other deep learning models and major state-of-the-art

works.

Keywords COVID-19 · Chest X-rays · Deep learning · Convolutional neural network · Mass screening

Introduction

In December 2019, the novel coronavirus disease

(COVID-19) was found in Wuhan Province of China

https://www.who.int/docs/default-source/coronaviruse/who

-china-joint-mission-on-covid-19-final-report.pdf [1].Unlike

the common cold and flu, COVID-19 is much more con-

tagious, and for human’s immune system, it is an absolute

unknown. To be more specific, severe acute respiratory

syndrome (SARS) and Middle East respiratory syndrome

(MERS) are two well-known coronavirus diseases, which

have huge mortality rates of 10% and 37%, respectively [2,

3]. As of now, COVID-19 affected more than 6,057,853
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people with more than 371,166 death cases across the

world (dated, June 01, 2020) [8]. The COVID-19 out-

break spread rate is exponential and is faster than other

respiratory-related diseases. Researchers are now limited

to small amount of data to predict possible consequences

using AI-driven tools.

In January 2020, Huang C et al. reported some clinical

and paraclinical aspects of COVID-19 using 41 patients.

Their study stated that abnormalities, such as Ground-Glass

Opacity (GGO) can be observed using chest CT scans [4].

CT scans are widely used to identify unusual patterns in

confirmed cases of COVID-19 [5–7]. To be precise, Li

Y and Xia L [7] experimented on 51 CT images and in

96.1% cases, COVID-19 was successfully detected. Zhou S

et al. [9] experimented on 62 COVID-19 and pneumonia,

and their results showed diverse patterns that are visually

like lung parenchyma and the interstitial diseases. Also,

Zheng Ye et al. [10] stated that typical and atypical CT

manifestations help and familiarize radiologists in decision-

making.

In a similar fashion, chest X-rays (CXRs) have been

widely used to detect COVID-19-positive cases [11, 13,

http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-020-09775-9&domain=pdf
http://orcid.org/0000-0003-4176-0236
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
mailto: santosh.kc@usd.edu
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22, 24]. Soon et al. [11] observed the relationship between

CXRs and CT images, where 9 COVID-19-positive cases

were used. Besides, others were focused on the use

of Neural Network-tailored deep learning (DL) models,

such as COVID-Net [24] and ResNet50 [13]. COVID-Net

was tested only on 31 COVID-19-positive cases, while

ResNet50 was tested on 25 COVID-19-positive cases.

Similarly, Zhang et al. [22] used classical DL model to

detect COVID-19-positive cases, where 100 COVID-19

samples were used. As of now, the highest accuracy of 96%

was reported to detect COVID-19-positive cases [22].

Das et al. [15] presented a system for identification

of COVID-19 cases with an inception network-based

approach. They experimented with 6 different datasets

and reported an accuracy of 99.96% in distinguishing

positive and healthy cases. Furthermore, they reported an

accuracy of 99.92% in distinguishing positive case from

a combined set of healthy and pneumonia cases. Asnaoui

and Chawki [16] presented a deep learning–based approach

for detection of COVID-19 cases. They experimented with

disparate CNN architectures on CXRs and CTs totalling

to 6087 images. An accuracy of 92.18% was reported

using Inception-ResNetV2 architecture while an accuracy

of 88.09% was obtained using Densenet201.

Pereira et al. [17] used multi-class and hierarchical clas-

sification for COVID-19 identification from CXRs. They

experimented on a self collected dataset named RYDLS-20.

They reported F1-scores of 0.65 and 0.89 for multi-class and

hierarchical classification approach. Mangal et al. [18] pre-

sented a deep learning–based technique named CovidAID

for detection of COVID-19 cases from CXRs. They exper-

imented with over 6K CXRs having 155 COVID-19

cases and reported an accuracy of 90.5%. Asif et al.

[19] used an InceptionNetV3-based approach equipped

with transfer learning for COVID-19 pneumonia detection

from CXRs. They collected data from multifarious sources

totalling to over 2K images and reported a validation accu-

racy of 93%.

Motivated by the fact that X-ray imaging systems are

more prevalent and cheaper than CT scan systems, in this

paper, a shallow Convolutional Neural Network (CNN) is

proposed to detect COIVID-19-positive cases from non-

COVID-19 ones using CXRs.

Materials andMethods

Data Collection

AI-driven tools require enough data so that all possible

infestations are trained [25]. However, as of now, we

do not have large amount of data for COVID-19-

positive cases, unlike other respiratory-related diseases.

Radiological imaging data are of great use in observing

COVID-19 manifestations, where chest X-ray (CXR)

imaging systems are more prevalent and cheaper than CT

scan systems. As an example, Chest X-ray is the first

imaging method to diagnose COVID-19 infection in Spain

(dated, March 20, 2020). A chest X-ray is performed in

suspected or confirmed patients through specific circuits.

In this paper, publicly available collection of

COVID-19-positive CXRs https://github.com/ieee8023/

covid-chestxray-dataset was used. It includes 321 COVID-

19-positive cases. To create non-COVID-19 category,

another collection (publicly available via Kaggle) of CXRs

was used https://www.kaggle.com/paultimothymooney/

chest-xray-pneumonia, where there are 5856 (1583, nor-

mal and 4273, pneumonia) number of CXRs. Overall, the

non-COVID-19 category was composed of viral and bac-

terial pneumonia cases. The reason behind this mixed bag

in one category is to check whether the proposed model

can classify COVID-19-positive case from its counterparts.

Furthermore, it was observed that CXRs with pneumonia

were identical to the COVID-19. Few CXR samples are

show in Fig. 1.

Shallow Convolutional Neural Network

Convolutional neural networks (CNNs) [23, 26] are a class

of neural networks which work on the principle of deep

learning. A basic CNN architecture consists of alternate

layers of convolutional and pooling followed by one or more

fully connected layers at the final stage.

The convolutional layer is the prime ingredient of this

architecture that detects the existence of a set of features

from the input. This layer comprises a set of convolutional

kernels. The functioning of this layer can be computed as

follows: f k
c (m, n) =

∑
d

∑
r,s jd(r, s) × ikc (v, w), where,

jd(r, s) is an instance of the input vector Jd , which is mul-

tiplied by ikc (v, w) index of the kth kernel of the cth layer.

The output mapping of the kth kernel can me measured as:

F k
c = [f k

c (1, 1), . . . , f k
c (m, n), . . . , f k

c (M, N)].

The pooling layer is arranged between two convolutional

layers that reduces the size of the vectors while keeping their

relevancy intact. It aggregates the related information in the

region of the receptive domain and outputs the feedback

within that region using Y k
c = 0p(F k

c ), where Y k
c determine

the pooled feature map of the cth layer for kth kernel and 0p

determines the kind of pooling operation.

The dense layer accepts the input from the previous

stages and globally evaluates the output of all the former

layers. Hence, makes a non-linear combination of specified

features that are used for the classification purpose.

In this paper, a shallow CNN architecture is proposed,

which consists of only four layers as compared to deep

architectures. The primary motivation behind this was

https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
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Fig. 1 CXR samples: a–c COVID-19-positive cases and d–f non-COVID-19 cases (pneumonia)

to design light architecture with minimal number of

parameters (weights) so that it does not suffer from heavy

computational time. As a result, the proposed shallow (or

light-weight) CNN architecture is not just computationally

efficient but also is able to avoid possible overfitting. More

often, deep architectures are prone to overfitting due to their

heavy usage of parameters, and of course, longer training

period. The proposed shallow CNN architecture is therefore

a better fit for mass population screening especially in

resource constrained areas.

The network consists of a single convolution layer,

followed by a max-pooling layer and a 256-dimensional

dense layer. This was finally followed by a 2-dimensional

dense (output) layer. Initially, the images were scaled

down to 50×50 pixels and fed to the network. The

convolution layer and the first dense layer had Rectified

Linear Unit activation function: f (x) = max(0, x),

where x is an input to a neuron. The final dense layer

had a softmax activation function: σ(z)j = e
zj

�K
k=1e

zk ,

where zi is an element of input vector z of size K .

The network is diagrammatically presented in Fig. 2.

The number of generated parameters is presented in

Table 1.

Fig. 2 Architecture of the proposed CNN
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Table 1 Number of generated parameters by the proposed network for

a 25×25 image

Layer Parameters

Convolution 280

Dense 1 310016

Dense 2 514

Total 310810

Using the proposed shallow CNN architecture, the gen-

erated feature maps for COVID-19-positive and pneumonia

CXRs are shown in Fig. 3.

Experiments

To validate the proposed architecture, a 5-fold cross-

validation was considered for all tests. This provides a

thorough statistical analysis of the model. In each fold,

we computed the following evaluation metrics: Accuracy,

Precision, Sensitivity (Recall), Specificity, F1 score, and

Area under ROC curve (AUC). They were computed as:

Accuracy =
TP + TN

TP + TN + FP + FN

,

Precision =
TP

TP + FP

,

Sensitivity (Recall) =
TP

TP + FN

,

Specificity =
TN

TN + FP

, and

F1 score = 2 ×
Precision × Recall

Precision + Recall
, (1)

where TP , TN , FP , and FN refer to true positive, true

negative, false positive, and false negative, respectively.

Results on Balanced Dataset

Since machine learning tools traditionally require balanced

dataset, we first created equal number of COVID-19-

positive and COVID-19-negative cases from two different

data collections https://github.com/ieee8023/covid-chestxray-

dataset and https://www.kaggle.com/paultimothymooney/

chest-xray-pneumonia (cf. Section “Data Collection”). For

a quick note, in this section, for our experimental tests, we

have 321 COVID-19-positive cases and 321 non-COVID-19

cases.

As the proposed shallow CNN architecture requires

several parameters, the first set of experiment tests were

based on how well the model can be trained. For this,

a few essential parameters, such as image size, number

of filters used in convolutional layer and its filter size,

pooling window size, and batch size were considered. In

what follows, these parameters are discussed.

Fig. 3 Feature map visualization: a COVID-19-positive case and its corresponding b–d feature maps; and e pneumonia-positive case and its

corresponding f, g feature maps

https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
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Table 2 Confusion matrices for different batch sizes

Batch size: 20 Batch size: 25 (best result)

COVID-19 Non- COVID-19 COVID-19 Non- COVID-19

COVID-19 321 0 COVID-19 321 0

Non-COVID-19 3 318 Non-COVID-19 2 319

Batch size: 50 Batch size: 75

COVID-19 Non- COVID-19 COVID-19 Non- COVID-19

COVID-19 319 2 COVID-19 320 1

Non-COVID-19 3 318 Non-COVID-19 4 317

Batch size:100 Batch size:125

COVID-19 Non-COVID-19 COVID-19 Non-COVID-19

COVID-19 320 1 COVID-19 320 1

Non-COVID-19 3 318 Non-COVID-19 3 318

1. Image size: CXR image size were of different sizes

in the dataset. They were, therefore, resized into a

fixed dimension. For experimental purpose, the resized

dimensions were varied from 20 × 20 to 150 × 150

pixels. With the proposed model, better result (accuracy

= 99.53%) was obtained from CXRs of size 25 × 25 as

compared to 50×50 (accuracy = 99.07%) and 150×150

(accuracy = 99.38%). The result for 20×20 was similar

to that of the 150×150 images.

2. Number of filters in convolution layer: In convolution

layer, different number of filters were employed, such

as 5, 10, 20, and 30. Of all, it is observed best results

were obtained from the experimental test, where 10

filters were used.

3. Filter size: The convolution filter size was also

experimented with, from 2 to 5 with an increment of

1: 2 × 2, 3 × 3, . . . , 5 × 5. Of all, the best results

were obtained from the filter of size 2 × 2 (accuracy =

99.38%).

4. Pooling window size: Like filter size, the pooling

windows were varied from 2 to 4, with an increment

of 1: 2×2, 3×3, and 4×4. The experimental test

results dropped on increasing the pooling window size.

Therefore, the pooling window size was fixed at 2

(accuracy = 99.38%).

5. Batch size: During training period, different batch sizes

were applied, starting from 25 to 125 instances with the

difference of 25. Of all, best results were obtained from

25 instances (accuracy = 99.69%). As the best results

were obtained for 25 instances, we tested 20 instance

batch size as well to check accuracies were similar. In

both 20 and 25 instance batch sizes, all 321 COVID-19-

positive cases were correctly identified. However, in the

case of 20 instances, 318 non-COVID-19 cases were

correctly identified while in the case of 25 instances, 319

non-COVID-19 cases were properly identified. The de-

tailed experimental test results for different batch sizes are

provided in Table 2. The results were further analyzed

with respect to several performance metrics, such as

sensitivity, specificity, precision, F1 score, and AUC,

which are detailed in Table 3. For better understanding,

corresponding ROC curves are provided in Fig. 4.

Table 3 Performance metrics for different batch sizes

Metrics Batch size

20 25 50 75 100 125

Sensitivity 1 1 0.9938 0.9969 0.9969 0.9969

Specificity 0.9907 0.9938 0.9907 0.9875 0.9907 0.9907

Precision 0.9907 0.9938 0.9907 0.9877 0.9907 0.9907

False positive rate 0.0093 0.0062 0.0093 0.0125 0.0093 0.0093

False negative rate 0 0 0.0062 0.0031 0.0031 0.0031

Accuracy (%) 99.53 99.69 99.22 99.22 99.38 99.38

F1 Score 0.9953 0.9969 0.9922 0.9922 0.9938 0.9938

AUC 0.9997 0.9995 0.9993 0.9991 0.9993 0.9996
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Fig. 4 ROC curves for different batch sizes: a 20 batch size; b 25 batch size; c 50 batch size; d 75 batch size; e 100 batch size; and f 125 batch

size. The batch size of 50 was found to be the best of all
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On the whole, for the proposed shallow CNN-based

architecture, parameters were tuned for upcoming test

purposes.

As of now, we observed that the best performance scores

were achieved when the architecture used 10 filters of size

2 × 2 in the convolution layer, batch size of 25 for CXR

image size of 25 × 25 pixels, and the window size of

2 × 2 in the pooling layer. With these parameters, thorough

experimental results are provided in Table 3. For better

understanding, corresponding ROC curves are provided in

Fig. 4. The proposed model provided the highest possible

accuracy of 99.69% with an AUC of 0.9995. It is important

to note that the proposed model received a false negative

rate of 0.

The results can now be taken for a comparison with

other existing deep learning models. For a comparison,

the exact same set of experimental datasets were applied

to other popular deep learning (DL) architectures, such

as MobileNet [27], InceptionV3 [21], and ResNet50 [29].

Their performance scores along with the number of

generated parameters are presented in Table 4. Furthermore,

the corresponding ROC curves are provided in Fig. 5.

Among the three, MobileNet performed the best followed

by InceptionV3 and ResNet50. MobileNet achieved an

overall accuracy of 99.69% while ResNet50 achieved an

overall accuracy of 95.02%. In the case of ResNet50 and

InceptionV3, not limited to accuracy, the proposed model

outperformed them with remarkable difference in terms

of other metrics, such as sensitivity, false negative rate,

precision, and AUC. Even though, the difference between

the proposed shallow CNN and MobileNet was marginal, it

is important to take a look at number of parameters used.

Considering computational complexity issue, the proposed

model required 310,810 number of parameters, which

was 98.83% lesser than InceptionV3, 95.81% lesser than

MobileNet and 99.37% lesser than ResNet50.

Results on Imbalanced Dataset

Since dataset sizes vary over time (since January

2020) https://github.com/ieee8023/covid-chestxray-dataset,

the reported works in the state-of-the-art literature used

different datasets in an imbalanced scenario. Following the

exact same trend, in this section, we performed another

set of experimental tests using the complete Kaggle data

collection https://www.kaggle.com/paultimothymooney/

chest-xray-pneumonia (cf. Section “Data Collection”) was

used, which was altogether 5856 CXRs (1583, normal and

4273, pneumonia). As a result, the size of non-COVID-19

category was 1724.30% bigger than the size of COVID-19

positive category.

Imbalanced dataset typically portrays a real-world

scenario. As before, confusion matrix is provided in Table 5.

The results were further analyzed (for other established

architectures as well) with respect to several performance

metrics, such as sensitivity, specificity, precision, F1 score,

and AUC, which are detailed in Table 6. For better

understanding, corresponding ROC curves are provided in

Fig. 6.

On such an imbalanced dataset, we achieved an

accuracy of 99.69%. In this scenario, a false negative

rate of only 0.0015 was obtained which points towards

steady identification of COVID-19-positive cases amidst

pneumonia and healthy CXRs. Furthermore, a false negative

rate of 0.0312 was obtained, which demonstrates ability

of the network to handle imbalanced negative class.

This is often the scenario in real world during mass

screening which is essential in the present situation.

Among other architectures, InceptionV3 produced the

best result of 99.01%. However, the sensitivity value

was 0.8816, which was less. In case of other networks,

data imbalance was a major problem, which is evident

in Table 6.

Table 4 Performance comparison with other deep learning models for balanced dataset

Metrics InceptionV3 MobileNet ResNet50 Proposed CNN

Sensitivity 1.0000 1.0000 0.9252 1.0000

Specificity 0.9751 0.9938 0.9751 0.9938

Precision 0.9757 0.9938 0.9738 0.9938

False positive rate 0.0249 0.0062 0.0249 0.0062

False negative rate 0.0000 0.0000 0.0748 0.0000

Accuracy (%) 98.75 99.69 95.02 99.69

F1 Score 0.9877 0.9969 0.9489 0.9969

AUC 0.9877 0.9969 0.9355 0.9995

Parameters 26,522,146 7,423,938 49,278,594 310,810

Bold entries denote best result

https://github.com/ieee8023/covid-chestxray-dataset
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
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Fig. 5 ROC curves for a InceptionV3, b MobileNet, and c ResNet50

Results on Extended Dataset

Experiments were performed on an extended dataset

from https://github.com/ieee8023/covid-chestxray-dataset,

where 439 COVID-19 CXRs were obtained from this set. A

similar number of non-COVID-19 pneumonia CXRs were

used from https://www.kaggle.com/paultimothymooney/

chest-xray-pneumonia for putting together the negative

Table 5 Confusion matrices for imbalanced dataset

COVID-19 Non-COVID-19

COVID-19 311 10

Non-COVID-19 9 5847

class. The interclass confusions for this dataset are pre-

sented in Table 7. The afore mentioned performance metrics

were also computed for this setup which are listed in

Table 8. The ROC curve for the same is presented in Fig. 7.

It is noted that the results do not deviate much on increas-

ing the dataset. Besides, the new additions to the data were

different in terms of quality. This points to the system’s suit-

ability for real-world scenarios, where the size of the data

changes over time.

State-of-the-art Comparison

As mentioned earlier, let us compare our results with

previously reported works that used similar set of datasets

https://github.com/ieee8023/covid-chestxray-dataset
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
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Table 6 Performance metrics

for imbalanced data Metrics InceptionV3 MobileNet ResNet50 Proposed CNN

Sensitivity 0.8816 0.0000 0.0000 0.9688

Specificity 0.9961 1.0000 1.0000 0.9985

Precision 0.9248 0.0000 0.0000 0.9719

False Positive Rate 0.0039 0.0000 0.0000 0.0015

False Negative Rate 0.1184 1.0000 1.0000 0.0312

Accuracy (%) 99.01 94.80 94.80 99.69

F1 Score 0.9027 0.0000 0.0000 0.9704

AUC 0.9870 0.5000 0.5000 0.9969

Bold entries denote best result

Fig. 6 ROC curves for a InceptionV3, b MobileNet, c ResNet50, and d Proposed network
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Table 7 Confusion matrices for extended dataset

COVID-19 Non-COVID-19

COVID-19 437 2

Non-COVID-19 4 435

(but different sizes). A comparative study was provided in

Table 9.

Wang et al. [24] tested their tool on 31 COVID-19-

positive cases and reported accuracy was 92.6% with a

sensitivity score of 0.80. This means that all COVID-

19-positive cases were not correctly classified. Sethy

and Behera [13] tested 25 COVID-19-positive cases and

reported an accuracy of 95.38%, where sensitivity was

97.44. Zhang et al. [22] reported an accuracy of 96.00%,

where 100 COVID-19-positive cases were tested. Abbas

et al. [12] used 105 COVID-19-positive cases, which were

further decomposed. Thirty percent of this data was used

for testing, where accuracy, sensitivity, specificity, and

precision of 95.12%, 97.91%, 91.87%, and 93.36% were

reported. Luz et al. [20] trained/tested their system with

31 COVID-19-positive cases and reported an accuracy of

93.9% and a sensitivity of 0.968. Li et al. [14] tested

their mobile-based system with 36 COVID-19-positive

cases and reported an accuracy of 93.5% with AUC of

0.992. Apostolopoulos and Mpesiana [28] experimented

with 224 COVID-19-positive cases and obtained accuracy,

sensitivity, and specificity values of 96.78%, 98.66%, and

96.46%. For the newly updated dataset collection, which

was composed of 321 COVID-19 CXRs, the proposed

model achieved higher performance scores in terms of

accuracy, precision, sensitivity, F1 score, and AUC (see

Table 9). To be precise, test results were higher than state-

of-the-art works.

Table 8 Performance metrics for extended data

Metrics Proposed CNN

Sensitivity 0.9954

Specificity 0.9909

Precision 0.9909

False Positive Rate 0.0091

False Negative Rate 0.0046

Accuracy (%) 99.32

F1 Score 0.9932

AUC 0.9997

Fig. 7 ROC curve for extended dataset

Discussions

For COVID-19 screening, since sensitivity measures the

likelihood that the model would not miss to detect COVID-

19-positive patients, it plays a crucial role in validating

model in early stages of a pandemic. As a consequence,

it helps prevent further COIVD-19 spreading. The similar

argument lies in computing false negative rate. Furthermore,

precision indicates the probability in detecting COVID-19-

positive cases. It is useful as it measures the likelihood that

a model would not make a mistake to classify the COVID-

19-positive patients as normal (taking false alarms into

account) and it is important in the later stages of a pandemic,

when medical resources are limited to COVID-19 patients.

Accuracy was computed to measure the overall performance

of the model. AUC, on the other hand, conveys how stable

the system was: degree of measure of separability (between

two categories: COVID-19 and non-COVID-19).

In the case of the balanced dataset, the proposed model

achieved an average sensitivity score of 1.0, using 5-fold

cross-validation protocol. This means that false negative

rate was 0. The proposed model reported an average

precision of 0.9938. As the work was particularly focused

on detecting COVID-19-positive cases, the discussion

can be limited to sensitivity, false positive rate, and

precision. Similarly, other metrics (as provided in Table 3)

are of importance to test further the robustness of

the model.

For the imbalanced dataset, a sensitivity score of 0.9688

was obtained. The false negative rate was quite low
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considering the imbalanced and inter-class similarity in the

dataset. In this case, an accuracy of 99.69% was obtained

with a AUC value of 0.9996. Other important metrics for the

imbalanced dataset are presented in Table 6 along with the

ROC curve in Fig. 6.

Conclusion and FutureWorks

On the whole, in this paper, a light-weight CNN-tailored

shallow architecture was proposed to detect COVID-19-

positive cases using CXRs against non-COVID-19 ones.

The experiments were performed on dataset collection

of COVID19-positive, pneumonia-positive, and healthy

CXRs. To validate its robustness, 5-fold cross-validation

protocol was used on both balanced and imbalanced

dataset scenarios, where 321 COVID-19-positive cases

were used. We have compared the proposed shallow

CNN-tailored architecture by taking (a) popular DL tools,

such as MobileNet, InceptionV3, and ResNet50; and

(b) state-of-the-art works for COVID-19 detection using

CXRs, into account. The proposed model outperformed

all and is computationally efficient as it requires less

number of parameters. As the proposed shallow CNN-

tailored architecture has no false negatives, it could

be used to screen COVID-19-positive cases in chest

X-rays.

In future, the network architecture will be explored,

aiming to minimize false positive cases. We also plan to

augment data that helps avoid an issue we currently face,

i.e., lack of sufficient data.
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