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SHALLOW FLAWS UNDER BIAXIAL LOADING CONDITIONS, 
PART 11: APPLICATION OF A WEIBULL STRESS ANALYSIS OF THE 

CRUCIFORM BEND SPECIMEN USING A HYDROSTATIC STRESS CRITERION' 

Paul T. Williams, B. Richard Bass, and Wallace J. McAfee 

Oak Ridge National Laboratory 
Oak Ridge, Tennessee USA 

Cruciform beam fracture mechanics specimens- have been 

developed in the Heavy Section Steel Technology (HSST) Program at 

Oak Ridge National Laboratory (ORNL) to introduce a prototypic, far- 

field, out-of-plane biaxial bending stress component in the test section 

that approximates the nonlinear biaxial stresses resulting from 

pressurized-thermal-shock or pressure-temperature loading of a nuclear 

reactor pressure vessel (RPV). Matrices of cruciform beam tests were 

developed to investigate and quantify the effects of temperature, 

biaxial loading, and specimen size on fracture initiation toughness of 

two-dimensional (constant depth), shallow, surface flaws. Tests were 

conducted under biaxial load ratios ranging from uniaxial to 

equibiaxial. These tests demonstrated that biaxial loading can have a 

pronounced effect on shallow-flaw fracture toughness in the lower 

transition temperature region for RPV materials. Two and three- 

parameter Weibull models have been calibrated using a new scheme 

(developed at the University of Illinois) that maps toughness data from 

test specimens with distinctly different levels of crack-tip constraint to 

a small scale yielding (SSY) Weibull stress space. These models, using 

the new hydrostatic stress criterion in place of the more commonly 

used maximum principal stress in the kernel of the 6, integral 

definition, have been shown to correlate the experimentally observed 

biaxial effect in cruciform specimens, thereby providing a scaling 

mechanism between uniaxial and biaxial loading states. 
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INTRODUCTION 
Shallow-flaw fracture toughness data for reactor pressure vessel 

(RPV) materials in the lower transition temperature region exhibit 

greater scatter and higher mean values than the toughness data obtained 

from deep flaws because of reduced crack-tip constraint [l]. Uniaxial 

full-thickness clad beam tests [2] carried out by the Heavy Section 

Steel Technology (HSST) Program at Oak Ridge National Laboratory 

(ORNL) were used to quantify this shallow-flaw effect in specimens 

(using material taken from an RPV of a canceled nuclear plant) which 

are prototypic of RPV wall thickness and material properties. 

However, these uniaxial beam tests did not address the issue of near- 

surface biaxial stress fields produced by pressurized-thermal-shock 

(FTS) or pressure-temperature (P-T) loading of an RPV (see Fig. 1). 

The out-of-plane biaxial stress component has the potential to increase 

constraint at the tip of a shallow crack and thereby reduce the shallow- 

flaw fracture toughness enhancement. 

Fig. 1. PTS loading produces biaxial stress in an RPV wall 
with one of the principal stresses aligned parallel 
with the tip of the constant-depth shallow surface 
flaw. 



DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
document. 



Cruciform beam specimens [3-91 developed at ORNL introduce a 

prototypic, far-field, out-of-plane biaxial bending stress component in 

the test section that approximates the nonlinear stresses of PTS or P-T 

loading (see Fig. 2). The cruciform specimen permits controlled 

application of biaxial loading ratios resulting in controlled variations of 

crack-tip constraint for shallow surface flaws. The biaxial load ratio is 

defined as P, / P,, , where P, is the total load applied to the transverse 

beam arms and P, is the total load applied to the longitudinal arms. A 

special test fixture was also designed and fabricated permitting testing 

under a uniaxial (4-point bending) loading, P J P ,  ratio of (O:l), and 

two biaxial (8-point bending) loading ratios, P,/ P, ratios of (0.6: 1) 

and (1:l). The specimen and test fixture have been described 

extensively in prior HSST publications [3-51. 
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terms of some suitably defined equivalent stress which depends on the 

orientation of the crack plane in the local stress field. Selected 

equivalent stress functions defined in terms of multiaxial stress 

components were used to evaluate failure criteria through applications 

to measured data. 

The hydrostatic stress, applied as a critical fracture parameter, has 

been shown to be sensitive to the biaxial loading state near the crack 

tip of a cruciform specimen [9, lo]. In the early 1970s, Weiss 1181 

described an experimental program in which he investigated the effects 

of stress biaxiality on fracture strain and successfully reconciled 

measured data using a critical hydrostatic stress fracture criterion. 

More recently, the local approach using the hydrostatic stress criterion 

has been investigated using two- and three-parameter Weibull models 

to develop a scaling mechanism between uniaxial and biaxial loading 

states. This paper presents some preliminary results of that 

investigation. 
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Fig. 2. Geometry of the cruciform shallow-flaw biaxial 
fracture toughness test specimen. 

Cruciform fracture toughness data are being used to evaluate 

fracture methodologies for predicting the observed effects of biaxial 

loading on shallow-flaw fracture toughness [9-lo]. As discussed in 

refs. [9-101 and in Part I of this series[lO], initial emphasis has been 

placed on the assessment of stress-based methodologies, namely, the J-  

Q formulation, the Dodds-Anderson toughness scaling model, and the 

Weibull approach. Applications of these methodologies based on a 

hydrostatic stress fracture criterion indicated an effect of loading- 

biaxiality on fracture toughness, where the conventional maximum 

principal stress criterion indicated no effect. The ability of stress-strain 

bused methodologies to predict the biaxial loading effect is also being 

investigated by the HSST Program [5,12] as well as by other 

researchers [13]. 

Stress-based local approach methodologies adopt the Weibull 

stress [14] as a fracture parameter (reflecting local damage near the 

crack tip) that reaches a critical value at material failure. Conventional 

applications of the Weibull methodology utilize the maximum 

principal stress as the equivalent tensile stress in the kernel of the 

integral representation of the Weibull stress. A number of previous 

studies (for example, see refs. 15- 17) investigated alternative fracture 

criteria using extended weakest-link models suitable for brittle 

materials (e.g., ceramics) subjected to multiaxial loading. These 

models consider flaws as planar cracks, with the loading expressed in 

MATERIAL CHARACTERIZATION 
HSST Plate 14 was the source material (with chemical analysis 

C(0.22%), P(O.O5%), S(0.003%), Mo(0.36%), and Ni(0.62%) 

conforming to SA533, Grade B material specification requirements) 

for the cruciform bend specimens. This plate was selected primariIy for 

its relatively high carbon content which made it more responsive to 

increasing the yield strength by heat treatment and retaining relatively 

uniform properties through the thickness of the plate after tempering. 

The base material underwent heat treatment to achieve an elevated 

yield strength approximating that of a typical radiation-sensitive RPV 

steel irradiated to a fluence of 1.5 x 10" dcm2 (energy > 1 MeV). The 

heat treatment was performed successfully, providing a room 

temperature yield stress in the desired range (see Fig. 3.) 
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Fig. 3. Stress-strain behavior for Plate 14 material. 

FINITE-ELEMENT MODELS 
Three-dimensional finitselement models were developed for 

local crack-tip field analyses of the cruciform bend specimens 

subjected to uniaxial and biaxial loading. The cruciform bend 

specimen shown in Fig. 2 is modeled in Fig. 4, exploiting geometric 



and loading symmetries. Both blunt-crack-tip (20,754 nodes and 4317 

20-node isoparametric brick elements) and sharp-crack-tip (18,775 

nodes and 3886 elements) models were generated for these analyses. 

For the blunt-crack-tip nonlinear finite-strain elastic-plastic model, the 

initial finite-root-radius at the crack tip was 0.0254mm (0.001 in.). 

Corresponding J-integrals were calculated with the small-strain elastic- 

plastic sharp-crack-tip model to obtain a more accurate determination 

of J as a function of loading. All models were analyzed with the 

ABAQUS [ 191 code utilizing a nonlinear elastic-plastic constitutive 

formulation with incremental static loading of the specimen. 

Temperature-dependent properties were taken from tensile 

characterization tests of the heat-treated Plate 14 material (see Fig. 3). 
All model results reported in this paper assumed a specimen 

temperature of -5 "C. Also, these analyses neglected the potential 

impact of ductile tearing observed in two of the uniaxially loaded 

cruciform specimens, which were tested at -5 "C and failed at high 

toughness values. 
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HYDRO HydrostaticStress 

where the state of stress is defined by the principal stresses (ol, o,, 0,) 
and the normal q and shear 7 stresses are calculated by 

Fig. 4. Finite-element quarter-model of cruciform beam 
specimen: (a) detailed view of the shallow-flaw 
region, (b) complete mesh tayout. 

WEIBULL STRESS ANALYSES 
The methodology implemented in the WSTRESS (Version 2.0) 

computer code [20] was used to study effects of biaxial loading on 

Weibull analyses of shallow-flaw fracture toughness data in the lower 

transition temperature region. The WSTRESS code employs a 

multiaxial form of the weakest link model applicable for a 3-D cracked 

solid; the Weibull stress, ow, is characterized as a fracture parameter 

reflecting the local damage of the material near the crack tip. The 

Weibull stress, g, given by the expression 

is evaluated by integration of the equivalent stress, 0,. over the process 

zone. In Eq. (l),Vois a reference volume; rn is the Weibull modulus; 8 

and v, are curvilinear coordinates for integration of the tensile stress; 

and $2 denotes the volume of the near-tip fracture process zone, 

typically defined as the volume within the contour surface 

max(crl ,o, ,IT? 2 Lo,, , where (ol , 0, ,03 J are the principal stresses, 

o,, is the yield stress, and 1 =: 2 is a constant. 

Fracture Criteria 
A fracture criterion must be specified to determine the equivalent 

(tensile) stress, 0,. acting on a microcrack included into the fracture 

process zone. Three options for fracture criteria are implemented in the 

distributed version of WSTRESS [20] to evaluate the critical stress at 

which the crack becomes unstable: maximum principal stress (MPS), 

coplanar energy release (CER) rate, and normal stress averaging 

(NSA). Three additional fracture criteria were added to WSTRESS: 

the principal of independent action (PIA) [21] as proposed by 

Dortmans et al. [22], the noncoplanar energy release (NCER) rate [23- 

2.41, and the hydrostatic stress (HYDRO) criterion, developed during 

the present study. These criteria are implemented using the following 

definitions for the equivalent tensile stress, oq : 

M P S  MaximumPrincipalStress oq = max(ul,o2,og) 

NSA NormaIStress Averaging cy =an 

I 
PIA Principalof Independent Action by =()o~(~ + ) ~ 2 ( ~  + ) 0 3 ( ~ )  

CER Coplanar Energy Release Rate oy = on2 +- ( (;::)')+ 
NCER Noncoplanar Energy Release Rate oy = (on4 + + r4) ' 

Normal Stress 

Shearstress 

on = 6 3  sin2 pms2 B + 0 2  sin' psin' B + ol cos' p 

r2 =o?sin2pcos2 B+022sin2psin2 B+q2cos2p-ff,, 2 

Figure 5 illustrates the response of the Weibull stress function for 

a range of rn values and two definitions of oq, when applied to the Plate 

14 cruciform specimen subjected to uniaxial ( 0  1) and biaxial (1: 1) 

loading conditions. The equivalent stress options selected for analysis 

in Fig. 5 were MPS and HYDRO. For these two choices, the values of 

0, are independent of microcrack location and orientation, and the 

Weibull stress is, therefore, 



In Fig. 5(a), the equivalent stress was set to MPS, and the Weibull 

stress was then calculated for values of the modulus m = 8, 10, and 20. 

No significant effects of biaxial loading were detected for the three m 

values using the MPS criterion. In Fig. 5(b), the calculation is repeated 

with the equivalent stress taken as HYDRO. Differentiation between 

uniaxial (01) and biaxial (1:l) loading can be observed when the 

Weibull modulus m is set to values of 8 and 10. By increasing the 

Weibull modulus to 20, any distinction between uniaxial and biaxial 

loading is essentially lost. Of the six candidate functions for the 

Weibull stress kernel listed above, only the hydrostatic stress 

or a three-parameter Weibull distribution [25] 

where the parameters of the distribution are the Weibull modulus rn , 
the scaling stress (scaling factor) ou , and the minimum Weibull stress 

for cleavage fracture ow-,,,,,, . 
The fracture parameter, J,, can also be described by either a two- 

parameter Weibull distribution 

demonstrated any sensitivity to the biaxial loading state of the r / - \ai 
cruciform specimen. 
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where a, p, and y are the shape, scale, and threshold parameters of the 

distribution, respectively. The shape and scale parameters (a. p)  were 

estimated by the maximum likelihood method using the experimental 

toughness data set in Table 1. For the three-parameter models, the 

threshold parameter y is assumed to be 2.05 k.Vm2 corresponding to a 
Kmin of 20MPa-dm [26]. Figure 6 compares the resulting Weibull 

distributions (3-parameter model) in terms of the associated Weibull 

(a) probability density function 

In Fig. 6, the two curves that represent a partitioning of the data by 

loading state demonstrate that the highest (1:l) and the lowest (0:l) 

data points are located in the tails of their respective distributions. 
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(b) 
Fig. 5. Weibull stresses with (a) maximum principal stress 

and (b) hydrostatic stress as the equivalent stress. 
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Weibull Model Calibration 
A new calibration scheme has been proposed by Gao, Ruggieri, 

and Dodds [25] to determine unique values of the Weibull parameters 

(m,o,) by applying toughness data measured under low and high 

constraint conditions at the crack front. This new scheme (G-R-D 

Method) arises from the authors' experience [25] with calibration 

methods based on statistical inference in which they observed a strong 

sensitivity to the number of toughness data values (J,) comprising the 

sample population. They estimated that reliable estimates for the shape 

parameter, a, in the Weibull distribution of the toughness data (see 

Eqs. (5) and (6)) would require many tens of J,-values; however, 

fewer J,-values (approximately 6-10) might be required to establish 

the median value of the distribution, p. In addition in Ref. [25], they 

demonstrated analytically and numerically that calibration schemes 

based on using only toughness data from high-constraint specimens 

under small scale yielding (SSY) conditions produce nonunique values 

of the Weibull parameters. 

The new calibration scheme eliminates this nonuniqueness by 

mapping the available toughness data at two levels of constraint back 

to a small scale yielding (SSY) Weibull stress space where ~1 takes on 

the theoretical values of 2 or 4 for Weibull distributions expressed in 

terms of J, or KJ,, respectively. In the SSY Weibull stress space, the 

scheme requires iterations with the Weibull modulus m to determine a 

unique value of p and thereby a unique m-value. The calibration 

process employs large scale yielding (LSY) toughness data from two 

sample populations that represent distinctly different levels of crack tip 

constraint. The procedure then seeks the unique m-value that, upon 

mapping the two LSY sample populations back to the corresponding 

SSY Weibull stress space, results in constraint-corrected toughness 

distributions that have the same statistical properties, specifically the 

same SSY Weibull distributions as described by the (a$) parameters. 

In addition to elastic-plastic analyses of the LSY specimens, the 

G-R-D calibration scheme also requires the results of a finite element 

analysis of a stationary crack under small scale yielding conditions. 

The plane-strain, modified boundary layer (MBL) model [27, 281 

provides asymptotic crack-tip stress fields which have the general form 

where K is the stress intensity factor. The special case of T = O  

corresponds to the small scale yielding limit. An MBL finite-element 

model (see Fig. 7) was employed utilizing Plate 14 material property 

data for -5 "C to calculate small scale yielding (SSY) solutions 

corresponding to an applied Mode I loading of the finite-root-tip crack, 

obtained by imposing the displacements 

along the outer circular boundary (r = R )  of the model, where the stress 

intensity factor K is related to the J-integral by the plane-strain formula 

K l  =d( ' i )  1-v J 

1- X 

06/15/98.5 ptw 

Fig. 7 Small-scale-yielding (SSY) plane-strain modified 

boundary layer (MBL) finite-element model: 

(a) global mesh layout with 16 fans, 2671 elements, 

and 5708 nodes; (b) close up of finite root tip with 

pO = 2.54 pm; po / R = lo-'. 

Details of the G-R-D calibration scheme are given in [25] and its 

application to cruciform toughness data is described in [lo]. In 

summary, the G-R-D scheme proceeds by the following steps: 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Test two sets of specimens (both tested under LSY 

conditions) with different levels of crack tip constraint. In 

the terminology of ref. [25], the biaxial (1:l) data are 

designated as Configuration A (high constraint), and the 

uniaxial (0:l) data are designated as Configuration B (low 

constraint). 

Perform detailed 3-D finite element analyses for 

Configurations A and B and for a plane-strain SSY model 

with a reference thickness adjusted to be consistent with the 

specimens in Configurations A or B. 

Assume a trial m-value, and calculate the o,vs J histories 

for Configurations A and B and the SSY model. Constraint- 

correct the ConfigurationA and B toughness data by 

mapping the data points on the o,vsJ curves back to the 

SSY curve as shown in Fig. Sa such that .lr-(,) + J,+,, for 

Ow,r:l) = Gw-sFY . 

Estimate &,, and &,, in SSY Weibull stress space for the 

two configurations by the maximum likelihood point 

estimate relation (without small-sample bias) 
I 



uu = 2074 MPa 

\ at J +, = 69.4 Uld 
and calculate a relative error R(m) by 

(12) 

Step5. Repeat Steps 3 and 4 for a range of trial m-values and 

determine the m-value that produces an acceptably small 

relative error R(m). 

The scaling stress, 6, , can then be calculated from the converged 

SSY-( ow-,, vs J ) curve by 

For the 3-parameter Weibull distribution, the third parameter, ow-mio, 
is calculated from the intercept of rhe ow-,, VSJ curve at 

J = 2.05 kJ/m2 (KJ = 20 MPa- Jm ). 

RESULTS AND DISCUSSION 
The results of the Weibull parameter estimation using the 

uniaxial (0:l) and biaxial (1:l) toughness data in Table 1 are shown in 

Fig. 8. The Weibull stresses for the two levels of constraint were 

calculated for a range of Weibull moduli m and then mapped back to 

the corresponding SSY o,vs J curve, Fig. 8a. These constraint 

corrected data were then used to calculate an estimated B,,,, using 

Eq. (11) and plotted vs m (Fig. 8b). The two estimates for fit=,) 
converged at m = 10.55 , Figs. 8b-c. From the converged solution in 

Fig. 8a, the remaining distribution parameters can be calculated from 

the 6,vs J ,  curve, specifically the scaling stress is a, = 2074 MPa 

and the minimum Weibull stress for cleavage fracture is cW-,,,,, =. 
1045 MPa. In all of the results shown in Fig. 8, the Weibull stress has 

been calculated using the hydrostatic stress criterion. 

Figures 9 and 10 demonstrate why the maximum principal stress 

as the Weibull kernel produces a negligible sensitivity to biaxiality as 

shown in Fig. 5a and also why, at higher m-values, the hydrostatic 

stress criterion becomes invariant to biaxiality. In Fig. 9, the maximum 

principal stress at J = 130kJ/m2, plotted as a function of the 

normalized distance ahead of the crack tip, is essentially independent 

of loading-state biaxiality. As discussed in Refs. [lo-1 11, the cruciform 

specimen is not J-dominant at this load level for any state of biaxiality, 

i.e, both the maximum principal stress and hydrostatic stress profiles 

are not self-similar with respect to J as is the case under SSY 

conditions. The hydrostatic stress profiles are, however, dependent on 

both biaxiality and J in regions to the right of the peak stress, as 

demonstrated by the ordering by biaxiality of the QH-stress based on 

its operational definition using the hydrostatic stress in Fig. 10. Close 

to and to the left of the peak, the hydrostatic stress profiles become 

invariant to biaxiality. As the Weibull modulus increases, the high 

hydrostatic stresses in the region of the stress peak (approximately 

r/(J / g o )  = 0.7 for J = 130 k.T/m2) become the dominant contributors 
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(c) 
Fig. 8 Weibull parameter estimation by (a) mapping to 

SSY Weibull stress space: (1:l) and (0:l) mappings 
for m = 10.55 and (b) estimated 

(c) relative error R(m) as a function of trial m. 
and 



to the Weibull stress kernel (after raising to the mth power in Eq. (2)) 

thus accounting for the invariance to biaxiality at m = 20 in Fig. 5b. 

The calibrated two- and three-parameter Weibull models for 

uniaxial (0:l) and biaxial (1:l) loadings are compared to the 

experimental Plate 14 toughness data in Figs. 11 and 12, respectively. 

The median rank probabilities assigned to the toughness data were 

calculated using the following estimate [26,29-301 for the ith data point 

in a sample population of n data points 

i-0.3 

n + 0.4 
4-d =- 

where the toughness data are ranked according to increasing 

magnitude. The 90 % confidence limits on the median rank probability 

estimates were calculated using an algorithm presented in Ref. [29]. 

The spread of these confidence limits are a function only of the 

toughness data sample population size, n. 

As shown in Figs. lla-b and 12a-b, the two-parameter models do 

a poor job relative to the three-parameter models (in Figs. Ilc-d and 

12c-d) in correlating the trends implied by the toughness data set, 

especially in the lower tails of the distribution. The three-parameter 

Weibull models enclose all of the toughness data within their 

confidence limits including the lower tails. 

Given the calibrated Weibull model, a toughness scaling model 

can be constructed as shown in Fig. 13. For a given uniaxial (01) 

toughness data point, Jc(o::I,, the corresponding Weibull stress, ow, 
can be used to estimate the biaxial loading effect by projecting down to 

the J<,,,vsb, curve along a line of constant a,as in Fig. 13a or 

directly across as in Fig. 13b. 

CONCLUSIONS 
Two and three-parameter Weibull models have been calibrated 

using a new scheme [25] that maps toughness data from test specimens 

with distinctly different levels of crack-tip constraint to a SSY Weibull 

stress space where one of the two Weibull parameters (the shape 

modulus, a ) characterizing the toughness distribution is known and 

the other parameter, the scaling parameter p .  can be uniquely 

determined by iteration on the corresponding Weibull shape modulus, 

m. These models, using the hydrostatic stress criterion in place of the 

more commonly used maximum principal stress in the kernel of the 

ow integral definition, have been shown to correlate the experimentally 

observed biaxial effect in cruciform specimens in the lower transition 

temperature region, thereby providing a scaling mechanism between 

uniaxial and biaxial loading states. 
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Fig. 9 Sensitivity of maximum principal (opening mode) 

stress to biaxiality: stress profiles along the 

normalized distance ahead of cruciform crack tip 
for J = 130 kJ/mz. 
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Fig. 10 Sensitivity of hydrostatic.( (T,, = ou-/3 ) stress to 

biaxiality: stress profiles along the normalized 

distance ahead of cruciform crack tip for 

J = 130M/m2. 
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Fig. 11 Comparison of cumulative failure probabilities for 
uniaxial (0:l) loading using the two-parameter 
Weibull model of Eq. (3) in (a) standard and 
(b) Weibull coordinates and the three-parameter 
model of Eq. (4) in (c) standard and (d) Weibull 
coordinates for m = 10.55. 
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Fig. 12 Comparison of cumulative failure probabilities for 
biaxial (1 :1) loading using the two-parameter 
Weibull model of Eq. (3) in (a) standard and 
(b) Weibull coordinates and the three-parameter 
model of Eq. (4) in (c) standard and (d) Weibull 
coordinates for m = 10.55. 



Fig. 13 (a) Jvs a, trajectories for uniaxial (09) and biaxial (1:l) loading for m = 10.55 and 

(b) toughness scaling curve for m = 10.55 (uniaxial and biaxial toughness data are plotted along 

their respective axes with their probability density distribution functions from Fig. 6). 
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Table 1. Cruciform toughness data from FEM model and experimental data 

Test Biaxiality Failure 

Specimen Temp. Ratio' Load, P, 

"C kN 

P2B.2 DT" -3 0: 1 1504.4 

P9A DT -3 0 1  1529.0 
P13A2 -6 0 1  1165.1 

P17AZs -2 0: 1 1421.0 
P 1 8AZ5 -3 0: 1 1329.9 
P19BZJ -2 0 1  1342.2 

P3B -4 0.6: 1 1449.6 

P12A -6 0.6: 1 1349.4 

P15B2 -4 0.6: 1 1431.1 

P15A -4 1:l 1072.6 

P6B -4 1:l 1096.0 

P17B2 -5 1:l 932.6 

P5A2 -3 1:l 1269.4 
P5B2 -4 1:1 1469.9 

P10B2 -6 1:l 1246.2 
'Biaxiality ratio is the ratio of the transverse to longitudinal beam arm loads: P p " p ~  

*Failure load based on equivalent 254 mm (10 in.) beam arm length. 

'Calculated using finite-element sharp-crack model of cruciform specimen with 254 mm (10 in.) beam arms 

*Experimental values calculated from CMOD data 

'Reduced specimen test section a/W=O.l; a = 9.65 mm (0.38 in.); W =  96.0 mm (3.78 in.) 

"DT indicates precleavage ductile tearing 

Toughness, Jc 

FEM3 CMOD4 

H/m2 M/m2 

433.8 638.65 

469.8 747.84 
177.5 156.71 

539.9 530.94 

370.9 403.72 

388.6 468.84 

272.7 363.53 

212.2 

260.3 

118.5 

125.2 

80.5 

208.9 
404.2 

193.9 

256.57 

277.04 

121.50 

135.22 

85.98 

226.30 
512.64 

214.72 

Toughness, KJ 

E M 3  CMOD~ 
MPadm MPadm 

290.8 352.8 
302.6 381.8 
186.0 174.8 

324.4 32 1.7 

268.9 280.5 

275.2 302.3 

230.5 266.2 

203.4 223.6 
225.2 232.4 

152.0 153.9 

156.2 162.3 

125.2 129.4 

201.8 210.0 

280.7 316.1 
194.4 204.6 


