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ABSTRACT

Cruciform beam fracture mechanics specimens! have been
developed in the Heavy Section Steel Techmology (HSST) Program at
Qak Ridge National Laboratory (ORNL} to introduce a prototypic, far-
field, out-of-plane biaxial bending stress component in the test section
that approximates the nonlinear biaxial stresses resuiting from
pressurized-thermal-shock or pressure-temperature loading of a ruclear
reactor pressure vessel (RPY), Matrices of cruciform beam fests were
developed to investigate and (uantify the effects of temperature,
biaxial loading, and specimen size on fracture initiation toughness of

two-dimensional (constant depth), shallow, surface flaws. Tests were

conducted under biaxial load ratios ranging from wuniaxial to
equibiaxial. These tests demonstrated that biaxial loading can have a
pronounced effect on shaliow-flaw fracture toughness in the lower
transition temperature region for RPV materials. Two and three-
parameter Weibull models have been calibrated using a new scheme
(developed at the University of IHinois) that maps toughness data from
test specimens with distinetly different levels of crack-tip constraint to
a small scale yiclding (S8Y) Weibull stress space. These models, using
the néw hydrostatic stress criterion in place of the more commonly
used maximem principal stress in the kemel of the o, integral
definition, have been shown to correlate the experimentally observed
biaxial effect in cruciform specimens, thereby providing a scaling
mechanism between uniaxial and biaxial loading states.
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INTRODUCTION _

Shallow-flaw fracture toughness data for reactor pressure vessel
(RPY) materials in the lower transition temperatore region exhibit
greater scatter and higher mean values than the toughness data obtained
from deep flaws because of reduced crack-tip constraint [1]. Uniaxial
fufl-thickness clad beam tests 2] carried out by the Heavy Section
Steel Technology (HSST) Program at Oak Ridge National Laboratory
{ORNL) were used to quantify this shallow-flaw effect in specimens
(using material taken from an RPV of a canceled nuclear plant) which
are prototypic of RPY wall thickness and material properties.
However, these uniaxial bearmn tests did not address the issue of near-
surface biaxial stress fields produced by pressurized-thermal-shock
(PTS) or pressure-temperature (P-T) loading of an RPV (see Fig. 1).
The out-of-plane biaxial stress component has the potential to increase
constraint at the tip of a shallow crack and thereby reduce the shallow-
flaw fracture toughness enhancement.

Fig. 1. PTS loading produces biaxial stress in an RPV wall
" with one of the principal stresses aligned parafle
with the tip of the constant-depth shallow surface

flaw. :
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Cruciform beam specimens [3-9] developed at ORNL introduce a

prototypic, far-field, out-of-plane biaxial bending stress component in

the test section that approximates the nonlinear stresses of PTS or. P-T
loading (see Fig. 2). The cruociform specimen permits controlled
application of biaxial loading ratios resulting in controlled variations of
crack-tip constraint for shaliow surface flaws. The biaxial load ratio is
defined as P, /P, , where P, is the total load applied to the transverse
beam arms and P, is the total load applied to the longitudinal arms. A
special test fixture was also designed and fabricated permitting testing
under a uniaxial (4-point bending) loading, P,/ P, ratio of (0:1), and
two biaxial (8-point bending) loading ratios, P,/ P, ratios of {0.6:1)
and (1:1). The specimen and test fixture have been described
extensively in prior HSST publications [3-5].
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Fig. 2. Geoinetry of the cruciform shallow-flaw biaxial
fracture toughness test specimen.

Cruciform fracture toughness data are being used to evaluate
fracture methodologies for predicting the observed effects of biaxial
leading on shallow-flaw fracture toughness [9-10]. As discussed in
refs. [9-10] and in Part I of this series[10], initial emphasis has been
placed on the assessment of stress-based methodologies, namely, the J-
() formulation, the Dodds-Anderson toughness scaling model, and the
Weibull approach. Applications of these methodologies based on a
hydrostatic stress fracture criterion indicated an effect of loading-
biaxiality on fracture toughness, where the conventional maximum
principal stress criterion indicated no effect. The ability of stress-strain
based methodologies to predict the biaxiai loading effect is also being
investigated by the HSST Program [5,12] as well as by other
researchers [13].

. Stress-based local approach methodologies adopt the Weibull
stress [14] as a fracture parameter (reflecting local damage near the
crack tip} that reaches a critical value at material failore. Conventional
applications of the Weibull methodology utilize the maximum
principal stress as the equivalent tensile stress in the kernel of the
integral representation of the Weibull stress. A number of previous
studies (for example, see refs. 15-17} investigated alternative fracture
criteria using extended weakest-link models suitable for brittle
materials (e.g., ceramics) subjected to multiaxial loading, These
models consider flaws as planar cracks, with the loading expressed in

terms of some suitably defined equivalent stress which depends on the
orientation of the crack plane in the local stress field. Selected
equivalent stress functions defined in terms of multiaxial steess
components were used to evainate failure criteria through applications
to measured data.

The hydrostatic stress, applied as a critical fracture parameter, has
been shown to be sensitive to the biaxial loading state near the crack
tip of a cruciform specimen [9, 10]. In the early 1970s, Weiss [18]
described an experimental program in which he investigated the effects
of stress biaxiality on fracture straiz and successfully reconciled
measured data using a critical hydrostatic stress fracture criterion.
More recently, the local approach using the hydrostatic stress criterion
has been investigated using two- and three-parameter Weibul! models
to develop a scaling mechanism between uniaxial and biaxial loading
states. Thi§ paper presents some preliminary results of that
investigation. ' :

MATERIAL CHARACTERIZATION

HSST Plate 14 was the source matesial (with chemical analysis
C(0.22%), P0.05%), S(0.003%), Mo(0.36%}, and Ni(0.62%)
conforming to SA333, Grade B material specification requirements}
for the cruciform bend specimens. This plate was selected primarily for
its relatively high carbon content which made it more responsive to
increasing the yield strength by heat treatment and retaining relatively
uniform properties through the thickness of the plate after tempering.
The base material underwent heat treatment to achieve an elevated
vield strength approximating that of a typical radiation-sensitive RPY
steel irradiated to a fiuence of 1.5 x 10" nfem’ (energy > 1 MeV). The
heat treatment was performed successfully, providing a room
temperature yield stress in the desired range (see Fig. 3.}
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Fig. 3. Stress-strain behavior for Plate 14 material.

FINITE-ELEMENT MODELS

‘Three-dimensional finite-element models were developed for
local crack-tip “field analyses of the cruciform bend specimens
subjected te uniaxial and biaxial loading, The cruciform bend
specimen shown in Fig. 2 is modeled in Fig. 4, exploiting geometric




‘and loading symmetries. Both blunt-crack-tip (20,754 nodes and 4317
20-node isoparametric brick elements) and sharp-crack-tip (18,775
nodes and 3886 elements) models were generated for these analyses.
Faor the blunt-crack-tip nonlinear finite-strain elastic-plastic model, the
initial finite-root-radius at the crack tip was 0.0254 mm {0.001 in.).
Corresponding J-integrals were calculated with the small-strain efastic-
plastic sharp-crack-tip model to obtain a more accurate determination
of J as a function of loading. All models were analyzed with the
ABAQUS [19] code utilizing a nonlinear elastic-plastic constitutive
formulation with incremental static loading of the specimen.
Temperature-dependent  properties were taken from tensile
characterization tests of the heat-treated Plate 14 material (see Fig. 3).
All model results reported in this paper assumed a specimen
temperature of -5°C. Also, these analyses neglected the potential
impact of ductile tearing ohserved in two of the uniaxially loaded

cruciform specimens, which were tested at -5 °C and failed at high

toughness values.
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Fig. 4. Finite-elernent quarter-model of cruciform beam
specimen: (a) detailed view of the shallow-flaw
region, (b) complete mesh layout.

WEIBULL STRESS ANALYSES

The methodology implemented in the WSTRESS (Version 2.0)
compiter code [20] was used to study effects of biaxial loading on
Weibull analyses of shallow-flaw fracture toughness data in the lower
fransition temperature region. The WSTRESS code employs a
multiaxial form of the weakest link model applicable for a 3-D cracked
solid; the Weibull stress, o, , is characterized as a fracture parameter

reflecting the local damage of the material near the crack tip. The
Weibull stress, 6,, given by the expression

1
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is evaluated by integration of the equivalent stress, G, over the process
zone, In Eq. (1),V, s a reference volume; m is the Weibull modulus; 8
and @ are curvilinear coordinates for integration of the tensile stress;
and §) denotes the volume of the near-tip fracture process zone,
typically defined as the volume within the contour surface
max(o,,7,,0,)2 Ag, ., where {0,,0,,0,} are the principal stresses,
o, is the yield stress, and A=2 is a constant,

Fracture Crileria

A fracture criterion must be specified to determine the equivalent
(tensile) stress, ¢, acting on a microcrack included into the fracture
process zone, Theee options for fracture criteria are implemented in the
distributed version of WSTRESS [20] to evaluate the critical stress at
which the crack becomes unstable; maximum principal stress (MPS),
coplanar energy release (CER) rate, and normal stress averaging
{NSA), Three additional fracture criteria were added to WSTRESS:
the principal of independent action (PIA) {2F] as proposed by
Dortmans et ai. [22], the noncoplanar energy release (NCER) rate [23-
24], and the hydrostatic stress (HYDROQ) criterion, developed during
the present study. These criteria are implemented using the following
definitions for the equivalent tensile stress, o,

MPS Maximum Principal Stress o4 =max(o),02,03)
NSA Normal Stress Averaging Oy =0y
L
PIA Principal of Independent Action ¢, = ()a’l {" Yo {™ + Yo (" )

: 2 472 i
CER Coplanar Energy Release Rate Og=| 0y +ﬁ
2—w
i, 4 2,2, 4)%
NCER  Noncoplanar Energy Release Rate o, =lgy,” +60,°7° +7
_bg_o)+dy+03

HYDRO Hydrostatic Stress T gy 3 3

where the state of stress is defined by the principal stresses (,, @,, G,)
and the normal o and shear » stresses are calcuiated by

MNonmazl Stress O, =3 sin’ qrcos_zﬂ +a9 sin2 (a:sin.2 8+ cos’ @

2 2 2 2

Shear Stress T8 =0y sin? tp(:ns2 &+ 2

sin? ggr;sin2 ?+0; cos? p-a,

Figure 5 illustrates the response of the Weibull stress function for
a range of /n values and two definitions of ¢, when applied to the Plate
14 cruciform specimen subjected to uniaxial (0:1) and biaxial (1:1}
loading conditions. The equivalent stress options selected for analysis
in Fig, 5 were MPS and HYDRO. For these twao choices, the values of
g, are independent of microcrack lecation and orientation, and the
Weibull stress is, therefore,
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G, = Vi J’ ordQ )
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In Fig. 5(a), the equivalent stress was set to MPS, and the Weibull
stress was then cajculated for values of the modulus # = 8, 10, and 20,
Ne significant effects of biaxial leading were detected for the three m
values using the MPS criterion. In Fig. 5(b), the calculation is repeated
with the equivalent stress taken as HYDRO. Differentiation between
uniaxial {(:1) and biaxial (1:1) loading can be observed when the
Weibull modulus m is set to values of 8 and 10. By increasing the
Weihull modulus to 20, any distinction between unriaxial and biaxial
toading is essentially lost. Of the six candidate functions for the
Weibull stress kernel listed above, only the hydrostatic stress
demonstrated any sensitivity to the biaxial loading state of the
cruciform specimen. '
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Fig. 5. Welbull stresses with (a) maximum principal stress
and (b} hydrostatic stress as the equivalent stress.

Probability of Cleavage Fracture

The cumulative probability of cleavage fracture {g,) can be
estimated by either a two-parameter Weibull distribution of the form

#,(0,)=1 —exp[—[ﬁ"] } : 3
o-ll

or a three-parameter Weibull distribution [23]

R e |

whete the parameters of the distribution are the Weibull modulus # ,
the scaling stress (scaling factor) 6, , and the minimum Weibull stress
for cleavage fracture o,,_,, .

- The fracture parameter, J, can also be described by either a two-
parameter Weibull distribution

plr.)=1=exg] - (—J—” ®)

or a three-parameter Weibull distribution

| J-rY '
wl,) expL( 2 )] (6)

where ¢, B, and v are the shape, scale, and threshold parameters of the
distribution, respectively. The shape and scale parameters (o, 8} were
estimated by the maximum likelihood method using the experimental
toughness data set in Table 1. For the three-parameter models, the
threshold parameter % is assumed to be 2.05 ki/m® corresponding to a
Kyin of 20 MPa-Vm [26]. Figure 6 compares the resulting Weibull
distributions (3-parameter model} in terms of the associated Weibuil
probability density function

ol &
af J,~y I~y
flepy)=—| =51 exp-|=—=1| O .
Bl B B _
In Fig. 6, the two curves that represent a partitioning of the data by
loading state demonstrate that the highest (1:1) and the lowest (0:1)
data points are located in the tails of their respective distributions.
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Weibuil Model Callbration

A new calibration scheme has been proposed by Gao, Ruggieri,
and Dodds {25] to determine unique values of the Weibull parameters
(m,0,) by applying toughness data measured under low and high
constraint conditions at the crack front. This new scheme (G-R-D
Method) arises from the authors’ experience [25] with calibration
methods based on statistical inference in which they observed a strong
sensitivity to the number of toughness data values (J.} comprising the
sample population. They estimated that reliable estimates for the shape
parameter, o, in the Weibull distribution of the toughness data (see
Eqgs. (5) and (6)) would require many tens of J.-values; however,
fewer J.-values (approximately 6-10) might be required to establish
the median value of the distribution, . In addition in Ref. [25), they
demonstrated analyticalty and numerically that calibration schemes
based on using only toughness data from high-constraint specimens
under small scale yielding (S5Y) conditions produce nonunique vaiues
of the Weibull parameters.

The new calibration scheme eliminates this nonuniqueness by
mapping the available toughness data at two levels of constraint back
to a small scale yielding (S5Y) Weibuall stress space where o takes on
the theoretical values of 2 or 4 for Weibull distributions expressed in
terms of J, or K., respectively. In the 88Y Weibull stress space, the
scheme requires iterations with the Weibull modutus m to determine a
unigue value of B and thereby a unique m-value. The calibration
process employs large scale yielding (LSY) toughness data from two

sample populations that represent distinctly different levels of crack tip.

constraint. The procedure then seeks the vmique sr-value that, upon
mapping the twe LSY sample populations back o the corresponding
S8Y Weibull stress space, resulis in constraint-corrected tonghness
distributions that have the same statistical properties, specifically the
same S8Y Weibull distributions as described by the (¢,3) parameters,
In addition to elastic-plastic analyses of the LSY specimens, the
G-R-D calibration scheme also requires the resulis of a finite element
analysis of a stationary crack under small scale yielding conditions.
The plane-strain, modified boundary layer (MBL) model {27, 28]
provides asymptotic crack-tip stress fields which have the general form

K .

oy =ﬁﬂj(9J+T5u51_; (8)
where K is the stress intensity factor. The special case of T=0
corresponds to the small scale yielding limit. An MBL finite-element
model (see Fig. 7) was employed utilizing Plate 14 material property
data for -5°C to calculate small scale yielding (S8SY) solutions
corresponding to an applied Mode I loading of the finite-rooi-tip crack,
obtained by imposing the displacements

ux(r,9)=§-’(;£;"?‘f% cos[%][S-—tw —00.50]
u}.(r,ﬁ):w& sir{%] [3~4v —cos 8]

along the outer circular boundary {r = R) of the model, where the stress
intensity factor K is related to the J-integral by the plane-strain formula

&)

f-v

K = [ EZJJ | (10)
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Fig. 7 Small-scale-yielding (85Y) plane-strain modified
boundary layer {(MBL) finite-element model:
(a) global mesh layout with 16 fans, 2671 elements,
and 5708 nodes; (b) close up of finite root tip with
Pe = 2.54um; po/R=107. :

Details -of the G-R-D calibration scheme are given in [25] and its
application to cruciform toughness data is described in [10]. In
summary, the G-R-D scheme proceeds by the following steps:

Step 1. Test two sets of specimens (both tested under LSY
conditions) with different levels of crack tip constraint. In
the terminology of ref [25], the biaxial (1:1) data are
designated as Configuration A (high constraint), and the
uniaxial (0:1) data are designated as Configuration B (low
CONSTaint).

Step2. Perform detailed 3-P finite element analyses for
Configurations A and B and for a plane-strain SSY model
with a reference thickness adjusted to be consistent with the
specimens in Configueations A or B,

Step 3. Assume a trial sm-value, and calculate the o, vsJ histories
for Configurations A and B and the SSY. model. Constraint-
correct the Configuration A and B toughness data by
mapping the data points on the ¢ vs/ curves back to the
S8Y curve as shown in Fig. 8a such that J,_,, —= /. & for

ity = F sy -

Step4. Estimawe f,,, and f,,, in SSY Weibull stress space for the
two configurations by the maximum likelihood point
estimate relation {without small-sample bias)

A= %Z(f(i%ssr)z (an

i=l




and calculate a relative efror R{m) by

(ﬂ{rm - ﬂ{::n}

Rim}z————— (12)
(m) ﬁ(l:l}

Repeat Steps 3 and 4 for a range of trial m-valoes and
determine the m-value that produces an acceptably small
refative error Rim).

Step 5.

The scaling stress, ¢, ., can then be calculated from the converged
SSY-(0, g vsJ ) curve by

G =Ty @Jyy = -Bnm} = ﬁtI:IJ (13)

For the 3-parameter Weibull distribution, the third parameter, o, _,. |
is calculated from the intercept of the o, ., vsJ curve at
J=2.05 k¥/m? (K ;= 20 MPa-+/m ).

RESULTS AND DISCUSSION :

The results of the Weibull parameter estimation using the
uniaxial (0:1) and biaxial (1:1) toughness data in Table 1 are shown in
Fig. 8. The Weibull stresses for the two levels of constraint were
calculated for a range of Weibull moduli /1 and then mapped back to
the corresponding SSY o, vsJcurve, Fig. 8a. These constraint
commected data were then used to calculate an estimated g, using
Eq. (11) and plotted vs m (Fig. 8b). The twe estimates for £,
converged at m=10.55, Figs. 8b-c. From the converged solution in
Fig. 8a, the remaining distribution parameters can be calculated from
the &, vs Jo, curve, specifically the scaling stress is o, =2074 MPa
ang the minimum Weibull stress for cleavage fracture is @, ., =-
1045 MPa. In all of the results shown in Fig. 8, the Weibull stress has
‘been calculated using the hydrostatic stress criterion.

Figures 9 and 10 demonstrate why the maximum principal stress
as the Weibnll kernel produces a negligible sensitivity to biaxiality as
shown in Fig. 5a and also why, at higher m-values, the hydrostatic
stress criterion becomes invariant to biaxiality. In Fig. 9, the maximum
principal stress at J=130kl/m2, plotted as a function of the
normalized distance ahead of the crack tip, is essentially independent
of loading-state biaxiality. As discussed in Refs. [10-11], the cruciform
specimen is not J-dominant at this load level for any state of biaxiality,
i.e, both the maximum principal stress and hydrostatic stress profiles
are not self-similar with respect to J as is the case under SSY
conditions. The hydrostatic stress profiles are, however, dependent on
both biaxiality and J in regions to the right of the peak stress, as
demonstrated by the ordering by biaxiality of the (Jg-stress based on
its operational definition using the hydrostatic stress in Fig. 10. Close
to and to the left of the peak, the hydrostatic stress profiles becoine
invariant o biaxiality. As the Weibull modulus increases, the high
hydrostatic stresses in the region of the stress peak (approximately
H(JF1a,)= 0.7 for J = 130 ki/m?2) become the dominant contributors
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to the Weibull stress kernel (after raising to the mth power in Eq. (2))
thus accounting for the invariance to biaxiality at m = 20 in Fig, 5b.

The calibrated two- and three-parameter Weibull models for
uniaxial (0:1} and biaxial (1:1) loadings are compared to the
_experimental Plate 14 toughness data in Figs. 11 and 12, respectively.
The median rank probabilities assigned to the toughness data were
calculated using the following estimate [26,29-30 for the itk data point
in a sample population of » data points

03
et 0.4

(14

where the toughness data are racked according to increasing
maghitude. The 90 % confidence limits on the median rank probability
estimates were calculated using an algorithm presented in Ref. [29].
The spread of these confidence limits are a function only of the
toughness data sample population size, r.

As shown in Figs. 11a-b and 12a-b, the two-parameter models do
a poor job relative to the thres-parameter models {in Figs. 11¢-d and
12¢-d) in corrglating the trends implied by the foughness data sel,
especially in the lower tails of the distribution. The three-parameter
Weibull models enclose all of the toughpess data within their
confidence limits including the lower tails.

Given the calibrated Weibull model, a tonghness scaling model
can be constructed as shown in Fig. 13. For a given uniaxial (0:1)
toughness data point, J,g.4), the corresponding Weibull stress, ‘¢, ,
can be used to estimate the biaxial loading effect by projecting down to
the J,,vs@, curve along a line of constant ¢, as in Fig. 13a or
directly across as in Fig. 13b.

CONCLUSIONS .

Two and three-parameter Weibull miodels have been calibrated
using a new scheme [25] that maps toughness data from test specimens
with distinctly different levels of crack-tip constraint 0 a S8Y Weibull
stress space where one of the two Weibull parameters (the shape
modulus, @) characterizing the toughness distribution is known and
the other parameter, the scaling parameter M, can be uniguely
determined by iteration on the corresponding Weibuil shape modulus,
. These models, using the hydrostatic stress criterion in place of the
more common]y used maximum principal stress in the kemel of the
o, integral definition, have been shown to correlate the experimentaliy
observed biaxial effect in cruciform specimens in the lower transition
temperature region, thereby providing a scaling mechanism between
uniaxial and biaxial loading states. . |
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Table 1. Cruciform toughness data from FEM model and experimental data

Test Biaxiality = Failure Toughness, /. Toughness, Ky

. Specimen Temp. Ratio' ‘Load, P, FEM® CMOD* FEM’ - CMOD*

_ °C kKN Kifm2 kl/m2 MPaVm MPaVm
P2B.2 DT* -3 o1 1504.4 4338 638.65 290.8 352.8
P9A DT -3 01 1529.0 - 469.8 747.84 302.6 381.8
PI13A2 -6 0:1 1165.1 1775 156.71 186.0 174.8.
P17A™ ) 0:1 1421.0 539.9° 530.94 324.4 321.7
P18A™ -3 0:1 13299 370.9 403.72 268.9 280.5
Pi9B™ -2 0:1 1342.2 388.6 468.84 275.2 302.3
P3B 4. 0.6:1 1449.6 2727 363.53 230.5 266.2
P12A -6 0.6:1 1349.4 2122 256.57 203.4 223.6
P15B° -4 0.6:1 1431.1 260.3 277.04 225.2 2324
P15A -4 1:1 1072.6 118.5 121.50 152.0 153.9
PGB -4 I:1 1096.0 1252 135.22 156.2 162.3
P17B* -5 1:1 932.6 80.5 85.98 125.2 129.4
PSA’ -3 i1 1269.4 208.9 226.30 201.8 210.0
PsB’ -4 I £4 1469.9 404.2 512.64 280.7 316.1
P10B* -6 1:1 1246.2 193.9 214.72 194.4 204.6

‘Biaxiality ratio is the ratio of the transverse to longitudinal beam arm loads: Pp/Py,

*Failure load based on equivalent 254 mm (10 in.) beam arm length.

*Calcuiated using finite-element sharp-crack model of cruciform specimen with 254 mm {10 in.} beam arms

‘Experimental values calculated from CMOD data

*Reduced specimen test section #/W=0.1; a = 9.65 mm (0.38 in.); W= 96.0 mm ¢3.78 in.)

DT indicates precleavage ductile tearing




