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Settlement simulating in cohesion materials is a crucial issue due to complexity of cohesion soil texture.)is research emphasis on
the implementation of newly developed machine learning models called hybridized Adaptive Neuro-Fuzzy Inference System
(ANFIS) with Particle Swarm Optimization (PSO) algorithm, Ant Colony optimizer (ACO), Differential Evolution (DE), and
Genetic Algorithm (GA) as efficient approaches to predict settlement of shallow foundation over cohesion soil properties. )e
width of footing (B), pressure of footing (qa), geometry of footing (L/B), count of SPT blow (N), and ratio of footing embedment
(Df/B) are considered as predictive variables. Nonhomogeneity and inconsistency of employed dataset is a major concern during
prediction modeling. Hence, two different modeling scenarios (i) preprocessed dataset (PP) and (ii) nonprocessed (initial) dataset
(NP) were inspected. To assess the accuracy of the applied hybrid models and standalone one, multiple statistical metrics were
computed and analyzed over the training and testing phases. Results indicated ANFIS-PSO model exhibited an accurate and
reliable prediction data intelligent and had the highest predictability performance against all employedmodels. In addition, results
demonstrated that data preprocessing is highly essential to be performed prior to building the predictive models. Overall, ANFIS-
PSO model showed a robust machine learning for settlement prediction.

1. Introduction

1.1. ResearchBackground. In practice, three types of shallow
foundation settlements are commonly encountered, and
these are immediate settlement, consolidation settlement,
and secondary compression settlement [1]. Immediate
settlement is encountered when the load is applied im-
mediately after initiating a structure. It is primarily a
consequence of soil-grain distortion and reorientation.
Consolidation settlement, on the other hand, is time-de-
pendent and generally takes longer time to occur. It occurs
due to water pressure dissipation over time. Secondary
compression settlement results as a soil creep; it is a viscous
flow under load with no changes in effective stress.)e total

settlement of a foundation is the sum of the above three
components. For cohesionless soils, the only source of
concern is immediate settlement, while consolidation and
secondary compression settlements are the primary factors
associated with cohesive soils.

Generally, sand deposits are more heterogeneous than
clay deposits; hence, there is likely to be higher differential
settlements in sand deposits compared to clay deposits [2].
Due to the high level of permeability of cohesionless soils, it
takes a shorter time for the settlement to occur after applying
load [3]. )e result of such a quick settlement is a relative
rapid superstructure deformation and the consequential
inability to curtail the damage and prevent further defor-
mation. Furthermore, structural failures can result from
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excessive settlement [4]. )e design of shallow foundations is
mainly controlled by two major criteria which are the set-
tlement of the foundations and the bearing capacity of the
footing. However, settlement often controls the design pro-
cess rather than the bearing capacity; this is mainly the case
when the width of footing is more than 1 meter (3-4 ft) [5].
)erefore, settlement prediction is an essential and important
criterion during the design of shallow foundations.

On cohesionless soils, the prediction of the settlement of
shallow foundations is complicated and yet to be understood
because settlement is governed by many uncertain and
unquantifiable factors [6]. Some of these uncertain factors
include the distribution of the applied stress [7], the soils’
stress and strain properties, the compressibility of the soil,
and the difficulty in obtaining undisturbed samples of co-
hesionless soils for laboratory testing [8].

1.2. Literature Review and Research Motivation. )ere are
several methods in the geotechnical literature (theoretical
and experimental) for the prediction of the settlement of
shallow foundations on several types of soil [2, 9–14]. As
presented in Figure 1, usually several variables are incor-
porated with the magnitude of soil settlement such as net
applied pressure (qo), Poisson’s ratio of soil (μs), average
modulus of elasticity of soil (Es), and foundation dimensions
(B and L). )us, the settlement behavior is a highly complex
geotechnical engineering problem owing to the association
with varying variability.

Due to the difficulty in obtaining undisturbed samples
for cohesionless soils, many methods for settlement pre-
diction have concentrated on the correlations between in
situ investigations, such as the standard penetration test
(SPT) [15], cone penetration test (CPT) [16], dilatometer test
[17], plate load test [18], and screw plate load test. In most of
the available methods, the problem is simplified by intro-
ducing several assumptions related to the factors that affect
settlement. As a result, these available methods (ranging
from purely empirical to complex nonlinear finite elements)
cannot achieve a consistent and accurate settlement pre-
diction [19]. Over the literature, several comparative studies
using machine learning models demonstrated inconsistent
of settlement prediction magnitudes. Hence, reliable alter-
native model is always the inspiration of geotechnical sci-
entists to explore and investigate [20]. Machine learning
models exhibited a new era of modeling methodologies for
various engineering applications [21–27]. Within the set-
tlement determination, artificial neural network (ANN)
models have been introduced to this field since about three
decades ago [28–32]. )is was followed by several imple-
mentations over the past two decades using diverse AI
models including gene expression programming [33, 34],
support vector machine [35], least square support vector
machine [36], and neuro-fuzzy network [37, 38]. Among
several AI models reported in the literature, adaptive neural
fuzzy inference system (ANFIS) model exhibited a distin-
guished modeling technique in the field of geotechnical
engineering [39]. )is is owing to its robustness in capturing
the high complex nonlinearity and nonstationarity of the

experimental laboratory dataset. However, the main draw-
back associated with standalone AI models is the internal
hyperparameter tuning, and thus, the integration of these
models with bioinspired optimization algorithms and pro-
duce what so-called hybrid model is the era of modeling
strategy for simulating complex engineering problems
[40–42]. In the current research, the feasibility of four
different nature-inspired algorithms (i.e., PSO, ACO, DE,
and GA) are investigated to tune ANFIS model as a pre-
dictive paradigm for simulating shallow foundation settle-
ment. )e selection of those optimizers is owing to their
capacity in tuning the internal parameters of AI models and
that was evidenced through several established research
studies over the literature [43, 44].

1.3. Research Objectives. To the best knowledge of the
current research, the development of a hybridized data-
intelligence model based on the integration of bioinspired
optimization algorithms with ANFIS model was proposed
with the aim of achieving more reliable and robust settle-
ment prediction results. )e explored hybrid model was
verified for viability on the shallow foundation settlement
within cohesion soil properties. )e major benefit of the
proposed models is the ability to simulate the nonlinearity
connection between the inputs (correlated attributes) and
the output (target variable) without the need for a predefined
formulation. Additionally, the concept is more like the in-
troduced settlement prediction methodologies but with the
added advantage of the intelligence to capture the complex
mechanism of settlement variability.

2. Applied Hybrid Models

Soft computing models are mainly used to explain complex
engineering problems which are highly stochastic and
nonlinear. )is is the case when the traditional models are
not able to be adequately applied. SC is the basic form of

Soil

Rock

z

Foundation B × L qo Df

Rigid 
foundation 
settlement

Flexible 
foundation 
settlement H

µs : Poisson’s ratio
Es : Modulus of elasticity

Figure 1: Some of the related variables on foundation-soil
settlement.
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artificial intelligence that can be implemented to solve
difficult applications using the aspect on intelligent human
brain behavior. Also, the soft computing modeling is fol-
lowing the basic concept of black box that is required no
preknowledge of the investigated problem. Furthermore,
both partial truth and approximation can be considered in
soft computing.

2.1. Adaptive Neuro-Fuzzy Inference System (ANFIS). )e
fuzzy logic (FL) concept was conceived several years back as
a data processing method which allows partial set mem-
bership [45]. )e FL method of data analysis was mainly
popular because people do not intend the precise numerical
input. Its major advantages include the provision of an easy
way to arrive at a conclusion based on noisy or imprecise
input data [46, 47]. A proper knowledge of the shape and
type of fuzzy rules, as well as the membership functions, is
important in order to achieve the best results. However,
some cases require the use of the time-consuming methods
such as trial and error. )e model can be trained using
artificial neural networks. A hybrid combination of neural
networks with fuzzy systems could produce a more robust
model with numerous advantages [48, 49].

)erefore, a neuro-fuzzy system could be considered as a
hybrid algorithm which can make decisions based on fuzzy
and, at the same time, a modern soft computing-based
method in terms of ANN. Jang introduced ANFIS in 1993
while Sugeno fuzzy system was developed based on the
learning capability of ANN [50]. In a fuzzy system, the basic
and most important components are the rules. )e required
rules will be optimized using ANN [51, 52].

)e first proposed ANFIS model had five layers. )e
schematic structure of ANFIS is presented in Figure 2(b).
)e utilized rules are as follows:

Rule #1: If X isA1 andY isB1, thenf1 � p1x + q1y + r1,

Rule #2: If X isA2 andY isB2, thenf2 � p2x + q2y + r2,

(1)

where A1-A2 and B1-B2 are membership functions for input
x and input y, respectively.

In layer 1, each node is a square node creating the
membership grades. Utilizing the membership function,
inputs (x and y) would be translated into linguistic terms:

O1,i � μAi(x), i � 1, 2, (2)

where x is the input value to node i and Ai is the linguistic
term. Furthermore, O1i is the membership function of Ai.
Available types for membership functions are Gaussian,
triangular, and trapezoidal. )e Gaussian function has the
following formula:

μAi(x) � exp −
x − ai
bi

( )2 , (3)

where ai and bi are the antecedent parameters.
Similarly, in the second layer, each node is a circle one,

and the output would be obtained using the following
function:

O2,i � wi � μAi(x)∗ μBi(x), i � 1, 2, (4)

wherewi is the weight influence of the rule. In the third layer,
the nodes calculate the ratio of the rules weight divided by
the sum of all weights as follows:

O3,i � wi �
wi

w1 + w2
, i � 1, 2. (5)

All nodes in the fourth layer are square having the
function as follows:

O4,i � wifi � wi pix + qiy + ri( ), i � 1, 2, (6)

where wi is the output of the third layer. pi, qi, and ri are the
consequent parameters.

Finally, the fifth layer consists of only one circle node (∑)
as follows:

O5,i � ∑
i

wifi �
∑iwifi∑iwi

, i � 1, 2. (7)
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Figure 2: )e conceptual mapping of adaptive neuro-fuzzy inference system model.
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)e schematic view of ANFIS modeling is presented in
Figure 2.

Herein, five membership functions (Gaussian func-
tion) are considered for each input variable and five
membership functions (liner function) for output. Totally,
the proposed ANFIS model has 80 parameters (50 ante-
cedent parameters and 30 consequent parameters) which
were optimized by proposed nature-inspired optimization
algorithms.

2.2. Particle Swarm Optimization (PSO) Algorithm. PSO
algorithm was developed as an optimization method based
on the behavior and movements of a community of birds,
fish, and insects. It was introduced by Reynolds when he
considered 3 kinds of operators designated as alignment,
separation, and cohesion.)e algorithmwas modelled in the
likeness of a group of particles flowing within a search space
in a bid to achieve an optimal point. )e particles within the
search space adjust their movement based on their own
experience and on the experience of the other particles
[52–54]. Similarly, they also adjust their speed based on their
own experience and on the experience of the other particles.
)ey change their position with respect to the position/
velocity/distance of the best particle.)e particle update rule
is as follows:

p � p + v, (8)

with,

v � v + c1rand. pbest − p( ) + c2rand. gbest − p( ), (9)

where p, v, c1, c1, pbest, gbest, and rand are the position, di-
rection, the weight of local data, the weight of global data,
best position of the particles, best position of the swarm, and
a random value, respectively. )e following equations are
used to update the particles’ velocities:

Vt+1i � vti + c1U
t
1 pb

t
i − p

t
i( ) + c2Ut2 gbti − pti( ), (10)

In the above equation, the three major terms are inertia,
personal influence, and social influence, respectively.
Figure 3(a) presents the flowchart of PSO.

2.3. Ant Colony Optimization (ACO) Algorithm. Dorigo
introduced ant colony system some years back, but in recent
years, many researchers have focused on the extended
versions of the ant system [55]. Being that the ACO can solve
static and dynamic problems, they are applicable in several
optimization problems. Activities such as foraging (food
searching), cooperative transport, labor division, and brood
sorting are governed by what is commonly known as stig-
mergy which enables them to achieve self-organization.
Although there are simple individuals in the ant colonies, it
could be considered as one of the most complicated but well-
organized natural structures.

)e pheromone produced by the ants is trailed by the
other ants in order to find the shortest path to a food source.
)is algorithm uses a similar procedure to arrive at the

optimum point in the search space. )e ants can only make
forward or backward movements; hence, a stepwise decision
process will be applied by the ants to find the best solution to
a given problem [56–58]. Figure 3(b) presents the working
flowchart of ACO.

2.4. Differential Evolution (DE) Algorithm. Some of the ob-
jective functions in real engineering problems are discrete,
nonlinear, or multidimensional while some may have local
minima. Such cases require a population-based algorithm with
stochastic features to obtain the solution. )is quality is ob-
tainable in the Differential Evolution (DE) algorithm introduced
by Storn and Price in 1996 [59, 60]. To optimize a function with
n real parameters, the vectors would appear as follows:

xi, G � xi, i, G, x2, G, . . . , xn, i, G[ ], i � 1, 2, . . . , k, (11)
where G is the generation number. A definition of the upper
and lower boundaries for each parameter would give

xLj ≤ xj, i, 1 ≤ xUj. (12)

)e initial values for the parameters would be randomly
selected with identical probability. )e flowchart of the DE
algorithm is presented in Figure 3(c).

2.5. Genetic Algorithm (GA). GA was developed as an evo-
lutionary search algorithm based on the Darwinian principle
of natural selection for solving optimization problems [61].
)e algorithm initiates with a random generation of the initial
population before proceeding to the evaluation of the fitness
of the individuals using the fitness function. )e next stage is
the selection stage usingmethods such as RouletteWheel.)e
two operators mainly used by the algorithm to generate new
offspring are crossover and mutation [62, 63]. Figure 3(d)
presents the schematic presentation of the GA.

)e optimized ANFIS parameters (antecedent and
consequent parameters) through the PSO algorithm (su-
perior model) are presented in Table 1.

2.6. Prediction Performance Metrics. In this research, the
mean performance (MP) index was computed to evaluate
the proposed hybrid data-intelligence models. )e main
merit of this index is the incorporation all of the perfor-
mance metrics including root mean square error (RMSE),
mean absolute error (MAE), Legate and McCabe’s index
(LMI), correlation coefficient (CC), Willmott’s index (WI),
and relative root mean square error (RRMSE) [41, 64–67].
)e MP metric can be expressed mathematically as follows
[68]:

MP �
(R̂MSE + M̂AE + L̂MI + ĈC + ŴI + ̂RRMSE)

7
,

(13)
where R̂MSE, M̂AE, L̂MI, ĈC, ŴI, and ̂RRMSE are the
standardized values of the employed performance indices of
ith model (hybridized ANFIS models) and can be computed
as follows:
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Table 3: )e computed performance metrics over the training and testing phases and using preprocessed dataset scenario.

Models RMSE (mm) MAE (mm) LMI CC WI SRMSE

Training phase
PP-ANFIS 7.88 5.04 0.66 0.94 0.97 43.05
PP-ANFIS-PSO 6.10 3.50 0.76 0.97 0.98 33.35
PP-ANFIS-DE 16.94 11.45 0.22 0.71 0.79 92.54
PP-ANFIS-ACO 17.24 11.95 0.19 0.69 0.79 94.22
PP-ANFIS-GA 8.17 5.96 0.60 0.94 0.97 44.64

Testing phase
PP-ANFIS 13.47 8.87 0.38 0.85 0.92 76.87
PP-ANFIS-PSO 9.02 6.50 0.54 0.93 0.96 51.47
PP-ANFIS-DE 20.21 14.07 0.01 0.57 0.71 115.39
PP-ANFIS-ACO 20.84 14.74 -0.03 0.55 0.70 118.96
PP-ANFIS-GA 11.59 8.34 0.42 0.88 0.94 66.17

Table 2: )e statistics of the employed parameters in training and testing phases.

Parameters Scenario Phase Number of samples Maximum Minimum Mean Standard deviation

B (m)

Nonprocessed dataset

Training 133

60.0 0.8 8.2 9.2
q (kPa) 697.0 18.3 186.0 123.7
N 60.0 4.0 24.6 13.2
L/B 10.6 1.0 2.2 1.7
Df/B 3.4 0.0 0.5 0.5
Sm (mm) 121.0 0.6 20.0 26.1
B (m)

Testing 55

55.0 0.9 10.1 11.9
q (kPa) 584.0 25.0 189.6 120.9
N 60.0 4.0 24.5 14.2
L/B 9.9 1.0 2.2 2.0
Df/B 3.0 0.0 0.6 0.7
Settlement (mm) 120.0 1.0 21.9 27.4

B (m)

Preprocessed dataset

Training 129

60.0 0.8 7.8 9.0
q (kPa) 697.0 18.3 189.2 124.2
N 60.0 4.0 24.8 12.7
L/B 10.6 1.0 2.2 1.7
Df/B 3.4 0.0 0.5 0.5
Sm (mm) 116.0 0.6 18.3 23.8
B (m)

Testing 50

41.2 0.9 8.1 9.3
q (kPa) 584.0 25.0 196.2 124.9
N 55.0 5.0 25.2 13.3
L/B 9.9 1.0 2.2 2.0
Df/B 3.0 0.0 0.7 0.7
Settlement (mm) 120.0 1.0 17.5 24.4

Table 4: )e computed performance metrics over the training and testing phases and using nonprocessed dataset scenario.

Models RMSE (mm) MAE (mm) LMI CC WI SRMSE

Training phase
NP-ANFIS 8.38 5.84 0.65 0.95 0.97 41.99
NP-ANFIS-PSO 8.09 4.92 0.71 0.95 0.97 40.49
NP-ANFIS-DE 17.54 12.12 0.28 0.74 0.82 87.83
NP-ANFIS-ACO 18.26 13.05 0.23 0.71 0.81 91.44
NP-ANFIS-GA 12.18 7.47 0.56 0.89 0.93 60.97

Testing phase
NP-ANFIS 16.30 10.82 0.41 0.86 0.92 74.57
NP-ANFIS-PSO 14.10 9.88 0.46 0.86 0.93 64.49
NP-ANFIS-DE 20.73 14.83 0.19 0.66 0.79 94.87
NP-ANFIS-ACO 21.54 15.95 0.13 0.64 0.77 98.56
NP-ANFIS-GA 16.58 12.17 0.34 0.80 0.89 75.85
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R̂MSE �
RMSE□max − RMSE

□
Model(i)( )

RMSE□max − RMSE
□
min( ) ,

M̂AE �
MAE□max − MAE

□
Model(i)( )

MAE□max − MAE
□
min( ) ,

L̂MI �
LMI□Model(i) − LMI

□
min( )

LMI□max − LMI
□
min( ) ,

ĈC �
CC□Model(i) − CC

□
min( )

CC□max − CC
□
min( ) ,

ŴI �
CC□Model(i) − CC

□
min( )

CC□max − CC
□
min( ) ,

̂PRMSE � PRMSE□max − PRMSE
□
Model(i)( )

PRMSE□max − PRMSE
□
min( ) .

(14)

3. Data Description and Input
Model Development

)e proposed hybrid and standalone ANFIS models were
constructed for the training and testing phases using field
measurements of settlement of shallow foundation. )e
obtained data are corresponding to the foundation di-
mensions and soil properties with 188 observations [69].
Based on the geotechnical engineering prospect, the set-
tlement is associated with several variabilities such as footing
width (B), soil compressibility within the effective influ-
encing depth, and the net footing pressure (qa). Other
variables such as footing embedment ratio (Df/B), footing
geometry length to width ration (L/B), and count of SPT
blow (N) are the related variables considered to build the
input attribute matrix of the settlement prediction. )e
details of employed datasets over training and testing phases
are presented in Table 2. )e dataset represents a wide range
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Figure 4:)emean performance index and heat graph presentations for the applied hybrid ANFIS models using the preprocessed data (PP)
scenario: (a) training phase and (b) testing phase.
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of variation. )e nonprocessed dataset was divided into
133–55 observations for the training-testing phases, whereas
the preprocessed dataset was divided into 129–50 obser-
vations for the training-testing phases. )e optimal data
division was attained based on trial and error procedure in
accordance with the obtained predictability performance.

4. Application, Analysis, and Discussion

)e main motivation of the current research is to inves-
tigate the viability of the different versions of hybrid ANFIS
models for predicting shallow foundation settlement. )e
limitations of the empirical formulation to simulate the
exact relationship between the soil settlement and those
various foundation loading and soil properties emphasize
the implementation of data-intelligence models where
more robust and reliable predictive models can be explored
to configure the internal mechanism between the depen-
dent and independent variables. Indeed, proposing such a
reliable data-intelligence predictive model can contribute

to the possibility of reliable foundation design in addition
to various geotechnical engineering perspectives. )e de-
veloped hybrid ANFIS models are appraised in different
comparisons in accordance with statistical metrics, diag-
nostic plots, and error distributions between the laboratory
measures and computed settlement values over the training
and testing phases.

Using numerical validation, Tables 3 and 4 report the
performance metrics (RMSE, MSE, LMI, CC, WI, and
SRMSE) for the classical ANFIS, ANFIS-PSO, ANFIS-ACO,
ANFIS-DE, and ANFIS-GA and for the two investigated
scenarios (i.e., PP and NP). Generally, the execution of the
developed models over the training phase showed a superior
predictability in comparison with the testing phase and for
both scenarios. In both scenarios and over the training phase,
the hybrid ANFIS-PSO model exhibited the best results of
settlement prediction with minimum absolute error measures
(RMSE� 6.1mm and MAE� 3.5mm) for the preprocessed
dataset and (RMSE� 8.09mm and MAE� 4.92mm) for the
nonprocessed dataset. )is can be best explained due to the
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Figure 5: )e mean performance index and heat graph presentations for the applied hybrid ANFIS models using the nonprocessed data
(NP) scenario: (a) training phase and (b) testing phase.
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potential of the particle swarm optimizer in tuning the
membership function parameters of the ANFIS predictive
model. )is is in synchronization with various other applied
engineering problems [70–72]. On the other aspect, the data
preprocessing demonstrated an excellent procedure where to
produce more meaningful information for the predictive
model. In other words, data preprocessing provided in more
detectable manner information for the learning process of the

established intelligence predictive models. Over the testing
phase, ANFIS-PSO model displayed the best prediction re-
sults of settlement with minimum absolute error measures
(RMSE� 9.02mm and MAE� 6.5mm) for the preprocessed
dataset and (RMSE� 14.1mm and MAE� 9.88mm) for the
nonprocessed dataset.

Figures 4 and 5display the mean performance (MP) index
of all computed predictionmeasures metrics in addition to the
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Figure 6: )e scatter plot presentation between the observed settlement measurement and predicted values using the accurate hybrid
intelligence (i.e., ANFIS-PSO) (both modeling scenarios): (a) training phase and (b) testing phase.
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Figure 7: Normalized Taylor diagrams of predicted and observed shallow foundation settlement for the preprocessed dataset scenario:
(a) training phase and (b) testing phase.
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heat map for both inspected modeling scenarios PP and NP,
respectively. Figures 4(a) and 5(a) present the models training
phase while Figures 4(b) and 5(b) report the testing phase. In
harmony with revealed numerical metrics of Tables 3 and 4,
the hybrid ANFIS-PSO models showed the accurate predic-
tion for the shallow foundation settlement with superior MP
index value.

)e performance of the applied hybrid models was
examined using scatter plot graphs. )e scatter plot is an
excellent graphical evaluation method to depict the variance
between the measured settlement and the computer model’s
computation (see Figure 6). Based on the variance around
the fit line and the magnitude of the correlation coefficient,
the best predictive model can be determined. Figure 6 ex-
hibits the best hybrid predictive model (i.e., ANFIS-PSO) for
both investigated scenarios and over both training and
testing phases. On the one hand and over the training phase
(Figure 6(a)), the PP-ANFIS-PSO attained R2 ≈ 0.934 while
NP-ANFIS-PSO attained R2 ≈ 0.904. On the other hand,
testing phase demonstrated PP-ANFIS-PSO attained
R2 ≈ 0.865 while NP-ANFIS-PSO attained R2 ≈ 0.741. )is
is normal learning process as usually testing phase performs
slightly worse than the training phase.)is is might be due to
the absence of the valuable information not comprehended
perfectly.

Taylor diagrams were computed for the applied ANFIS,
ANFIS-PSO, ANFIS-ACO, ANFIS-DE, and ANFIS-GA
predictive models for both modeling phases (training and
testing) and for both studied scenarios (see Figures 7 and 8),
respectively. Taylor diagram is a summary of various sta-
tistical metrics including correlation, standard deviation,
and root mean square. In accordance with the coordination
of the predictive models from the benchmark (observed
settlement records), the models are evaluated. In this way,

Taylor map delivers an excellent graphical representation of
the models’ accuracy. Figures 8(a) and 8(b) (preprocessed
dataset scenario) indicate the hybrid ANFIS-PSO coordi-
nated in the nearest position to the observed settlement
measurements with correlation value over 0.95 for training
phase and 0.92 for the testing phase, whereas ANFIS-ACO
and ANFIS-DE displayed the largest distance from the
observed benchmark record which signifies the worst pre-
diction efficiency.

Among all the investigated hybrid intelligence models,
the capacity of the ANFIS-PSO was demonstrated the su-
perior potential over the other models. )is is clearly an
indication to the performance of the Particle Swarm Op-
timization algorithm for tuning the internal parameters of
the ANFIS model and particularly for simulating the in-
vestigated geotechnical problem “i.e., shallow foundation
settlement.” It is worth to highlight that the ability of the
PSO algorithm was approved for optimizing ANFIS model
over multiple engineering applications such as channel
sediment transport, basin bank shape optimization, com-
pressive strength of intact roach, friction capacity ration of
driven piles, oil flocculated asphaltene weight percentage,
and several others [73–77].

Based on the attained modeling results, it is even better
to highlight some valid critical observations to be established
in future research. Settlement analysis is influenced by a
certain level of uncertainty related to the variables influ-
encing settlement behavior. Most of the existing method-
ologies conducted for settlement prediction on cohesionless
soils do not consider the uncertainty component in the
simulation. Hence, incorporating Monte Carlo model with
the proposed hybrid ANFIS-PSO model can provide prac-
tical design tools for geotechnical engineering field where
the inspection of the uncertainties associated with the
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Figure 8: Normalized Taylor diagrams of predicted and observed shallow foundation settlement for the nonprocessed scenario: (a) training
phase and (b) testing phase.

Advances in Civil Engineering 11



variables affecting the settlement prediction is investigated.
)is is a very useful probabilistic approach in the sense that it
can overcome the problems of the deterministic techniques
and provide some guidance to the geotechnical engineers
about the level of risk (i.e., degree of uncertainty) associated
with the predicted settlement. Exploring other nature-in-
spired algorithms for optimizing ANFIS model can be
further studied for better prediction accuracy [78–80].

5. Conclusion and Remarks

)is research was emphasized on the implementation of
newly developed hybrid intelligence model based on the
integration of ANFIS model with various bioinspired op-
timization algorithms (e.g., PSO, ACO, DE, and GA). )e
main enthusiasm of the current investigation is to attain an
accurate intelligent predictive model for shallow foundation
settlement. )e developed predictive models were inspected
on large field measurements gathered from the open sources’
literature. Two different modeling scenarios based on data
processing were performed. Among the four hybrid models,
ANFIS-PSO demonstrated an accurate prediction result
with highest correlation value R2 ≈ 0.865 and minimum
absolute error measures (RMSE� 9.02mm and
MAE� 6.5mm) for the testing phase and within pre-
processing data scenario. )e proposition of the hybrid
intelligent model evidenced an excellent alternative for the
empirical formulation. In addition, the modeling scenarios
proved the necessity to examine the potential of the raw data
applicability for establishing predictive model. It is clearly
verified that eliminating some irrelevant dataset has boosted
the prediction accuracy remarkably.
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