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Shallow groundwater quality assessment: use of the

improved Nemerow pollution index, wavelet transform

and neural networks

Q. Yang, J. Zhang, Z. Hou, X. Lei, W. Tai, W. Chen and T. Chen
ABSTRACT
Shallow groundwater is generally of great interest to the community due to its easy availability.

However, it is very sensitive to external stimulus. In this paper, shallow groundwater quality is assessed

and classified with improved Nemerow pollution index, multi-layer perceptron artificial neural network

(MLP-ANN) optimized with a back-propagation algorithm and wavelet neural network (WNN) methods

in a coastal aquifer, Fujian Province, South China. The data used in three models were collected during

the pre-monsoon over the period 2004–2011. The eight parameters, total dissolved solids, total

hardness, chemical oxygen demand, chloride, sulphate, nitrate, nitrite and fluorides, were selected to

characterize groundwater quality classification based on the National Quality Standard for

Groundwater (GB/T 14848-93). The results of MLP-ANN and WNN are interpreted by mean absolute

error, root mean square error and R2 (determination coefficient) criteria. The results obtained from

three methods demonstrate that WNN has a higher accuracy compared with the other two methods.

The study reveals that these methods are efficient tools for assessing groundwater quality.
doi: 10.2166/hydro.2017.224
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INTRODUCTION
Water quality assessment is a complex problem due to

multiple factors involved, and difficulties of accurate identi-

fication of the pollution components which are affected by

many factors and processes. The groundwater quality

depends not only on natural factors such as the lithology

of the aquifer, the quality of recharge water and the type

of interaction between water and aquifer, but also on

human activities, which can alter these groundwater systems

either by polluting them or by changing the hydrological

cycle (Helena et al. ). Pollutant issues in water sources

because of human activity have been of great concern in

recent years (Nash & McCall ; UNEP ‘the United

Nations Environment Programme’ ; Milovanovic ;

Mohapatra et al. ; Ogunkunle & Fatoba ). Various

methods in groundwater quality assessment have been

explored. Types of water quality indices were applied in
environmental assessment (Wayne ; Li et al. ; Ler-

montova et al. ; Ni et al. ; Liang et al. ; Tang

et al. ; Sarala & Sabitha ; Ma et al. ). Many tra-

ditional approaches and techniques have been applied to

water quality assessment including multivariate statistical

methods such as cluster analysis, factor analysis, principal

component analysis and discriminant analysis, which gener-

ally were used to identify the major factors affecting ground-

water. The use of graphical methods such as the Stiff

diagram (Stiff ) to interpret the hydrochemistry is limited

to two dimensions (Hem ). However, due to the com-

plex nonlinear relationships and uncertainties between the

parameters on groundwater quality, artificial neural

networks (ANNs) have become a popular method in

environmental simulation and prediction because they can

overcome some of the difficulties associated with traditional
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statistical approaches (Wu et al. ; Chen et al. ;

Gholami et al. ; Taormina & Chau ; Wang et al.

).

According to a review paper of ANN applications to

water resource variables that had been published until

the end of 1998 (Maier & Dandy ), the authors

reviewed 43 papers and reported that in these papers sur-

face water flow and quality was the topic in 28 and

rainfall forecasting in 13 (Yang et al. ). The appli-

cation of ANNs in assessing groundwater quality in

recent years has been reported in several studies (Aris

et al. ; Khashei-Siuki & Sarbazi ; Nadiri et al.

; Pedro et al. ). One of the most important fea-

tures of ANN models is their ability to adapt to

recurrent changes and detect patterns in a complex natu-

ral system (Cannas et al. ; Adamowski ; Partal

; Tiwari & Chatterjee ; Adamowski & Chan

). Application of ANN in hydrological forecasting

and prediction can be traced back to the 1990s, ANN

models are called ‘black box’ models due to their ability

to model dynamic nonlinear systems by detecting patterns

in a complex system, without the need to understand the

physical mechanism taking place in the system. ANNs are

proven to be effective in modeling virtually any nonlinear

function to a desired degree of accuracy. The advantages

of ANN models over conventional simulation methods

have been discussed in detail by French et al. ().

The most popular type of ANN is the multi-layer percep-

tron (MLP) model optimized with a backpropagation (BP)

algorithm. However, a problem solved with ANNs and

other non-linear methods is that they have some limit-

ations with non-stationary data if pre-processing of the

input data is not conducted. In the last decade, wavelet

analysis has been applied in water resources engineering

and hydrology, and it has been found to be very effective

for handling non-stationary data. Wavelet transforms can

decompose the original time series, and the wavelet-trans-

formed data improve the ability of a forecasting model by

capturing useful information on various resolution levels

(Adamowski & Sun ).

The main advantages of ANN can be summarized as fol-

lows: (1) high efficiency of computation in dealing with

large quantities of data and nonlinear relationship between

parameters (especially for water quality) and data transfer
://iwaponline.com/jh/article-pdf/19/5/784/392387/jh0190784.pdf
during the calculation process, which enable its accuracy

in water quality assessment or simulation; (2) memory abil-

ity of large capacity can store large volumes of water quality

data and the corresponding relationship between inputs and

outputs, combination of high speed of computation will

inevitably enhance intelligence level of water quality assess-

ment and simulation; (3) learning ability avoids some

processes such as mechanism analysis, boundary and initial

hypothesis, parameter estimation and calibration in estab-

lishing groundwater quality simulation, only model

training is necessary to determine the input–output relation-

ship, which greatly simplifies the model setup procedure.

The main purpose of this paper is to construct the

improved Nemerow pollution index (INPI) method, MLP-

ANN and wavelet neural network (WNN) methods and

demonstrate their applicability to assess and classify the

shallow groundwater quality. Comparison among these

three methods can provide useful insights for identifying

the effectiveness of each method.
DATA AND METHODOLOGY

Groundwater quality dataset

The groundwater quality data of five boreholes were obtained

by monitoring the ion concentrations at Dongshan hydrologi-

cal station, including total dissolved solids (TDS), the total

hardness (TH), permanganate, chloride, fluoride, nitrate,

nitrite, sulfate. The monitoring period continued from 2004

to 2011, with a total of 320 samples data. Dongshan town is

a coastal island located at the most southerly point of ‘golden

delta’ of Fujian Province, lying between 117W170E–117W350 E

longitude, 23W330 N–23W470 N latitude, consisting of Dongshan

island and 44 small islands, and covers an area of about

248.34 km2 (Figure 1). The total length of coastline is around

200 km. The study area is influenced by the subtropical

marine monsoon climate. The annual average temperature is

about 20.9WC and varies between 13.1WC in January and

27.3 WC in July. Annual average rainfall is about 1,224.9 mm,

most of which occurs during May and September. A typical

feature in the study area is frequent typhoons during July and

September. Rural population accounts for approximately

80% of the total population. Due to the topography, the



Figure 1 | Outlined location map of the study area and well locations.
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water body is not well developed within Dongshan town, sur-

facewater is scarce, and groundwater has becomea dependent

source of water supply and servers in many aspects. The

selected groundwater quality data of five boreholes were

obtained by sampling the water and monitoring the ion con-

centrations with ion chromatograph in summer and post-

monsoon seasons (two times, once a year) according to the

standard methods for examination of ground water and waste-

water atDongshanhydrological station,which covers pH, TH,

TDS, Ca2þ, Mg2þ, Naþ, Cl�, SO2�
4 , HCO�

3 , NO�
3 , Mn. In this

study, the data monitored in summer were used.

The study area can be considered as an independent

hydro-geological unit due to the sea surrounding all the four

sides. Water yield property differs greatly because of lithology

and thickness of the aquifer. Groundwater type is coarse

porous water, recharged predominantly by rainfall infiltration.

The INPI method

In scientific stream pollution analysis (Nemerow ), the

Nemerow pollution index was defined based on the ratio
om http://iwaponline.com/jh/article-pdf/19/5/784/392387/jh0190784.pdf
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of the maximum concentrations of pollutant in water to

environmental standards and the measured mean value

(Chen et al. ). The index is defined as:

Pj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
max þ �F2

2

s
(1)

where Pj stands for the Nemerow index; Fmax ¼ max

{ci=sij }, i ¼ 1, 2, . . . , n, j ¼ 1, 2, . . . , m. �F ¼Pn
i¼1 ci=sij=n, sij

is the standard ion concentration, ci is the measured

ion concentration of water sample. When ci=sij > 1,

ci=sij ¼ 1þ p0lg(ci=sij) and p0 ¼ 5. Otherwise, ci=sij equals

the actual value. The parameters such as the TH, TDS, chemi-

cal oxygen demand (COD), Cl–, SO2�
4 , NO�

3 , NO�
2 , F

� are

included in the calculation. The water is distributed into

three classes according to the method used: the direct use,

the indirect use and the none-contact use. The total Nemerow

pollution index ‘P’ (P ¼ W1P1 þW2P2 þW3P3) is obtained

as a weighted average by statistical analysis.

The assessment of groundwater quality was conducted

using multivariate indexes, which gives priority to the
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extreme values and weights, as well as the usage purposes of

water. The weights are determined according to various uses

for the same water. Three essential factors, the water quality

indexes, the assessment method and the extreme values and

weights, have to be considered in the water quality assess-

ment in the Nemerow pollution index method.

The INPI ranks the groundwater quality classes in accord-

ance with the amount of pollution factors and the standard

limits of each quality grade. The improved approach not only

considers the effects of pollutants with themaximumpollution

degree, but also takes into account the influence of the most

dangerous pollution factor in water during the assessment.

In other words, the impact of the maximum weights, the

second-maximum of weights and the second-maximum of

the ratio is of great importance in the evaluation. The improved

method calculates the maximum of the ratio and weight via:

Pj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F02
max þ �F2

2

s
(2)

where F0
max is computed as F0

max ¼ (Fmax þ Fw)=2, Pj rep-

resents the INPI, Fw (considered as the ratio of the

maximum of weight) indicates the hazard caused by the

most dangerous pollution factor for water quality.

The improved formula considers the second-maximum

weight and the second-maximum ratio with:

P00
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F002
max þ �F2

2

s
(3)

P000
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0002
max þ �F2

2

s
(4)

where F00
max ¼ (Fmax þ Fw1 þ Fw2)=3, F000

max ¼ (Fmax1 þ Fmax2

þFw1 þ Fw2)=4. The improved method applies statistical

analysis with different weights for both the measured

values and the standard values in water. P00
j is the INPI

after adding the second-maximum of weights. P000
j is the

INPI after adding the second-maximum ratios. Fw1 and

Fw2 are computed as ci=sij of the maximum and second-

maximum of weights, respectively. Fmax1 and Fmax2 are

computed as ci=sij of the maximum and second-maximum

of ratios, respectively.
://iwaponline.com/jh/article-pdf/19/5/784/392387/jh0190784.pdf
The determination of weights follows the principle of

the larger risk and the greater weight. According to the stan-

dard for pollutant discharge, the following subsequence is

given: S1, S2, . . . , Si, . . . , Sn. ki is provided as the corre-

lation of the ratio, where ki ¼ Smax=Si. The weight wi is

calculated as:

wi ¼ kiPn
i¼1 ki

Xn
i¼1

wi ¼ 1

 !
(5)

In this paper, a computation between the measured con-

centrations of water samples and standard values prescribed

in groundwater quality standards (GB/T14848-93) was

firstly carried out, and then the INPI of each grade was

obtained. Lastly, the grades of water quality on the basis of

the pollution index values were evaluated.
WNN method

WNN, a newly rising mathematical analysis model which

combines the wavelet transform with the ANN, has been

applied widely in water quality assessment (Dogan et al.

; Singh et al. ; Moustris et al. ; Chu et al. ).

Wavelets are mathematical functions that give a time-scale

representation of the time series and their relationships to

analyze time series that contain non-stationarities. Wavelet

analysis allows the use of long time intervals for low fre-

quency information and shorter intervals for high frequency

information and is capable of revealing aspects of data like

trends, breakdown points, and discontinuities that other

signal analysis techniques might miss. Another advantage of

wavelet analysis is the flexible choice of the mother wavelet

according to the characteristics of the investigated time

series (Adamowski & Sun ).

A typical structureofBPneuralnetwork topology is shown

in Figure 2. It can be seen in Figure 3 thatX1,X2,…,Xk are the

input parameters, Y1, Y2,…, Ym are the predicted outputs and

ωij and ω jk are theweights of theWNN.When the input signal

sequence is xi(i ¼ 1, 2, . . . , k), the formula of the output in

hidden layer is:

h(j) ¼ hj

Pk
i¼1 ωijxi � bj

aj

 !
j ¼ 1, 2, � � � , l (6)



Figure 2 | Configuration of the BP neural network topology.
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whereh(j) is the output of jth node in thehidden layer;ωij is the

connection weight of the input and hidden layers; bj is the dis-

placement factor of hj; aj is the stretch factor of hj; and hj is the

wavelet basis function.

When the Morlet wavelet is adapted as the mother

wavelet, the mathematical equation is written as:

y ¼ cos 1:75xð Þe�x2=2:

and the output function of WNN is computed as:

y(k) ¼
Xl
i¼1

ωijh(i)k ¼ 1, 2, � � � , m (7)
Figure 3 | WNN architecture.

om http://iwaponline.com/jh/article-pdf/19/5/784/392387/jh0190784.pdf
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ωij is the weight from hidden layer to output layer; h(i) is

the output of the ith node in the hidden layer; l is the nodes

number in the hidden layer; and m is the nodes number in

the output layer.

The weights correction method of WNN is similar to the

BP neural network. By adjusting the weights and factors of

the wavelet basis in the gradient modification, the output

of WNN will approximate to the predicted output. The

modification procedure of the WNN process is summarized

as follows.

(1) Calculate the predictive error:

e ¼
Xm
k¼1

yn(k)� y(k) (8)

yn kð Þ is the predictive output; y kð Þ is the output of WNN.

(2) Adjust weights and factors of wavelet basis according

to the predictive error:

ω(iþ1)
n,k ¼ ωi

n,k þ Δω(iþ1)
n,k

a(iþ1)
k ¼ aik þ Δa(iþ1)

k

b(iþ1)
k ¼ bik þ Δb(iþ1)

k

Δω(i¼1)
n,k , Δa(i¼1)

k and Δb(i¼1)
k are calculated according to

the predictive error:

Δω(iþ1)
n,k ¼ �η

@e
@ωi

n,k

Δa(iþ1)
k ¼ �η

@e
@aik

Δb(iþ1)
k ¼ �η

@e
@bik

η is the learning rate.

A series of steps are involved in the WNN training:

1. The initialization of networks which contains the par-

ameters such as the weights, the factors of wavelet basis

and learning rate.

2. The classification of samples. The samples are grouped

into two parts: the training and the testing samples. The

training samples are used to train the network and the

testing samples are used to test the precision.

3. The prediction of WNN model. Input the trained data,

then calculate the predictive output and error.



Table 1 | Statistics summary of values of the weights of eight groundwater parameters

Groundwater parameters Grade III Weights (Wi)

TH (mg/L) �450 4.32 × 10�5

COD (mg/L) �3.0 6.49 × 10�3

TDS (mg/L) �1,000 1.95 × 10�5

Cl� (mg/L) �250 7.78 × 10�5

SO2�
4 (mg/L) �250 7.78 × 10�5

NO�
3 (mg/L) �20 9.73 × 10�4

NO�
2 (mg/L) �0.02 0.973

F� (mg/L) �1.0 0.0195

TH, Total hardness; COD, Chemical oxygen demand; TDS, Total dissolved solids.

Table 2 | Statistics summary of the improved Nemerow pollution indices in GB/T

14848-93

Groundwater
parameters Grade I Grade II Grade III Grade IV Grade V

TH (mg/L) �150 �300 �450 �550 >550
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4. The adjustment of the weights and factors of wavelet

basis according to the error.

5. The judgment on whether the algorithm ends. Otherwise,

return to step 3.

Model performance indices

Three standard statistical indices, root mean square error

(RMSE), determination coefficient (R2) and mean absolute

error (MAE) are employed to evaluate the performances of

the WNN model. RMSE evaluates the residual between the

observed and forecasting value. MAE measures the MAE

between the observed and predicted values. The closer

the R2 value is to 1, the more accurate the model is. The

nearer the RMSE and MAE values are to 0, the more

accurate the model is. The best fit between observed and

calculated values will be obtained with R2 as 1 and

RMSE as 0:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 (yo � yf)
2

N

s
(9)

R2 ¼
PN

i¼1 (yo � �yo)(yf � �yf)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 (yo � �yo)

2PN
i¼1 (yf � �yf)

2
q
�������

�������
2

(10)

MAE ¼
PN

i¼1 yo � yf
�� ��
N

(11)

where N is the total number of value, yo is the observed

value, yf is the predicted value, �yo is the average of observed

values and �yf is the average of the predicted value.
COD (mg/L) �1.0 �2.0 �3.0 �10 >10

TDS (mg/L) �300 �500 �1,000 �2,000 >2,000

Cl� (mg/L) �50 �150 �250 �350 >350

SO2�
4 (mg/L) �50 �150 �250 �350 >350

NO�
3 (mg/L) �2.0 �5.0 �20 �30 >30

NO�
2 (mg/L) �0.001 �0.01 �0.02 �0.1 >0.1

F� (mg/L) �1.0 �1.0 �1.0 �2.0 >2.0

P000
j �0.476 �0.702 �1 �3.198 >3.198

Water class Excellent Good Fair Poor Very poor

TH, Total hardness; COD, Chemical oxygen demand; TDS, Total dissolved solids; P000
j ,

Improved Nemerow pollution index.
RESULTS AND DISCUSSION

Groundwater quality assessment in INPI

In this study, the Grade III standard in the National Quality

Standard for Groundwater (GB/T 14848-93) is taken as the

assessment criterion. Equation (5) is applied to compute the

weights of each selected pollution parameter and the result

is summarized in Table 1.
://iwaponline.com/jh/article-pdf/19/5/784/392387/jh0190784.pdf
Table 2 shows the conversion of the groundwater quality

standard from the concentration to the special weights. It

can be seen from Table 2 that a water sample with P000
j less

than 0.47643 will be classed into Grade I, which is con-

sidered as clean and excellent for drinking. If the

concentrations of very few parameters exceed the limits,

those water samples are classified as Grade II. Likewise,

water samples classified as Grade III mean they are slightly

polluted with a few values exceeding the standards.

Similarly, water samples in Grade IV mean moderately

contaminated with at least two parameters exceeding the

criteria. Grade V means the water is seriously polluted as

almost all the parameters are far beyond the standard

values.



Table 3 | Statistics summary of P000
j of five wells from 2004 to 2011

Well no.

P000
j

2004 2005 2006 2007 2008 2009 2010 2011

#1 1.019 1.625 1.184 1.611 1.184 1.046 1.04812 2.338

#2 0.425 0.467 0.173 0.125 0.302 0.118 0.33455 0.383

#3 1.682 1.834 1.557 1.593 1.770 2.404 1.53089 1.581

#4 6.107 0.722 1.631 0.958 2.577 2.881 0.68956 0.559

#5 0.734 0.096 0.105 0.176 0.567 0.236 0.59233 1.333
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The calculations of P000
j are summarized in Table 3 for the

samples over 8 years. By comparing these calculations with

the standard values of P000
j , Figure 4 demonstrates the results

of water quality assessment in the INPI method. By using

this method, the water quality evaluation of five wells in

the study area 8 years in succession also analyzes the tem-

poral variation of water quality. It is shown that Wells 1–3

remain at the same water quality grade respectively over 8

years. Well 4 has a slight change of water quality showing

a better tendency year by year. Meanwhile, Well 5 has a

sharp fluctuation due to uncertain causes, such as climate,

the location of wells, human activities. Also, sampling

methods could have some impact on the evaluation which

should be taken into consideration. These factors interact

in a complex way and result in spatial and temporal vari-

ation in groundwater quality parameters. Determination of
Figure 4 | Result of groundwater quality assessment in the INPI method.

om http://iwaponline.com/jh/article-pdf/19/5/784/392387/jh0190784.pdf
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processes affecting groundwater quality in a coastal aquifer

is very complicated.
Groundwater quality assessment in MLP neural

network

The groundwater quality data from 2004 to 2009 are used

for training/calibration sets and those from 2010 to 2011

are applied as the testing set. After trials, the goal of error

learning is set as 1e-5 (Maier & Dandy ). The maximum

iteration time is set as 5,000. The step size and the learning

rate are set as 50 and 0.01. Figure 5 shows the variation of

the error in training process. After the 4998th iteration is fin-

ished and the error reaches 0.027, the training process of the

BP neural network stopped.



Figure 6 | Comparison of evaluated and actual water quality grade in BP-ANN.
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The eight indicators, TH, COD, TDS, Cl�, SO2�
4 , NO�

3 ,

NO�
2 , F

�, are selected as eight input vectors. The evaluation

grade is treated as the output vector. The structure of the BP

neural network is 8-30-1. There are 30 nodes in the hidden

layer. By using the neural network function provided by

Matlab, a three-layer BP network model is established.

Figure 6 shows the comparison of the evaluated and the

actual water quality grade in the testing process. The result

of the testing process indicates that the model had a good fit.

Groundwater quality assessment in WNN

Data processing

WNN model needs to be trained before it is used to conduct

groundwater quality assessment. The selection of the trained

samples is of great concern since it is significantly related to

the establishment of the WNN model. In this work, the

training sample is extracted from the standard data in

groundwater environmental quality standards (GB/

T14848-93). While all eight indicators are within Grade I,

it is identified as Grade I, Grade II is decided while eight

indicators are within the Grade II range, and so on. In this

study, Latin hypercube sampling (LHS) method was applied

for the data sampling. The concept of the Latin-Hypercube

simulation is based on Monte Carlo simulation but uses a

stratified sampling approach that allows efficient estimation

of the output statistics. It subdivides the distribution of each
Figure 5 | Error variation in training process within 5,000 epochs.

://iwaponline.com/jh/article-pdf/19/5/784/392387/jh0190784.pdf
parameter into N strata with a probability of occurrence

equal to 1/N. For uniform distributions, the parameter

range is subdivided into N equal intervals. Random values

of the parameters are generated such that for each of the P

parameters, each interval is sampled only once. This

approach results in N non-overlapping realizations and the

model is run N times. LHS is commonly applied in water

quality modelling due to its efficiency and robustness.

The detailed procedure is summarized as follows: 80

samples are extracted from each grade of water samples,

thus a total of 400 samples are applied to train the dataset,

and a total of 50 samples are applied to validate the data-

set. As eight indicators and one corresponding water

quality grade are involved, the sample is a nine-dimen-

sional vector. In this process, Grade I is encoded in the

dataset as real number 1; Grade II is encoded as to 2,

and so on.

Training and testing

In the training process, eight indicators are set as inputs and

the water quality grade is set as the output. Since sometimes

the output of WNN is not an integer, it means the output

of the WNN model cannot be used for the assessment

grade directly. We define water quality grade based on the

following rule: when the predicted value is less than 1.5,

the sample is identified as Grade I. When the predicted

value is greater than 1.5 and less than 2.5, the sample is



Table 4 | WNN model output and its corresponding water quality grade

Output of WNN y< 1.5 1.5� y< 2.5 2.5� y< 3.5 3.5� y< 4.5 4.5� y

Assignment of grade I II III IV V
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identified as Grade II, and the rest is done in the same

manner. Table 4 summarizes these results. Based on the

convergence of training error and the matching degree of

testing results, the nodes in the hidden layer is determined

as 23. After the 2000th iteration, the target error reaches

0.056, and the WNN training process is finished. Figure 7

illustrates the comparison between the evaluated and the

actual water quality grade. Obviously the trained WNN

model has a higher accuracy by comparing the estimated

results with the actual water quality grade. So it is feasible

to apply the WNN model for assessing water quality.
Comparative analysis of groundwater quality

assessment

To facilitate the comparative water quality assessment

results, Table 5 summarizes the assessment results for

three methods. The calculated MAE, RMSE and R2 are

0.292, 0.371, 0.989 for BP-ANN model, and those of
Figure 7 | Comparison of evaluated and actual water quality grade with WNN.
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WNN are 0.073, 0.091 and 0.996, indicating that WNN

model has a higher accuracy. Although the BP model has

a good stability shown above, the evaluating result has a

relatively large difference. According to the comparison of

two neural network methods, the WNN method has a

higher accuracy than the BP-ANN method. The BP

method requires more iteration with no guarantee of accu-

racy of the results for the same task. It reveals that the

WNN and NMR methods are both effective for water qual-

ity assessment because the result is consistent with the

actual water quality status.
CONCLUSIONS

In order to assess the groundwater quality in the coastal

aquifer, water samples collected during the summer season

were investigated in the INPI method, multiple layer percep-

tion neural network optimized with back propagation

algorithm and wavelet transform neural network. The



Table 5 | Water quality evaluation in the WNN, NMR and BP methods

Year

Water quality grade

#1 #2 #3 #4 #5

WNN NMR BP WNN NMR BP WNN NMR BP WNN NMR BP WNN NMR BP

2004 IV IV III II I III V IV III I V V II III III

2005 IV IV IV II I II IV IV III II III IV I III II

2006 IV IV V I I IV V IV V III IV IV I I II

2007 IV IV III I I II V IV IV II III III I I II

2008 IV IV III I I III V IV IV IV IV V I II IV

2009 IV IV III I I II V IV IV IV IV V I I III

2010 IV IV III I I II V IV III II II II II II IV

2011 IV IV V II I III V IV IV II II II III IV IV

NMR, The INPI method.
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INPI approach not only considers the effects of pollutants

with the maximum pollution degree, but also takes into

account the influence of the most dangerous pollution

factor including the impact of the maximum weights, the

second-maximum of weights and the second-maximum of

the ratio, which is of great importance in the evaluation.

BP-ANN and WNN both demonstrate good performance

in assessing groundwater quality, however, WNN has

higher accuracy. To protect shallow water sources from con-

tamination, further study will focus on the exploration about

what kinds of pollutants dominantly control the ground-

water quality.

Some limitations of the present methods used in this

study have to be addressed. The INPI method overesti-

mates the maximum pollution factors. The BP-ANN

method, the initial weight and learning rate of hidden

layer were artificially determined with experience, there-

fore the learning process may fall into the local minimum

in some cases. Keeping in view the seasonal changes of

groundwater chemistry, it is suggested that more water

sample data in different seasons and their repeat analysis

are required in future work.
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