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Abstract

In this study, the problem of shallow pars-

ing of Hindi-English code-mixed social me-

dia text (CSMT) has been addressed. We

have annotated the data, developed a language

identifier, a normalizer, a part-of-speech tag-

ger and a shallow parser. To the best of our

knowledge, we are the first to attempt shallow

parsing on CSMT. The pipeline developed has

been made available to the research commu-

nity with the goal of enabling better text anal-

ysis of Hindi English CSMT. The pipeline is

accessible at 1.

1 Introduction

Multilingual speakers tend to exhibit code-mixing

and code-switching in their use of language on so-

cial media platforms. Code-Mixing is the embed-

ding of linguistic units such as phrases, words or

morphemes of one language into an utterance of an-

other language whereas code-switching refers to the

co-occurrence of speech extracts belonging to two

different grammatical systems (Gumperz., 1982).

Here we use code-mixing to refer to both the sce-

narios.

Hindi-English bilingual speakers produce huge

amounts of CSMT. Vyas et al. (2014) noted that

the complexity in analyzing CSMT stems from non-

adherence to a formal grammar, spelling variations,

lack of annotated data, inherent conversational na-

ture of the text and of course, code-mixing. There-

fore, there is a need to create datasets and Natural

1http://bit.ly/csmt-parser-api

Language Processing (NLP) tools for CSMT as tra-

ditional tools are ill-equipped for it. Taking a step

in this direction, we describe the shallow parsing

pipeline built during this study.

2 Background

Bali et al. (2014) gathered data from Facebook

generated by English-Hindi bilingual users which

on analysis, showed a significant amount of code-

mixing. Barman et al. (2014) investigated lan-

guage identification at word level on Bengali-Hindi-

English CSMT. They annotated a corpus with more

than 180,000 tokens and achieved an accuracy of

95.76% using statistical models with monolingual

dictionaries.

Solorio and Liu (2008) experimented with POS

tagging for English-Spanish Code-Switched dis-

course by using pre-existing taggers for both lan-

guages and achieved an accuracy of 93.48%. How-

ever, the data used was manually transcribed and

thus lacked the problems added by CSMT. Vyas et

al. (2014) formalized the problem, reported chal-

lenges in processing Hindi-English CSMT and per-

formed initial experiments on POS tagging. Their

POS tagger accuracy fell by 14% to 65% without

using gold language labels and normalization. Thus,

language identification and normalization are criti-

cal for POS tagging (Vyas et al., 2014), which in

turn is critical further down the pipeline for shallow

parsing as evident in Table 5.

Jamatia et al. (2015) also built a POS tag-

ger for Hindi-English CSMT using Random Forests

on 2,583 utterances with gold language labels and

achieved an accuracy of 79.8%. In the monolin-
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Lang. Sentences

English 141 (16.43%)

Hindi 111 (12.94%)

Code-mixed 606 (70.63%)

Total 858

Table 1: Data distribution at sentence level.

Lang. All Sentences Only CM Sentences

Hindi 6318 (57.05%) 5352 (63.34%)

English 3015 (27.22%) 1886 (22.32%)

Rest 1742 (15.73%) 1212 (14.34%)

Total 11075 8450

Table 2: Data distribution at token level.

gual social media text context, Gimpel et al. (2011)

built a POS tagger for English tweets and achieved

an accuracy of 89.95% on 1,827 annotated tweets.

Owoputi et al. (2013) further improved this POS

tagger, increasing the accuracy to 93%.

3 Data Preparation

CSMT was obtained from social media posts from

the data shared for Subtask 1 of FIRE-2014 Shared

Task on Transliterated Search. The existing annota-

tion on the FIRE dataset was removed, posts were

broken down into sentences and 858 of those sen-

tences were randomly selected for manual annota-

tion.

Table 1 and Table 2 show the distribution of the

dataset at sentence and token level respectively. The

language of 63.33% of the tokens in code-mixed

sentences is Hindi. Based on the distribution, it is

reasonable to assume that Hindi is the matrix lan-

guage (Azuma, 1993; Myers-Scotton, 1997) in most

of the code-mixed sentences.

3.1 Dataset examples

1. hy... try fr sm gov job jiske forms niklte h...

Gloss: Hey... try for some government job

which forms give out...

Translation: Hey... try for some government

job which gives out forms...

2. To tum divya bharti mandir marriage kendra

ko donate karna

Gloss: So you divya bharti temple marriage

center to donate do

Translation: So you donate to divya bharti

temple marriage center

The dataset is comprised of sentences similar

to example 1 and 2. Example 1 shows code-

switching as the language switches from En-

glish to Hindi whereas example 2 shows code-

mixing as some English words are embedded

in a Hindi utterance. Spelling variations (sm

- some, gov - government), ambiguous

words (To - So in Hindi or To in English)

and non-adherence to a formal grammar (out

of place ellipsis - ..., no or misplaced punc-

tuation) are some of the challenges evident in

analyzing the examples above.

3.2 Annotation

Annotation was done on the following four layers:

1. Language Identification: Every word was

given a tag out of three ’en’, ’hi’ and ’rest’

to mark its language. Words that a bilingual

speaker could identify as belonging to either

Hindi or English were marked as ‘hi’ or ‘en’.

The label ‘rest’ was given to symbols, emoti-

cons, punctuation, named entities, acronyms,

foreign words and words with sub-lexical code-

mixing like chapattis (Gloss: chapatti -

bread) which is a Hindi word (chapatti) follow-

ing English morphology (plural marker -s).

2. Normalization: Words with language tag ‘hi’

in Roman script were labeled with their stan-

dard form in the native script of Hindi, De-

vanagari. Similarly, words with language tag

‘en’ were labeled with their standard spelling.

Words with language tag ‘rest’ were kept as

they are. This acted as testing data for our Nor-

malization module.

3. Parts-of-Speech (POS): Universal POS tagset

(Petrov et al., 2011) was used to label the POS

of each word as this tagset is applicable to both

English and Hindi words. Sub-lexical code-

mixed words were annotated based on their

context, since POS is a function of a word in

a given context. For example, an English verb

used as a noun in Hindi context is labeled as a

noun.
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Figure 1: Schematic Diagram of the Pipeline

4. Chunking: A chunk tag comprises of chunk la-

bel and chunk boundary. The chunk label tagset

is a coarser version of AnnCorra tagset (Bharati

et al., 2006). Unlike AnnCorra, only one tag is

used for all verb chunks in our tagset. Chunk

boundary is marked using BI notation where

‘B-’ prefix indicates beginning of a chunk and

‘I-’ prefix indicates that the word is inside a

chunk.

This whole dataset was annotated by eight Hindi-

English bilingual speakers. Two other annota-

tors reviewed and cleaned it. To measure inter-

annotator agreement, another annotator read the

guidelines and annotated 25 sentences (334 tokens)

from scratch. The inter-annotator agreement calcu-

lated using Cohen’s κ (Cohen, 1960) came out to be

0.97, 0.83 and 0.89 for language identification, POS

tagging and shallow parsing respectively.

4 Shallow Parsing Pipeline

Shallow parsing is the task of identifying and

segmenting text into syntactically correlated word

groups (Abney, 1992; Harris, 1957). Shallow pars-

ing is a viable alternative to full parsing as shown by

(Li and Roth, 2001). Our shallow parsing pipeline is

composed of four main modules, as shown in Figure

1. These modules, in the order of their usage, are

Language Identification, Normalization, POS Tag-

ger and Shallow Parser.

Our pipeline takes a raw utterance in Roman

script as input on which each module runs sequen-

tially. Twokenizer2 (Owoputi et al., 2013) which

2http://www.ark.cs.cmu.edu/TweetNLP/

Features Accuracy

BNC 61.26

+LEXNORM 71.43

+HINDI DICT 77.50

+NGRAM 93.18

+AFFIXES 93.98

Table 3: Feature Ablation for Language Identifier

performs well on Hindi-English CSMT (Jamatia et

al., 2015) was used to tokenize the utterance into

words. The Language Identification module assigns

each token a language label. Based on the language

label assigned, the Normalizer runs the Hindi nor-

malizer or the English/Rest normalizer. The POS

tagger uses the output of the normalizer to assign

each word a POS tag. Finally, the Shallow Parser

assigns a chunk label with boundary.

The functionality and performance of each mod-

ule is described in greater detail in the following

subsections.

4.1 Language Identification

While language identification at the document level

is a well-established task (McNamee, 2005), iden-

tifying language in social media posts has certain

challenges associated to it. Spelling errors, phonetic

typing, use of transliterated alphabets and abbrevi-

ations combined with code-mixing make this prob-

lem interesting. Similar to (Barman et al., 2014), we

performed two experiments treating language iden-

tification as a three class (‘hi’, ‘en’, ‘rest’) classi-

fication problem. The feature set comprised of -

BNC: normalized frequency of the word in British

National Corpus (BNC)3. LEXNORM: binary fea-

ture indicating presence of the word in the lexical

normalization dataset released by Han et al. (2011).

HINDI DICT: binary feature indicating presence

of the word in a dictionary of 30,823 transliterated

Hindi words as released by Gupta (2012). NGRAM:

word n-grams. AFFIXES: prefixes and suffixes of

the word.

Using these features and introducing a context-

window of n-words, we trained a linear SVM. In

another experiment we modeled language identifica-

tion as a sequence labeling task, where we employed

CRF into usage. The idea behind this was that

3http://www.natcorp.ox.ac.uk/
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code-mixed text has some inherent structure which

is largely dictated by the matrix language of the text.

The latter approach using CRF had a greater accu-

racy, which validated our hypothesis. The results of

this module are shown in Table 3.

4.2 Normalization

Once the language identification task was complete,

there was a need to convert the noisy non-standard

tokens (such as Hindi words inconsistently written

in many ways using the Roman script) in the text

into standard words. To fix this, a normalization

module that performs language-specific transforma-

tions, yielding the correct spelling for a given word

was built. Two language specific normalizers, one

for Hindi and other for English/Rest, had two sub-

normalizers each, as described below. Both sub-

normalizers generated normalized candidates which

were then ranked, as explained later in this subsec-

tion.

1. Noisy Channel Framework: A generative

model was trained to produce noisy (unnor-

malized) tokens from a given normalized word.

Using the model’s confidence score and the

probability of the normalized word in the

background corpus, n-best normalizations were

chosen. First, we obtained character align-

ments between noisy Hindi words in Ro-

man script (Hr) to normalized Hindi words-

format(Hw) using GIZA++ (Och and Ney,

2003) on 30,823 Hindi word pairs of the form

(Hw - Hr) (Gupta et al., 2012). Next, a CRF

classifier was trained over these alignments, en-

abling it to convert a character sequence from

Roman to Devanagari using learnt letter trans-

formations. Using this model, noisy Hr words

were created for Hw words obtained from a dic-

tionary of 1,17,789 Hindi words (Biemann et

al., 2007). Finally, using the formula below,

we computed the most probable Hw for a given

Hr.

Hw = argmaxHwi
p(Hwi

|Hr)

= argmaxHwi
p(Hr|Hwi

)p(Hwi
)

where p(Hwi
) is the probability of word Hwi

in

the background corpus.

Features Accuracy

Baseline 69.27

+LANG 70.44

+NORM 72.61

+TPOS 73.18

+HPOS, -TPOS 73.55

+COMBINED 75.07

Table 4: Feature Ablation for POS Tagger

2. SILPA Spell Checker: This subnormalizer

uses SILPA libindic spell-checker4 to compute

the top 10 normalized words for a given input

word.

The candidates obtained from these two systems

are ranked on the basis of the observed precision of

the systems. The top-k candidates from each system

are selected if they have a confidence score greater

than an empirically observed Λ. A similar approach

was used for English text normalization, using the

English normalization pairs from (Han et al., 2012)

and (Liu et al., 2012) for the noisy channel frame-

work, and Aspell5 as the spell-checker. Words with

language tag ’rest’ were left unprocessed. The ac-

curacy for the Hindi Normalizer was 78.25%, and

for the English Normalizer was 69.98%. The over-

all accuracy of this module is 74.48%; P@n (Preci-

sion@n) for n=3 is 77.51% and for n=5 is 81.76%.

4.3 Part-Of-Speech Tagging

Part-of-Speech (POS) tagging provides basic level

of syntactic analysis for a given word or sentence.

It was modeled as a sequence labeling task using

CRF. The feature set comprised of - Baseline: Word

based features - affixes, context and the word itself.

LANG: Language label of the token. NORM: Nor-

malized lexical features. TPOS: Output of Twitter

POS tagger (Owoputi et al., 2013). HPOS: Output

of IIIT’s Hindi POS tagger6. COMBINED: HPOS

for Hindi words and TPOS for English and Rest.

The results of POS Tagger are shown in Table 4.

4https://github.com/libindic/

spellchecker
5http://aspell.net/
6http://ltrc.iiit.ac.in/showfile.php?

filename=downloads/shallow_parser.php
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Features L B C

POS Tag 88.01 78.75 76.64

+POS Context [W5] 87.92 81.36 78.09

+POS LEX 88.18 81.46 78.58

+NORMLEX 88.25 82.17 78.73

Table 5: Feature Ablation for Shallow Parser

P1 P2 E

LI 93.98 93.98 NA

Norm 70.32 74.48 4.16

POS 68.25 75.07 6.82

SP

L 75.73 88.25 12.52

B 74.96 82.17 7.21

C 61.95 78.73 16.78

Table 6: Pipeline accuracy and error propagation. LI = Lan-

guage Identification, Norm = Normalizer, POS = POS Tagger,

SP = Shallow Parser, L = Label, B = Boundary, C = Combined,

P1 = Actual Pipeline, P2 = Gold Pipeline, E = Error Propagation

4.4 Shallow Parsing

A chunk comprises of two aspects - the chunk

boundary and the chunk label. Shallow Parsing was

modeled as three separate sequence labeling prob-

lems: Label, Boundary and Combined, for each

of which a CRF model was trained. The feature set

comprised of - POS: POS tag of the word. POS

Context: POS tags in the context window of length

5, i.e., the two previous tags, current tag and next

two tags. POS LEX: A special feature made up of

concatenation of POS and LEX. NORMLEX: The

word in its normalized form. The results of this

module are shown in Table 5.

5 Pipeline Results

The best performing model was selected from each

module and was used in the pipeline. Table 6 tabu-

lates the step by step accuracy of the pipeline calcu-

lated using 10 fold cross-validation.

6 Conclusion and Future Work

In this study, we have developed a system for Hindi-

English CSMT data that can identify the language of

the words, normalize them to their standard forms,

assign them their POS tag and segment them into

chunks. We have released the system.

In the future, we intend to continue creating more

annotated code-mixed social media data. We would

also like to improve upon the challenging problem

of normalization of monolingual social Hindi sen-

tences. Also, we would further extend our pipeline

and build a full parser which has aplenty applica-

tions in NLP.
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