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Shallow states at SiO2Õ4H-SiC interface on „112̄0… and „0001… faces

Hiroshi Yano,a) Tsunenobu Kimoto, and Hiroyuki Matsunami
Department of Electronic Science and Engineering, Kyoto University, Yoshidahanmachi, Sakyo,
Kyoto 606-8501, Japan

~Received 19 February 2002; accepted for publication 14 May 2002!

Shallow interface states at SiO2/4H-SiC were examined on (112̄0) and ~0001! faces using metal–

oxide–semiconductor ~MOS! capacitors. The MOS capacitors were fabricated by wet oxidation on

both faces to investigate the difference in the energy distribution of interface state density. The

parallel conductance as a function of frequency was measured at room temperature, and

high-frequency capacitance (C) –voltage (V) curves were measured both at room temperature and

100 K. By the conductance method, the interface state density on (112̄0) was revealed smaller than

on ~0001! at shallow energies, while at deeper energies the relation changes to opposite situation.

High-frequency C – V curves at 100 K show a large positive flatband voltage shift and a large

injection-type hysteresis on ~0001! samples, while those were small on (112̄0), indicating another

evidence of smaller interface state density near the conduction band edge on (112̄0). © 2002

American Institute of Physics. @DOI: 10.1063/1.1492313#

Silicon carbide ~SiC! has received much attention due to

its superior physical properties for high-power and high-

temperature devices. In addition, insulating oxide SiO2 can

be grown by thermal oxidation like for Si. Therefore, many

researchers have been trying to realize SiC metal–oxide–

semiconductor field-effect transistors ~MOSFETs! with high

performance, especially in 4H-SiC due to higher electron

mobility in the bulk. However, the SiO2/4H-SiC interface

processed by standard thermal oxidation has a high density

of interface states,1–3 resulting in poor MOSFET

performance4,5 due to a low channel mobility ~typically

,10 cm2/V s!.6–10 Almost all MOS-related researches have

been done using ~0001! face materials. We have reported that

a higher channel mobility (;100 cm2/V s) can be obtained

for 4H-SiC MOSFETs by using the (112̄0) face11–13 instead

of the conventional ~0001! face. Recently another group has

improved the channel mobility further (.110 cm2/V s) by

applying post-oxidation annealing in hydrogen or pyrogenic

steam on the (112̄0) face.14,15 We also found that the inter-

face state density was very different for the (112̄0) and

~0001! faces, from the temperature dependence of threshold

voltage of the MOSFETs.16 In this letter, we evaluate the

interface state density based on the conductance and capaci-

tance measurements of MOS capacitors at room temperature

and a low temperature for the (112̄0) and ~0001! faces, fo-

cusing on shallow interface states.

MOS capacitors were fabricated on nitrogen-doped

n-type epilayers grown by chemical vapor deposition ~CVD!

on 4H-SiC substrates with the surface orientations of (112̄0)

and ~0001!. The (112̄0) substrates were prepared by cutting

modified-Lely-grown bulk crystals parallel to the (112̄0)

face without an intentional off-angle. The ~0001! substrates

have an off-angle of 8°. The net donor concentrations of

epilayers were 231016– 231017 cm23 achieved by chang-

ing growth conditions during CVD. Prior to thermal oxida-

tion, the samples were cleaned by a standard RCA method

with a HF dip at the final step. Then, wet oxidation was

performed at 1100 °C for 50 min, resulting in oxide thick-

nesses of approximately 40–50 nm and 14 nm for (112̄0)

and ~0001! samples, respectively. For ~0001! samples, 40-

nm-thick oxides were also grown by wet oxidation at

1150 °C for 120 min. After the thermal oxidation, all

samples were subjected to post-oxidation annealing at the

oxidation temperatures for 30 min in Ar. Al was used for the

gate electrode with a diameter of 300 mm. For the backside

contact, blanket deposition of Al was done.

To obtain the interface state density (D it), the parallel

conductance (Gp) as a function of frequency was measured

at room temperature. High-frequency ~1 kHz, 1 MHz! ca-

pacitance (C) –voltage (V) characteristics were also mea-

sured at both room temperature and a low temperature ~100

K! with a bias sweep rate of 0.1 V/s. Both the conductance

and capacitance measurements were done by using a

computer-controlled HP4284A precision LCR meter in an

electrically shielded dark box.

The interface state density was extracted from a conduc-

tance method, which is considered to be the most sensitive

way to determine the interface state density. The equivalent

parallel conductance was measured at a given gate bias volt-

age, which caused a certain band bending, over a wide fre-

quency range from 1 kHz to 1 MHz. The conductance rep-

resents the loss due to capture and emission of carriers by

interface states, and the peak value of equivalent parallel

conductance divided by angular frequency ~v! is directly

connected to the interface state density as follows:17

D it5

1

qA f D
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G
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Here, A is the area of gate electrode and f D is a parameter

depending on the standard deviation of the surface potential

fluctuations (ss). Not only the interface state density but

also the capture cross section for majority carriers and infor-
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mation about surface potential fluctuations can be evaluated

by the conductance method. However, this paper focused on

the interface state density.

The measured Gp /v as a function of frequency for dif-

ferent gate biases is shown in Figs. 1~a! and 1~b! for the

(112̄0) and ~0001! faces of 4H-SiC MOS capacitors, respec-

tively. The inset figures show high-frequency C – V curves of

the corresponding MOS capacitors. Though the C – V curve

measured at 1 kHz of 4H-SiC~0001! looks close to the the-

oretical curve compared to that of 4H-SiC(112̄0), the fre-

quency dispersion between 1 kHz and 1 MHz for the ~0001!
sample is larger than that for the (112̄0) sample. This indi-

cates that the ~0001! sample has a higher density of interface

states than (112̄0). This fact is observed directly from the

peak height of Gp /v for these two samples. The peak

heights of Gp /v for the sample on the (112̄0) face are one

order of magnitude lower than that for the sample on the

~0001! face, indicating that the interface state density on

4H-SiC(112̄0) is lower than that on 4H-SiC~0001! by one

order of magnitude. Using the manner given as a simple

calculation method,18 values of ss ~in thermal units of kT/q!
and 1/f D were extracted to be 3.5 and 6.3 for (112̄0), and

3.7 and 6.8 for ~0001!, respectively.

The interface state density for these samples are shown

in Fig. 2, in which the energy position is plotted from the

valence band edge. In Fig. 2, the results obtained from 6H-

SiC MOS capacitors fabricated in the same manner as 4H-

SiC are also shown. The properties of 6H-SiC MOS capaci-

tors on (112̄0) and ~0001! indicate the similar tendency to a

previous report,19 in which the samples were oxidized in wet

O2 and their interface state densities were measured by the

conductance method at 310 °C. 4H- and 6H-SiC have the

same energy for the valence band edge, which is 6.0 eV

below the conduction band edge of SiO2 .20,21 The distribu-

tion of interface state density for 4H- and 6H-SiC can be

plotted on the same curve, and this can be applied even in the

different surface orientations. Therefore, the larger band gap

FIG. 2. Interface state density (D it) of 4H-SiC MOS capacitors processed

by wet oxidation calculated by conductance method. Energy position of D it

is plotted from the valence band edge. The data of 6H-SiC on (112̄0) and

~0001! are also plotted.

FIG. 3. High-frequency ~1 MHz! C – V characteristics of n-type 4H-SiC

MOS capacitors on ~a! (112̄0) and ~b! ~0001! faces measured at 300 K and

100 K. Injection-type hysteresis is observed.

FIG. 1. Gp /v as a function of frequency for n-type 4H-SiC MOS capacitors

with wet oxides on ~a! (112̄0) and ~b! ~0001! faces. Insets show high-

frequency C – V curves for the corresponding MOS capacitors.
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polytype of 4H-SiC has a higher interface state density near

the conduction band edge. The increase of the interface state

density is emphasized on the ~0001! face, resulting in a quite

high density of states at the SiO2/4H-SiC(0001) interface

near the conduction band edge, even if a low interface state

density is obtained at deeper energies. On the (112̄0) face,

however, the increase of interface state density is slow,

which leads a lower density of states at the

SiO2/4H-SiC(112̄0) interface near the conduction band

edge. For this reason, less electron trapping at the interface

occurs in the inversion condition of MOSFETs, and a higher

channel mobility can be obtained on the (112̄0) face.

Another way to characterize the shallow interface states

is to measure high-frequency C – V curves at low

temperatures.22,23 At low temperatures, the emission time of

electrons trapped at interface states becomes long, and then

the interface states at shallow energy affect C – V curves.

Because of this, relatively shallow interface states bring a

large positive shift in C – V curves due to the existence of

negative charges caused by electrons trapped at the interface.

In addition, electrons trapped at quite shallow interface states

are emitted gradually during the voltage sweep of C – V

curves, leading a large injection-type hysteresis. At room

temperature, such shallow states do not contribute to both the

flatband voltage shift and hysteresis, because the emission

time of electrons becomes short.

Figures 3~a! and 3~b! show C – V curves at 1 MHz for

4H-SiC MOS capacitors on (112̄0) and ~0001!, respectively,

measured at 300 K and 100 K. Both samples have a similar

oxide thickness of 40 nm grown in wet O2 at different oxi-

dation temperatures and different oxidation times. At 300 K,

the flatband voltage shift on (112̄0) is 2.6 V, which is the

difference between the theoretical curve and the measured

curve from accumulation to depletion direction. The value is

larger than on ~0001! ~1.2 V! due to a higher interface state

density at deeper energies for (112̄0) as shown in Fig. 2.

Electrons trapped at the deeper energies work as negative

charges, which brings the large positive flatband shift. The

effective negative oxide charge densities extracted from the

flatband voltage shift are 1.331012 cm22 for (112̄0) and

6.531011 cm22 for ~0001!. At a low temperature of 100 K,

however, a larger flatband voltage shift is observed on ~0001!
than on (112̄0). The flatband voltage shifts and the effective

oxide charge densities measured at 100 K are 4.9 V and

2.431012 cm22 for (112̄0) and 8.0 V and 4.331012 cm22

for ~0001!, respectively. As for a hysteresis, the different as-

pect between (112̄0) and ~0001! clearly appeared as in Fig.

3. On (112̄0), a hysteresis of 0.4 V is observed at 300 K,

and it increases to 0.9 V at 100 K. The increase of hysteresis

from 300 K to 100 K corresponds to an emitted electron

density of 2.631011 cm22. On the other hand, while the

hysteresis on ~0001! is small ~0.1 V! at 300 K, it drastically

increases to 2.4 V. The increase of hysteresis on ~0001! is the

result from the electron emission of 1.231012 cm22 in den-

sity. These results indicate another evidence that the interface

state density on 4H-SiC~0001! increases significantly toward

the conduction band edge22,23 and that on 4H-SiC(112̄0)

gradually increases as shown in Fig. 2.

In summary, the interface states near the conduction

band edge at SiO2/4H-SiC on the (112̄0) and ~0001! faces

oxidized in wet O2 ambient were characterized by a conduc-

tance method at 300 K and high-frequency C – V measure-

ments at 300 and 100 K. The (112̄0) MOS capacitors

showed a smaller interface state density near the conduction

band edge than the ~0001! MOS capacitors determined by

the conductance method. The C – V measurements at 100 K

revealed a small increase in the flatband voltage shift and

hysteresis on (112̄0) and a large increase on ~0001!, by

which the analysis using the conductance method was con-

firmed separately. The smaller interface state density at shal-

low energies on (112̄0) should give favorable influence to

4H-SiC MOSFETs for obtaining a higher channel mobility.
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