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A novel denoising method for removing mixed noise from locust slice images is proposed by means of Shannon-cosine wavelet
and the nonlinear variational model for the image processing.+is method includes two parts that are the sparse representation of
the slice images and the novel numerical algorithm for solving the variation model on image denoising based on the sparse
representation. In the first part, a parametric Shannon-cosine wavelet function is introduced to construct the multiscale wavelet
transform matrix, which is applied to represent the slice images sparsely by adjusting the parameters adaptively based on the
texture of the locust slice images. By multiplying the matrix with the signal, the multiscale wavelet transform coefficients of the
signal can be obtained at one time, which can be used to identify the salt-and-pepper noises in the slice images. +is ensures that
the salt-and-pepper noise points are kept away from the sparse representation of the slice images. In the second part, a
semianalytical method on solving the system of the nonlinear differential equations is constructed based on the sparse rep-
resentation of the slice images, which is named the sparse wavelet precise integration method (SWPIM). Substituting the sparse
representation of the slice images into the Perona–Malik model which is the famous edge-preserving smoothing model for
removing the Gaussian noises of the biomedical images, a system of nonlinear differential equations is obtained, whose scale is far
smaller than the one obtained by the difference method. +e numerical experiments show that both the values of SSIM and PSNR
of the denoised locust slice images are better than the classical methods besides the algorithm efficiency.

1. Introduction

+e main purpose of locust microscopy experiments is to
reveal the working mechanism of locust reproduction and
pesticide extermination by studying the structure of locust
cells and their neural tissues [1]. In addition, it is helpful for
the research and development of biological pesticides and
reduces the use of chemical pesticides [2]. Locust slice
images are quite complex such as textures, edges, and
structures, and slice tissue structures cannot be acquired
repeatedly [3]. +e locust slice images have the character-
istics of biomedical image segmentation smoothing [4]. +e
salt-and-pepper noise and Gaussian noise can not only
significantly deteriorate the quality of locust slice images but
also bring some difficulty to the subsequent image analysis
such as image segmentation, edge detection, and

classification. How to effectively remove salt-and-pepper
noise and Gaussian noise in locust slice images has been an
important research topic in the field of image processing.

During the past several decades, many techniques have
been developed to restore the corrupted image, but research
on locust slice images is lacking. Most traditional filtering
methods are designed for a certain type of noise, and the
effect of removing salt-and-pepper and Gaussian mixed
noises is not ideal. Among the traditional denoising
methods, the standard median filter [5] is one of the most
popular nonlinear filters for the removal of salt-and-pepper
noise in terms of its good denoising capability and com-
putational efficiency, but high noise density will lead to
unsatisfactory denoising results with serious loss of image
details. Wiener filtering [6] is a popular type of Gaussian
noise removing technique with good denoising
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performance. However, it cannot remove the salt-and-
pepper noise well due to a larger mean square error with the
original image. Mean filtering [7] is not very effective in
removing salt-and-pepper noise, and its application range is
limited. Gaussian filtering [8] will damage the edge infor-
mation of the image when denoising, and the denoising
performance is poor. During the denoising process, the
wavelet transform [9] is prone to oscillation, and the edge
and texture details cannot be well preserved. Although the
above algorithm can achieve good results when removing
the special noise, it is not suitable for mixed noise to meet
some situations.+e detection and nonlocal mean denoising
method based on robust singularity rate proposed in [10]
had a large time complexity in the block search stage. In [11],
combined adaptive median filtering (AMF) with improved
sparse representation to remove mixed noise is presented. It
uses the AMF to remove salt-and-pepper noise and then
removes Gaussian noise by means of improved K-singular
value decomposition (K-SVD) dictionary learning method
and backtracking-based adaptive orthogonal matching
pursuit (BAOMP) sparse coding method. In [12], the new
mixed noise removal scheme is based on a weighted aver-
aging of pixels contained in a filtering block. +e main
advantage of the proposed scheme is that the new similarity
measure is not influenced by the outliers injected into the
image by the impulsive noise, and the averaging process
ensures the effectiveness of the new filter in the reduction of
Gaussian noise. +e anisotropic dynamic diffusion model
proposed in [13] could not only effectively remove noise but
also retain more texture details. Generally speaking, the P-M
model is a nonlinear PDE that can identify textures and edge
regions. After the denoising process, the texture and edges
can be effectively retained to achieve the effect of edge
preservation.

Image denoising is an extensively studied problem in the
image processing community and continues to attract re-
searchers who aim to perform better restoration in the
presence of noise. Both of the Gaussian and salt-and-pepper
noises are the common types of noises. Locust slice images
are easy to be corrupted by salt-and-pepper noise due to bit
errors in the process of image acquisition and transmission.
+e locust slice images may also be corrupted by Gaussian
noise because the transmittance of different particles to light
is Gaussian distribution. In this paper, the problem of image
denoising with mixed noise is considered, in which the
image is contaminated by both Gaussian noise and salt-and-
pepper noise. However, the variation method cannot ef-
fectively remove salt-and-pepper noise, and all other existed
filtering algorithms are all most with the limitations. So, a
novel denoising method for removing mixed noise from
locust slice images is proposed by means of Shannon-cosine
wavelet and the nonlinear variational model for the image
processing. +is method includes two parts that are the
sparse representation of the slice images and the novel
numerical algorithm for solving the variation model on
image denoising based on the sparse representation. In order
to accurately recognize Gaussian noise and image contour of
the image, a method is designed to calculate the adaptive
selection parameter using image contrast. With this new

image removing method, the mixed noise of locust slice
images can be processed precisely and efficiency.

2. Sparse Representation of the Slice Images

In the recent decades, many wavelets which have compact
support, smoothness, and other properties have been con-
structed. Cattani studied the properties of the Shannon
wavelet function, which possesses many advantages such as
orthogonality, continuity, and differentiability [14, 15]. A
perceived disadvantage of the Shannon scaling function is
that it tends to zero quite slowly as |x|⟶∞ [16]. Shan-
non–Gabor wavelet constructed by Aldroubi et al. [17, 18] is
a Shannon wavelet with Gauss window, which is being called
quasiwavelet with limited use. Recently, the Shannon-cosine
wavelet [19] was proposed with the characteristic of compact
support, which inherits all the excellent characteristics of the
Shannon wavelet and the normalized characteristics of the
Shannon function. Furthermore, Shannon-cosine wavelet
has been used to solve the fractional calculus problems in the
recent years [20]. +erefore, Shannon-cosine wavelet is
employed to construct the multiscale interpolator operator
in our research, which can be expressed as follows:
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πx
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where RN(x) is the matrix pulse function on [−N/2, N/2]
and N is a constant associated with the support interval.
χ(x) denotes the Heaviside function. +e pulse function not
only gives the Shannon-cosine scale function tight support
but also has no longer the continuity of x � ±N/2 at the
endpoints. At the same time, the normalized property at the
endpoint can be satisfied by selecting the parameters ai(i �
0, 1, · · · , m) and N [21]. So, the Shannon-cosine wavelet is
more suitable to locust slice images with excellent properties
such as small support interval, compact support, and
normalization.

2.1. Construction Schemes of Multiscale Interpolation
Operators. Let φ(x) be the scale basis function of the in-
terpolation function, and the interpolation operator is de-
fined as follows:
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Ijf � ∑2
j

k�0

f xjk( )φjk, xjk � k2
− j. (3)

For function f(x) ∈ L2(0, 1), large enough J is found to
make fJ(x) ∈ VJ to approximate f(x). Let the coefficients
of wavelet function and scale function be αj,k and βj0 ,k,
respectively, then

fJ(x) � ∑2
j0

k�0

βj0 ,kφj0 ,k(x) + ∑
J−1

j�j0

∑2j−1
k�0

αj,kψj,k(x), (4)

where βj0 ,k � f(xj0 ,k) and xj0 ,k is the characteristic point of
the wavelet on the j0 − th layer. And the wavelet coefficient
αj,k is defined as follows:

αj,k � f yj,k( ) − Qjf yj,k( ), (5)

where yj,k � xj+1,2k+1 and Qj represents the wavelet inter-
polation operator of the j0 − th layer. +e calculation for-
mula of the interpolated wavelet coefficients can be obtained
by combining the above two formulas:

αj,k � f yj,k( ) − ∑2j0
k0�0

f xj0 ,k0( )φj0 ,k0 yj,k( )
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j1�j0
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(6)

+e wavelet transform coefficient has an intuitive geo-
metric meaning, which is the error between the interpolation
result and the exact result at the same collocation point. It
reflects the local regularity of the approximated function. By
multiplying the matrix with the signal, the multiscale wavelet
transform coefficients of the signal can be obtained at one
time, which can be used to identify the salt-and-pepper noises
in the slice images. +en, after multiscale interpolation
wavelet reconstruction, salt-and-pepper noise is effectively
removed. According to the interpolation wavelet transform
theory [22], the wavelet coefficients can be written as
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where w
j(m,n)
k1 ,k2

(x, y) denotes the multiscale wavelet function
and the corresponding mth and nth derivatives with respect

to x and y, respectively. (x
j
k1
, y

j
k2
) is the position of the pixel

after the discrete, and Ij denotes the multilevel interpolation
operator, where j and J are constants, which denote the
wavelet scale number and the maximum of the scale
number, respectively. +e similar method can be used to
obtain wavelet transform coefficients α2j,k1 ,k2 and α

3
j,k1 ,k2

at the
points (x

j
k1
, y

j
k2
).

After wavelet transform, the useful signals in the image
are mainly retained in the small wavelet coefficients.
However, the signals energy of salt-and-pepper noise mainly
exists in the large wavelet coefficients. So, signals between
the different size thresholds are preserved by choosing the
appropriate threshold. +en, the salt-and-pepper noise can
be effectively removed. +e description of image detail
feature pixels at different scales can be achieved by setting
wavelet coefficient thresholds at different scales, which is

αij,k1 ,k2

∣∣∣∣∣ ∣∣∣∣∣<A1/2j ε, i � 1, 2, 3, (8)

where ε is the wavelet threshold at j � 0 and Aj is the scaling
parameter, which is usually taken as 1/2j. During the iter-
ative process in solving the nonlinear PDEs by means of the
wavelet numerical method, most of the discrete points in
which the wavelet transform coefficients are smaller than the
threshold epsilon can be neglected, and this is helpful for
improving the efficiency of the algorithm.

In order to obtain the multilevel interpolation operator,
it is necessary to express the wavelet coefficients as a
weighted sum of u in all of the coefficient points in the
J-level. So, the constraint operator R

j,J
k,n is introduced. It can

be seen from the meaning represented by interpolating
wavelet operator. All the wavelet characteristic points on the
j-layer can get the approximation function on the j-layer by
interpolating the wavelet operator. +e expression is as
follows:

fJ(x) � ∑2
J

n�0

QJ(x)f xJ,n( ). (9)

+e interpolation wavelet operator is as follows:

QJ � ∑2
j0

k�0

R
j0,J

k,n φj0,k(x) + ∑
J−1

j�j0

∑2j−1
k�0

C
j,J
k,nψj.k(x), (10)

where C
j,J
k,n � R

j+1,J
2k+1,n −∑2j0k0�0 Rj0,Jk0 ,n

ϕj0 ,k0(xj+1,2k+1) −∑j−1j1�j0∑2j1−1k1�0
C
j1,J

k1 ,n
ψj1 ,k1(xj+1,2k+1).

2.2. Texture Features and Collocation Points. +e locust
microslice image is the one that possesses some properties
such as texture, smooth area, and boundary, and its structure
is relatively complicated, as shown in Figure 1.

+e block inside the number 1 rectangular box repre-
sents the image texture.+e number 2 is a smooth area of the
locust image, and the number 3 is the image edge. Noise is
mostly distributed in high-frequency information. But edges
and texture details are also high-frequency information. So,
the edge structure and texture information will be removed
at the same time of denoising. +e collocation points are
image characteristic description operator based onmultiscale
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space. Shannon-cosine wavelet is applied to represent the slice
images sparsely by adjusting the parameters adaptively based
on the texture of the locust slice images. For contours with large
gradient changes, more characteristic points are retained.
However, in the detail texture of the image with small gradient
change, the retained characteristic points are decreased;
thereby, the denoising accuracy of the locust slice images is
improved. Multiscale refinement can highlight the features of
detail information in the image [23].+e collocation points for
the locust slice image is obtained by the sparse interpolation
operator, as shown in Figure 2.

Multiscale interpolation wavelet can be widely used in the
field of image processing. +e purpose of constructing the
multilevel wavelet collocation method is to decrease the
amount of the collocation points and then improve the effi-
ciency of the algorithm. It can be seen from Figure 2 that the
collocation points are adaptively collocationed by sparse in-
terpolation wavelet, sparsely extracting points in smooth areas
and densely extracting points in detailed texture areas.
According to statistics, the total number of pixels in locust slice
is 90000, and the number of adaptive collocation points is
12319. Obviously, the computation complexity is decreased
greatly compared with processing all pixels. With the image
represented sparsely, the collocation points are far less during
image processing to save space and improve efficiency.

2.3. Sparse Representation and Noise Restoration.
Multiscale interpolation operators are used to process the
internal structure of the images. As shown in Figure 3(b),
salt-and-pepper noises with a density of 0.03 dB are added.
+e denoising results of the sparse interpolation are shown
in Figure 3(c). It can be seen from Figure 3 that the sparse
representation wavelet can identify and remove salt-and-
pepper noise through multiscale wavelet transform coeffi-
cients. +e collocation points are adaptively captured by
sparse interpolation wavelets, as shown in Figure 3(d). +e
total number of pixels in this image is 90000, and the number
of adaptive collocation points is 13764. +e efficiency is
about 85% higher than the original efficiency. So, the
multiscale interpolation wavelet can not only sparsely
represent the image by the texture of the image but also

identify and remove the salt-and-pepper noise of high-
frequency information.

+e noise points usually distribute in high-frequency in-
formation, while effective information distributes in low-fre-
quency information. +erefore, the noise point can be
separated from the information point by setting threshold.+e
denoising effect of the image is affected by setting the size and
number of thresholds. +e wavelet transform coefficients are
smaller than the threshold epsilon that can be neglected. In this
paper, two thresholds are set to help improve the efficiency of
the algorithm.With the increasing number of iterations, part of
the texture at the edge of the images are treated as noise points,
which decreases denoising performance. +e effect of the
proposed algorithm to remove salt-and-pepper noise is shown
in Figure 4. +e result shows that the number of iterations
should not be too large when removing salt-and-pepper noise.

3. Sparse Wavelet Precise Integration
Method (SWPIM)

3.1. DenoisingModel and ProblemAnalysis of Nonlinear PDE.
Perona–Malik adopted different diffusion speeds in the
interior and edge of the feature area to achieve the effect of
protecting the image boundary [24]. Perona–Malik edge-
preserving smoothing model is defined as follows:

zu(x, y, t)

u(x, y, 0)
� div(c(|∇u|)∇u),

u(x, y, 0) � f(x, y),


(11)

where (x, y) denotes the pixel point position and f(x, y)
denotes the image to process. t is the time parameter.
u(x, y, t) denotes the image after processing, and u(x, y, 0)
denotes the initial value. div is the diffusion operator. ∇
denotes the gradient of the image, and c(|∇u|) represents the
diffusion coefficient. By substituting equations (10) and (11)
into equation (12), the nonlinear PDE can be discretized into
nonlinear ordinary differential equations. +e ordinary
differential equations are solved by precise integration. +e
discrete form of PM denoising equation is defined as follows:
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Figure 2: Sparse dot of locust slice image.

1

2

3

Figure 1: Locust microslice image.
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zu(x, y, t)
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zy

≈ 1

(Δx)2
c x +
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, y, t( )(u(x, y, t) − u(x − Δx, y, t))[ ]
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2
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Figure 4: Increase in the number of iterations: (a) original image; (b) images with salt-and-pepper noise; (c) image with 1 iteration; (d)
image with 2 iterations; (e) image with 3 iterations; (f ) image with 4 iterations.
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Figure 3: Sparse interpolation operator denoising: (a) original image; (b) images with salt-and-pepper; (c) sparse interpolation wavelet; (d)
collocation points.
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Let the right side of formula (13) be noted as φ. +en,
formula (13) can be written as follows:

u(x, y, t + Δt) ≈ u(x, y, t) + Δtφ. (13)

Substituting the sparse representation of the slice images
into the Perona–Malik model which is the famous edge-
preserving smoothing model for removing the Gaussian
noises of the biomedical images, a system of nonlinear
differential equations is obtained. A semianalytical method
on solving the system of the nonlinear differential equations
is constructed based on the sparse representation of the slice
images, which is named SWPIM. With the application of
PDE in image processing, the wavelet precise integration
method has also been widely used in image processing
[25–27]. +e essence of precise integration method is the
solution of matrix, which is simple and has high calculation
accuracy. As the calculation process is almost unlimited by
the time step, the calculation efficiency is greatly improved.
Perona–Malik introduced the following two diffusion co-
efficients within the model studied [28, 29]:

c(|∇u|) � 1

1 +(∇u/k)2
,

or c(|∇u|) � exp −
∇u
k

( )2[ ],
(14)

where k is used to control the degree of diffusion. With the
increasing number of iterations, the gradient value of the
image is smaller and smaller relative to k. In order to ensure
the relative proportion between ∇u and k to prevent the
edges of the image from being smoothed, it is unreasonable
for k to be set as a constant. In the PM model, the image
contour and noise are identified by the parameter k. In order
to accurately recognize Gaussian noise and image contour of
the image, a method of adaptively selecting the parameter k
is proposed in this paper. Linear relationship between image
contrast and k value is expressed with the following formula:

k � ax + b, (15)

where x denotes the contrast of the image and the a and b are
constants.

+e position of the PMmodel with a larger image gradient
value is regarded as the image contour. When the diffusion
coefficient decreases, the smoothing speed of the diffusion
equation at the image contour will become slower. Since the
difference value at the noise is smaller than the difference value
at the contour, the attenuation speed will increase. +at is, for
the same number of iterations, the edge will be protected by
PDE, and the salt-and-pepper noise will not be filtered out.
+ere are many ways to solve partial differential equations, and
the most typical method is the difference method [30]. +is
method uses the flat function to describe image, approximately
the surface function. But, it is easy to cause artifacts phe-
nomenon, affecting the accuracy of image denoising. Wavelet
function has both smooth and compactly supported charac-
teristics. Besides, performance of multiscale analysis can be
used to construct themultiscale adaptive interpolation operator
for solving nonlinear partial differential equations [31].

3.2. Determination of Parameter k. As we all know, human
vision is very sensitive to the contour and texture of the
object. In the process of denoising, the edge texture of the
images is usually treated as noise points, which makes the
images blurred. So, it is necessary to effectively identify the
boundary information by adjusting k so that the boundary
parts are not treated as noise points. +e determination of k
value is closely related to the image contrast. +e en-
hancement of image contrast will increase the gradient value
of the contour pixels of the object in the image.k for
identifying contours and noise thresholds should also be
adjusted accordingly. Based on this, a method for adaptively
calculating the parameter k is designed in this paper. +e
contrast of the locust slice images is calculated to determine
the boundary texture of the image. At the same time, the
Gaussian noise can be removed well by adaptively adjusting
the k value. For the locust slice images, the relationship
formula between k value and image contrast constructed in
this paper is defined as follows:

40, xmn ≤ 100,

k � −
7

30
xmn +

190

3
, 100<xmn < 250,

5, xmn ≥ 250,


(16)

where xmn denotes image contrast. Image contrast means
difference of brightness in the image or the magnitude of
gray contrast of the image [32]. +e larger the range of
difference, the greater the contrast. On the contrary, the
smaller the difference range, the smaller the contrast. Early
image contrast algorithms only considered image en-
hancement, not the measurement of image contrast. In this
paper, this factor can be taken into account by using a
contour detection operator in a window of appropriate size.
Specifically, with the current pixel (m, n) as the center, the
number of pixels in the window should be odd rows and odd
columns. +e window should be large enough to ensure that
noise is filtered out. At the same time, the window should be
small enough to ensure that the visible details in the image
can be preserved. +en, the boundary value Δij of each pixel
(i, j) is calculated in each windowWmn. +e boundary value
is used to determine whether it is a weight of the boundary
value. If the boundary value is 0, it cannot be determined as a
boundary. If the boundary value is equal to 1 (after nor-
malization), the pixel must be a point on the boundary.
Laplacian operator and Sobel operator can be used to cal-
culate the boundary value Δij. +ese operators are not
sensitive to noise compared with other operators. In this
paper, the Laplacian operator is used to calculate the
boundary weight Δij:

Δij � Xij −X
∣∣∣∣∣ ∣∣∣∣∣, (17)

whereX denotes the average gray value of eight neighboring
pixels of pixel (i, j). And Xi,j is set to the gray value at pixel
(i, j). In each windowWmn, the average boundary gray value
Emn (that is, the average gray value of the point at the target
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boundary) is calculated. +e gray value of the target
boundary can be obtained by calculating the weighted av-
erage of the gray value of the pixel. +e definition of the
average gray value of the boundary is defined as follows:

Emn �
∑(i,j)∈Wmn

Δij•Xij( )
∑(i,j)∈Wmn

Δij( ) . (18)

In this paper, a large windowWmn is used to ensure that
these operators are not sensitive to noise.+e image contrast
xmn at the center pixel (m, n) of the window is

xmn �
Xmn − Emn
∣∣∣∣ ∣∣∣∣
Xmn + Emn
∣∣∣∣ ∣∣∣∣. (19)

Figure 5 shows locust slice images with different con-
trasts. Figure 6 shows that Gaussian noise with a standard
deviation of 0.002 is added to the locust slice image with
different contrasts. Figure 7 shows that the locust slice
images with Gaussian noise are denoised by the proposed
algorithm. Table 1 shows the k, PSNR, and SSIM values
corresponding to the optimal denoising effect of locust slice
images with different contrasts. From Figures 5–7 and Ta-
ble 1, it can be seen that the corresponding k values in the
denoising process are different for locust slice images with
different contrasts. And the effect of using the proposed
algorithm for processing is also different.+e image contrast
is linearly correlated with the adaptive k value within a
certain range. +e experimental results show that the
boundary information can be effectively identified by the
adaptive k value so that the boundary part is not treated as a
noise point. It provides convenience for subsequent
denoising work and makes the image denoising effect more
significant.

3.3. Sparse InterpolationWavelet Precise Integration Method.
A novel denoising method for removing mixed noise from
locust slice images is proposed by means of Shannon-cosine
wavelet and the nonlinear partial differential equation
variational model for the image processing. +is method
includes two parts that are the sparse representation of the
slice images and the novel numerical algorithm for solving
the variation model on image denoising based on the sparse
representation. In the first part, a parametric Shannon-co-
sine wavelet function is introduced to construct the mul-
tiscale wavelet transform matrix, which is applied to
represent the slice images sparsely by adjusting the pa-
rameters adaptively based on the texture of the locust slice
images. By multiplying the matrix with the signal, the
multiscale wavelet transform coefficients of the signal can be
obtained at one time, which can be used to identify the salt-
and-pepper noises in the slice images. +is ensures that the
salt-and-pepper noises points are kept away from the sparse
representation of the slice images. In the second part, a
semianalytical method on solving the system of the non-
linear differential equations is constructed based on the
sparse representation of the slice images, which is named
SWPIM. Substituting the sparse representation of the slice
images into the Perona–Malik model which is the famous

edge-preserving smoothing model for removing the
Gaussian noises of the biomedical images, a system of
nonlinear differential equations is obtained, whose scale is
far smaller than one obtained by the difference method.
Figure 8 is the flow chart of the proposed algorithm.

4. Application of Coupling Algorithm in
Biological Slice Images

According to the effect of noise on the image, the noise is
divided into two categories: additive noise andmultiplicative
noise. +is paper focuses on additive noise, and the mixed
noise is considered to denoise. +e mixed noise includes
both Gaussian noise and salt-and-pepper noise. In order to
verify the denoising performance of the proposed algorithm
on locust slice images, the problem of image denoising with
single noise (Gaussian noise or salt-and-pepper noise) is also
considered. +en, these noise test images are restored by the
proposed algorithm. +e mathematical model of the noise
image is as follows:

y(x) � y0(x) + v(x), x ∈ Ω, (20)

where y0(x) is the original image and y(x) is the image with
noise v(x). v(x) is the mixed noise. x is the set of pixels. +e
density of salt-and-pepper noise pixels in the image is
denoted by sp, while the standard deviation of the Gaussian
noise is denoted by σ.

+is article uses Matlab for simulation experiments. In
order to demonstrate the effectiveness of the proposed al-
gorithm, it is compared with the representative denoising
methods. Locust slice images with different image charac-
teristics are used as test images. In order to evaluate the
performance, the denoising algorithm of this paper and
other denoising algorithms are compared in terms of ob-
jective indicators and visual effects.

4.1. Evaluation and Analysis of Objective Indicators

4.1.1. Image Quality Evaluation Standard. +e performance
of image restoration results is quantitatively evaluated by
two measures, PSNR (peak signal-to-noise ratio) and SSIM
(structural similarity index).+e higher the value of PSNR is,
the better the quality of the restored image is. PSNR can be
expressed as

PSNR � 10log10
2552

MSE
( ),

MSE �
1

MN
∑M
i�1

∑N
j�1

[S(i, j) − Ŝ(i, j)]2,

(21)

where S(i, j) and Ŝ(i, j) denote the original pixel and the
restored pixel, respectively. M and N are the sizes of an
image for the width and the height, respectively. +e MSE
denotes the mean square error between the original noise-
free image and the restored image. +e SSIM denotes the
structural similarity between the original noise-free image
and the restored image which is given by
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SSIM �
2μxμy + c1( ) 2σxy + c2( )

μ2x + μ
2
y + c1( ) σ2x + σ2y + c2( ), (22)

where μx and μy are the means of the input image and the
restored image, respectively. σxy is the covariance of the
input image and the restored image. σ2x and σ

2
y are the

variances of the input image and the restored image, re-
spectively. c1 and c2 are the constants, which can be cal-
culated according to the paper. +e higher value of SSIM
means that the structures in the restored image can be
preserved more completely.

4.1.2. Objective Evaluation of Image Denoising Performance
Contaminated by Salt-and-Pepper Noise. In the first set of
experiments, the problem of image denoising is considered
with salt-and-pepper noise. +e image in Figure 1 is used as
the test image. It is added to the salt-and-pepper noise with
different degrees: the density of salt-and-pepper noise varies
with 0.01, 0.02, 0.03, 0.04, and 0.05. +e proposed algorithm
is compared with representative denoising methods in-
cluding the improved median filtering (IMED), mean fil-
tering (MEA), Wiener filtering (WI), wavelet transform
(WA), improved nonlocal mean filtering (INLM), bilateral
filtering (BI), median and Wiener combination (MWI),

(a) (b) (c) (d) (e) (f ) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p)

Figure 5: Original image with different image contrasts: (a) xmn � 100.84; (b) xmn � 120.87; (c) xmn � 132.05; (d) xmn � 140.77; (e)
xmn � 158.51; (f ) xmn � 166.86; (g) xmn � 176.79; (h) xmn � 188.30; (i) xmn � 200.37; (j) xmn � 210.01; (k) xmn � 213.34; (l) xmn � 222.19;
(m) xmn � 226.18; (n) xmn � 238.59; (o) xmn � 241.13; (p) xmn � 244.45.

(a) (b) (c) (d) (e) (f ) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p)

Figure 6: Images with different contrasts after adding the same standard deviation of Gaussian noise.
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median and wavelet combination (MWA), and median and
Gauss combination (MG).+e quantitative indicators PSNR
and SSIM data are shown in Tables 2 and 3, respectively.
Table 2 presents the performance comparisons for the dif-
ferent denoising algorithms in terms of PSNR value. Table 3
presents the performance comparisons for the different
denoising algorithms in terms of SSIM value.

As shown in Figure 9, the changes in the PSNR and SSIM
evaluation indicators in Tables 2 and 3 are vividly and in-
tuitively reflected through line charts. Figure 9 shows how
PSNR and SSIM varies for the denoised images as the salt-
and-pepper noise sp varies from 0 to 0.05. It can be seen that,
in the case of low noise corruption (sp less than 0.03), all the
denoising algorithms can perform well.

It can be seen from Tables 2 and 3 that the proposed
algorithm shows a good ability to deal with salt-and-pepper
noise. +e PSNR of the image restoration results do not

decrease significantly. With the increase in salt-and-pepper
noise from 0.01 dB to 0.03 dB, the PSNR value of the pro-
posed denoising algorithm has always been the largest, and
the maximum value is 29.1610 dB. +e proposed algorithm
reveals the superior denoising performance to the median
filtering. +e SSIM value of the proposed algorithm is also
the largest. +e similarity of the image processed using the
proposed algorithm to the original image reaches 0.9612. It
means that the proposed algorithm has a stronger capability
than other compared denoising algorithm for preserving
image structures. As to the cases of heavy noise corruptions
(noise density higher than 0.03), although the proposed
algorithm’s recovery results are not as good as the median
filtering, the PSNR values are larger than other algorithms.
Hence, Tables 2 and 3 indicate that the proposed denoising
algorithm is able to more effectively remove salt-and-pepper
noise than other compared denoising algorithm.

4.1.3. Objective Evaluation of Image Denoising Performance
Contaminated by Gaussian Noise. In the second set of ex-
periments, the problem of image denoising with Gaussian
noise is considered. +e image in Figure 10(a) is used as the
test image. It is added to the Gaussian noise with different
degrees: the standard deviation of Gaussian noise varies with
0.001, 0.002, 0.003, 0.004, and 0.005.+e proposed algorithm
is compared with representative denoising methods in-
cluding the improved median filtering (IMED), mean fil-
tering (MEA), Wiener filtering (WI), wavelet transform
(WA), bilateral filtering (BI), improved nonlocal mean fil-
tering (INLM), and median and Wiener combination
(MWI).+e quantitative indicators PSNR and SSIM data are
shown in Tables 4 and 5, respectively. Table 4 presents the
performance comparisons for the different denoising al-
gorithms in terms of PSNR value. Table 5 presents the
performance comparisons for the different denoising al-
gorithms in terms of SSIM value.

(a) (b) (c) (d) (e) (f ) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p)

Figure 7: Images after denoising with different contrasts.

Table 1: k value corresponding to different image contrasts and
denoising effect.

Image number Contrast PSNR SSIM k

1 100.84 24.628 0.781 38
2 120.87 31.804 0.821 35
3 132.05 23.874 0.780 31
4 140.78 28.086 0.814 31.3
5 158.51 17.740 0.769 30
6 166.86 21.543 0.780 28.2
7 176.79 25.404 0.795 24
8 188.30 30.450 0.827 19.7
9 200.38 27.114 0.816 15
10 210.02 28.019 0.781 12.3
11 213.34 28.759 0.798 12.3
12 222.19 27.731 0.782 11.4
13 226.18 26.939 0.813 10
14 238.59 31.225 0.852 7
15 241.13 27.972 0.823 5
16 244.46 25.242 0.799 5

Mathematical Problems in Engineering 9



In order to intuitively reflect the changes in the PSNR
and SSIM evaluation indicators in Tables 4 and 5, data
comparison line charts are given as shown in Figure 11. It
shows how PSNR and SSIM varies for the denoised images as
the Gaussian noise σ varies from 0.001 to 0.005.

+e higher the value of PSNR is, the better the quality of
the restored image is. It can be seen from Table 4 and
Figure 11(a) that the proposed algorithm usually obtains the

largest PSNR value, and the maximum value is 31.9292 dB.
In the same noise corruption, the proposed algorithm can
perform better than other algorithms. In the case of low
noise corruption (σ less than 0.005), all of the difference
values between the proposed algorithm and the WI are
greater than 1 dB and those between the proposed algorithm
and the IMED are greater than 2 dB. At the same time, the
PSNR value of INLM restoration image is about 3 dB higher

Reading locust slice images

Add mixed noise and grayscale

Construct multiscale interpolation
operator

Sparse representation
Identify and remove

salt-and-pepper noise

Spatial sparse wavelet
approximation scheme

Nonlinear PDE

Fine integration technology

Output denoising images

First
restoration stage

Second
restoration stage

Figure 8: Flow chart of Shannon-cosine wavelet fine integration denoising algorithm.

Table 2: Comparison with other salt-and-pepper noise removal methods, showing PSNR values for varying amounts of salt-and-pepper
noise.

sp (dB) IMED MEA WI WA BI INLM MWI MWA MG Proposed

0.01 26.8004 24.397 24.270 24.650 23.868 24.5128 25.592 24.164 23.729 29.161

0.02 26.6843 23.839 22.117 22.829 21.236 21.6082 25.526 24.135 23.446 27.563

0.03 26.4995 23.320 20.738 21.485 19.397 19.7028 25.414 23.839 23.129 26.592

0.04 25.4453 22.921 20.043 20.673 18.437 18.531 25.383 23.837 22.840 25.417
0.05 26.2909 22.463 19.367 19.965 17.405 17.6494 25.288 23.602 22.655 25.316

Table 3: Comparison with other salt-and-pepper noise removal methods, showing SSIM values for varying amounts of salt-and-pepper
noise.

sp (dB) IMED MEA WI WA BI INLM MWI MWA MG Proposed

0.01 0.879 0.779 0.784 0.775 0.781 0.8565 0.837 0.779 0.770 0.961

0.02 0.877 0.738 0.697 0.700 0.679 0.7514 0.836 0.778 0.738 0.940

0.03 0.874 0.701 0.628 0.631 0.594 0.6626 0.833 0.767 0.716 0.920

0.04 0.873 0.675 0.592 0.593 0.540 0.5928 0.833 0.767 0.690 0.898

0.05 0.870 0.641 0.543 0.542 0.478 0.5405 0.831 0.757 0.672 0.892
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than that of the proposed algorithm. From the quantitative
comparison as shown in Table 5 and Figure 11(b), we can see
that the SSIM of our image recovery results is always the
highest in Gaussian low-noise environment, and the max-
imum value is 0.8966. As to the cases of heavy noise cor-
ruptions, the SSIM value of INLM restored image is about
0.2 higher than that of the proposed algorithm. So, in
Gaussian noise environments, the proposed algorithm re-
veals the superior denoising performance than the other
algorithms. In other words, the structures in the restoration
results of the proposed algorithm can be preserved more
completely than other algorithms. +e proposed algorithm
can achieve the larger values of PSNR and SSIM than other
algorithms, which can indicate that the proposed algorithm
performs better than the other algorithms in image
denoising and detail preservation.

4.1.4. Objective Evaluation of Image Denoising Performance
Contaminated by Mixed Noise. In the third set of experi-
ments, image denoising with mixed noise is considered,
which includes Gaussian noise and salt-and-pepper noise.
Further quantitative results for the all algorithms are ob-
tained using input images generated by adding salt-and-
pepper noise with different levels (sp� 0.01, 0.02, 0.03)
mixed with Gaussian noise with different levels (σ � 0.001,
0.002, 0.003, 0.004, 0.005). +e locust slice image in
Figure 12(a) is used as the test image. +e proposed algo-
rithm is compared with representative denoising methods
including the improved median filtering (IMED), mean
filtering (MEA), Wiener filtering (WI), wavelet transform
(WA), bilateral filtering (BI), improved nonlocal mean

filtering (INLM), median and Wiener combination (MWI),
and median and wavelet combination (MWA). Tables 6 and
7 present the quantitative comparisons for the various al-
gorithms in terms of the PSNR value and the SSIM value,
respectively.

In order to visually illustrate performance, Figure 13
shows the trends of PSNR evaluation indicators for different
mixed noise intensities. Figure 13(a) shows how PSNR of
denoised images varies as the standard deviation of the
Gaussian noise σ varies from 0.001 to 0.005 with a fixed salt-
and-pepper noise density sp� 0.01. Figure 13(b) shows how
PSNR varies for the denoised images as the sp varies from 0
to 0.03 with fixed Gaussian noise σ � 0.001.

From Figure 13(b) and Table 7, we can see that the ability
of the proposed algorithm is better to process salt-and-
pepper noise. In low salt-and-pepper noise environments, as
the standard deviation of Gaussian noise increases from
0.001 to 0.005, the proposed algorithm is superior to other
algorithms. And compared to other algorithms, the pro-
posed algorithm can obtain the higher value of PSNR in the
cases of various noise densities. +e difference between
PSNR value of MWI restored image and SSIM value of MEA
is about 1 dB. +e IMED and proposed algorithm denoising
performance are almost similar. It can be seen from Table 7
that the SSIM values of the restoration results of the MEA,
WI, and BI are significantly less than the MWI, IMED,
INLM, and the proposed algorithm under the case of various
noise densities. Compared with other algorithms, this
proposed algorithm can achieve larger PSNR and SSIM
values in a low noise densities environment. +e proposed
algorithm reveals the superior denoising performance than
the IMED, MEA, INLM, and MWI. It means that the
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Figure 9: Variation in (a) PSNR and (b) SSIM with varying amounts of salt-and-pepper noise.
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Table 4: Comparison with other Gaussian noise removal methods, showing PSNR values for varying amounts of Gaussian noise.

σ (dB) IMED MEA WI WA BI INLM MWI Proposed

0.001 29.018 27.350 30.366 28.794 27.372 30.7461 27.557 31.929

0.002 28.598 27.259 29.767 28.035 27.514 29.6031 27.309 31.193

0.003 28.284 27.180 29.305 27.643 27.194 27.7093 27.129 30.614

0.004 27.993 27.083 28.910 27.375 26.985 26.3833 26.965 30.051

0.005 27.715 26.983 28.592 27.167 25.218 25.2624 26.800 29.538

Table 5: Comparison with other Gaussian noise removal methods, showing SSIM values for varying amounts of Gaussian noise.

σ (dB) IMED MEA WI WA BI INLM MWI Proposed

0.001 0.814 0.775 0.839 0.806 0.867 0.8341 0.762 0.897

0.002 0.793 0.768 0.824 0.779 0.853 0.8054 0.752 0.870

0.003 0.779 0.763 0.811 0.763 0.830 0.7614 0.745 0.849

0.004 0.766 0.757 0.801 0.750 0.755 0.7074 0.739 0.826

0.005 0.753 0.751 0.791 0.741 0.731 0.6322 0.732 0.806

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 10: Restoration results of various algorithms for the locust slice image with Gaussian noise: (a) original image; (b) noise corrupted
image; (c) IMED; (d) MEA; (e) WI; (f ) WA; (g) INLM; (h) BI; (i) MWI; (j) proposed algorithm.
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proposed algorithm has a stronger capability than other
compared denoising algorithms for preserving image
structures. Hence, Tables 6 and 7 and Figure 13 indicate that
the proposed denoising algorithm is able to more effectively
remove mixed noise than other compared denoising algo-
rithms. +e ability to remove the mixed noise of the locust
slice image from the objective effect is very good. And the
structures in the restoration results of the proposed algo-
rithm can be preserved more completely than other algo-
rithms. +e proposed algorithm provides important features
for identifying targets in locust bioslice images.

4.2. Visual Evaluation of Denoising Performance. Due to the
large number of test images, partial noise recovery results are
used to evaluate visual effects in each set of experiments.
Figure 14 shows the recovery results of various denoising
algorithms in the first set of experiments. And the test
images are corrupted by salt-and-pepper noise with 0.01
noise density. +e original images in these experiments are
shown in Figure 1. It can be found that the WI, BI, and
INLM fail to restore the noise corrupted image. MEA, WA,
and MG suffer from a great quantity of blurred effects for
edges and details. MWI suffers from an excessive smoothing
effect for restored image. IMED and proposed algorithm can
efficiently remove the noise and be free from the blurred
effect in the restored images. But the proposed algorithm has
no blurred effect in the restored image. So, the proposed
algorithm achieves the better visual effect than other
denoising algorithms. +e proposed algorithm can retain
more texture details than the other compared algorithms,
especially for the marked area.

Figure 10 shows the recovery results of various denoising
algorithms in the second set of experiments. And the test
image is corrupted by Gaussian noise with 0.001 noise
density. +e original image in this experiment is shown in
Figure 10(a). Although other algorithms can remove the
Gaussian noise from the corrupted images, they still suffer
from the blurred effect for the edges and details in the re-
stored images. MEA has a certain effect of removing
Gaussian noise, but it makes the image blurred. +e INLM
and BI can not only filter the Gaussian noise well but also
protect the edge information of the image to the greatest
extent and achieve better filtering effect. However, the
proposed algorithm can retain more texture details than the
INLM and BI, especially for the marked area. And, the
proposed algorithm has a higher image clarity after
restoration.

Figure 12 shows the recovery results of various denoising
algorithms in the third set of experiments. And the test
image is corrupted by salt-and-pepper noise with a noise
intensity of 0.01 and Gaussian noise with standard deviation
of 0.002. Original image in this experiment is shown in
Figure 12(a). It can be seen from the figure that MEA, WI,
WA, and BI are well restored by single noise corruption.
+ese algorithms suffer from blurring effect in the restored
image. And there are still some noise points after filtering.
+e BI can restore image edges and details from the noise
corrupted image, and plenty of residual noise still exists in
the restored images. +e INLM has a certain effect of re-
moving noise and can retain the edge details of the image to
the greatest extent. However, the filtered image appears
blurred and has some noise points. Although MWI can
remove the mixed noise from the corrupted images, they still
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Figure 11: Variation in (a) PSNR and (b) SSIM with varying amounts of Gaussian noise.
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(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k)

Figure 12: Restoration results of various algorithms for the locust slice image with salt-and-pepper and Gaussian noises: (a) original image;
(b) noise corrupted image; (c) IMED; (d) MEA; (e) WI; (f ) WA; (g) BI; (h) INLM; (i) MWI; (j) MWA; (k) proposed algorithm.

Table 6: Comparison with other mixed noise removal methods, showing PSNR values for varying amounts of salt-and-pepper and Gaussian
noises.

sp (dB) σ MEA WI WA BI IMED INLM MWI WAA Proposed

0.01
0.001 24.231 24.082 23.408 23.708 26.300 24.571 25.300 22.763 27.291

0.002 24.083 23.823 22.923 23.382 25.842 23.2302 25.055 22.337 26.690

0.003 23.938 23.745 22.610 23.352 25.466 22.019 24.839 22.065 26.039

0.02
0.001 23.781 22.237 22.725 21.319 25.862 22.2007 25.223 22.686 26.157

0.002 23.518 21.899 22.311 20.945 25.682 20.9751 24.968 22.248 25.821

0.003 23.464 21.927 22.180 20.929 25.362 19.8587 24.765 22.002 25.387

0.03
0.001 23.238 20.868 21.966 19.561 25.537 21.1365 25.163 22.597 25.703

0.002 23.211 21.013 21.919 19.724 25.262 19.9516 24.947 22.215 25.319

0.003 23.054 20.995 21.796 19.699 25.094 18.9311 24.728 21.952 24.731
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Table 7: Comparison with other mixed noise removal methods, showing SSIM values for varying amounts of salt-and-pepper and Gaussian
noises.

sp (dB) σ MEA WI WA BI IMED INLM MWI WAA Proposed

0.01
0.001 0.764 0.768 0.714 0.781 0.836 0.8134 0.817 0.710 0.857

0.002 0.750 0.750 0.691 0.766 0.808 0.7332 0.803 0.687 0.818

0.003 0.739 0.741 0.674 0.763 0.779 0.6516 0.788 0.668 0.784

0.02
0.001 0.729 0.689 0.668 0.680 0.804 0.7847 0.815 0.707 0.823

0.002 0.709 0.668 0.641 0.665 0.801 0.6899 0.700 0.681 0.810

0.003 0.704 0.663 0.640 0.660 0.776 0.5957 0.786 0.665 0.793

0.03
0.001 0.691 0.621 0.616 0.592 0.783 0.7675 0.815 0.704 0.799

0.002 0.687 0.622 0.614 0.602 0.758 0.6621 0.799 0.680 0.764

0.003 0.676 0.615 0.608 0.595 0.724 0.566 0.786 0.663 0.740
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Figure 13: Variation in PSNR with varying amounts of salt-and-pepper noise and Gaussian noises: (a) sp� 0.01, σ varying from 0.001 to
0.005; (b) σ � 0.001, sp varying from 0.01 to 0.03.
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Figure 14: Continued.
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suffer from the blurred effect for the edges and details in the
restored images. +e proposed algorithm can efficiently
remove the noise and be free from the blurred effect in the
restored images. Besides, the proposed algorithm achieves
the better visual effect than other algorithms because they
can preserve more edges and contain less noise in the
restoration images. +erefore, the above restoration results
clearly indicate that the proposed algorithm obtains the best
visual effect in terms of noise suppression and detail pres-
ervation, especially for the marked area.

5. Conclusions

Shannon-cosine wavelet precise integration method is a
new image denoising method based on Shannon-cosine
wavelet and the nonlinear PDE variational model, which
was used to construct adaptive wavelet interpolation
operator due to multiscale characteristics of wavelet
transform. +e adaptive interpolation operator in the
Shannon-cosine wavelet precision integration method can
reduce the amount of the collocation points and improve
the calculation efficiency. +e efficiency is about 86%
higher than the original efficiency. Multiscale wavelet
transform coefficients are used to identify and remove
salt-and-pepper noise in slice images. +e proposed al-
gorithm shows superior denoising performance to rep-
resentative denoising algorithms.

+e method makes full use of the multiscale charac-
teristics and the high precise performance of precise in-
tegration method. Based on the edge retention smoothing
model, SWPIM is used to remove Gaussian noise in
biomedical images.+e precise integration method is used

to calculate the nonlinear ordinary differential equations,
which improves the accuracy of the calculation. Com-
pared to the other methods of image denoising, object
boundary of locust slice images obtained by SWPIM
denoising method is clear. With the increase in noise, the
proposed algorithm can achieve the larger values of PSNR
and SSIM than other algorithms. Experimental results
show that the proposed calculation method of adaptive
selection parameter k can accurately identify Gaussian
noise and image contours in the image. SWPIM method is
very suitable for measurement of image denoising, such as
locust slice images.

Data Availability

+e locust slice data used to support the findings of this
study have been deposited in the Locusts-slice-data repos-
itory (https://github.com/feifei123feifei/Locusts-slicedata.
git). All data generated or analyzed during this study are
included in these files.
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Figure 14: Restoration results of various algorithms for the locust slice image with salt-and-pepper noise: (a) original image; (b) noise
corrupted image; (c) IMED; (d) MEA; (e) WI; (f ) WA; (g) BI; (h) INLM; (i) MWI; (j) MWA; (k) MG; (l) proposed algorithm.
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