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Abstract— The problem considered here is that of wireless
information and power transfer across a noisy coupled-inductor
circuit, which is a frequency-selective channel with additive
white Gaussian noise. The optimal tradeoff between the achiev-
able rate and the power transferred is characterized given the
total power available. The practical utility of such systems is
also discussed.

I. INTRODUCTION

Ignoring the practical motivations for a moment, consider
a hypothetical meeting of Claude Shannon and Nikola Tesla.
They are both looking at the circuit in Fig. 1. While Tesla
designed it to deliver power wirelessly to the load, Shannon
wants to use it to send information.

Tesla observes the relation between the total available
power P avail and the delivered power P del across frequency.
Noticing that the the efficiency function, η(f) = Pdel(f)

Pavail(f)
has a peak (see Fig. 2) at frequency of fpeak (≈ 5 MHz for
the choice of circuit parameters in Fig. 2), Tesla wants to
use just the one sinusoid at the max-efficiency fequency as
the input (see Appendix I for detailed calculations).
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Fig. 1. A wireless power-transfer circuit. The coupled inductors can
transmit power at short distances. M denotes the mutual inductance that
decreases with distance.

This would not work for Shannon, since a sinusoid
of fixed frequency has zero-bandwidth, and therefore zero
communication rate. Shannon looks at the noisy output
yo(t) = yl(t) + z(t) (where z(t) is additive white Gaussian
noise of intensity N0) and views the circuit as a frequency-
selective channel1, with the fading parameter h(f) satisfying

1It is not clear to us if laws of thermodynamics allow us to observe and
extract power simultaneously from the same signal. For this paper, we ignore
this subtle issue and assume that there is no loss in power on observing the
signal.

10
0

10
2

10
4

10
6

10
8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Freq (Hz), log−scale

E
ff
ic

ie
n
c
y
  
 η

(f
)

Tesla−strategy : 
a single sinusoid

10
0

10
2

10
4

10
6

10
8

0

1

2

3

4

5

6

7

8

9

10

frequency (Hz) in log−scale

N
(f

)/
η

(f
) Shannon strategy : waterfilling

Fig. 2. The top plot shows the behavior of η(f) with f . A peak is observed
at the max-efficiency frequency fpeak ≈ 5 MHz for L1 = L2 = 0.1mH,
M = 0.03mH, rs = 100Ω, rl = 10kΩ, cl = 10pF. The Tesla-
strategy (for maximum power efficiency) is to send a sinusoid at the max-
efficiency frequency. The Shannon-strategy (for maximum communication
rate), illustrated in bottom plot, is a waterfilling allocation, followed by
random-Gaussian-coding. N(f) = 1 for all f .

|h(f)|2 = η(f). Therefore, Shannon wants to use the
“waterfilling” allocation [1, Ch. 8] of Fig. 2.

This paper could simply be a fanciful investigation about
how Shannon and Tesla would have arrived at a compromise.
However, it has a much more practical interpretation as well.
The coupled-inductor circuit shown in Fig. 1 is also the most
common implementation of wireless power-transfer used,
for example in many medical implants (e.g. the cochlear
implant) [2, Ch. 16], futuristic wireless memories, electronic



toothbrushes [3], and even Tesla’s famous Wardenclyff tower.
Most such applications require, or can be enhanced, by
simultaneous data-transfer as well. An understanding of
the tradeoff between information and power transfer may
therefore find utility in all these applications.

There is reason why many current implementations do
not use the same link for information and power transfer.
Sarpeshkar notes in his recent book [2], “. . . power efficiency
is maximized for narrowband links that operate at low fre-
quencies,” whereas “data signals . . . require larger link band-
widths, which are more easily obtained at higher operating
frequencies.” A separate coil for data transfer may therefore
appear to be a good strategy. However, provisioning for an
additional communication channel may be unnecessary2, or
even unwise because the infrastructure for this extra channel
occupies chip-area and also consumes power. Further, recent
progress in wireless power transfer for medical implants by
Poon et al [6] shows that the optimal transmit frequency for
human body is several hundreds of megahertz, increasing
the available bandwidth significantly (though the motivation
in [6] is reduction in the antenna size).

Even without taking the results of [6] into account,
consider the current implementation of cochlear implants:
even at small distances of a few millimeters (the coils are
separated merely by the skin), the available (3-dB) bandwidth
is on the order of a few MHz. The required data rate is about
1 Mbps, or smaller. Our example circuit (though for much
lower frequencies and bandwidth, see Fig. 3) suggests that
with less than 2% loss in power efficiency, communication
rates of about half the waterfilling capacity can be attained in
some cases. The power link may well suffice for transferring
information as well.

But cochlear implants require very small data rates as
compared to wireless memories. At the same time (as noted
in [2, Fig. 16.7]), the bandwidth of a coupled-inductor
circuit increases rapidly with the gap between the two coils.
Therefore, while the required data rates will be much larger
for wireless memories, so will be the available bandwidth.
We believe that a deeper investigation is required to conclude
if a separate data transfer link is required in all coupled-
inductor-based implementations.

The organization of this paper is as follows. In Section III,
an optimal tradeoff between the rate of information transfer
R and the received power P del is provided for a discrete
version of the problem. A heuristic argument carries over
the results to the continuous case in Section IV.

In the information-theoretic literature, the problem of
simultaneous information and power transmission was first
considered by Varshney [7], where using a general “capacity-
energy function,” tradeoffs between capacity and power
delivered were characterized for some discrete channels,
and an AWGN channel with an amplitude constraint on
the input. Without fading in the average power-constrained
AWGN case, the two goals of maximum rate and maximum
efficiency of power transfer are aligned, and there is no non-

2In distributed control systems, the same observation is made in [4], [5].

trivial tradeoff. The coupled-inductor circuit problem posed
here is a special case of an AWGN channel with frequency-
selective fading. In that respect, the contribution of this paper
is to show that an AWGN channel with frequency-selective
fading has nontrivial tradeoffs between the information and
power transfer.

A related problem was considered by Gastpar [8], where
received power constraints are imposed on devices so that
the interference they cause is limited. While in Gastpar’s
case there is a limit on how large the received power can
be (i.e. the power is constrained from above), here there is
a required received power that is constrained from below.

While this paper is the first to consider the problem of
information and power transfer on a coupled-inductor circuit,
the techniques developed here can be applied more generally
to any system with wireless power transfer over a slow
frequency-selective fading channel.

II. PROBLEM STATEMENT

The power at the transmitter side (the left hand side of
the coupled inductors in Fig. 1) is consumed at the source
resistance rs. At the receiver side (the right hand side in
Fig. 1), it is consumed at the load resistance rl. Power
consumed by a resistance r is given by I2r where I is the
root mean square (rms) amplitude of the current [9, Ch. 10].

We first describe a discrete approximation to the continu-
ous frequency problem. In the following, vectors are denoted
in bold font, with a superscript to denote their size. For
example, Xn is a vector of length n.

A. Discrete frequency bands

The observed output Yn
o for the discrete problem is

Yo,i = hi
√
rlIs,i + Zi for i = {1, 2, . . . , n}, (1)

where Is,i is the (root mean square) amplitude of the input
current in the i-th band, hi is the transfer function of the
current in the i-th band, so that the load current through
resistance rl is given by Il,i = hiIs,i. The voltage Yl,i across
the load is observed after addition of a white Gaussian noise
Zi ∼ N (0, N) is iid across i and independent of the input
Is,i. The circuit parameters, and hence the hi’s, are known
at the transmitter and the receiver.

The average power consumed at the input side in the i-th
band is given by Ps,i = E

[
|Is,i|2

]
rs, where the expectation

is over the messages (and the common randomness between
the encoder and the decoder, if any). Similarly, the power
consumed at the load resistance in i-th band is given by
Pl,i = E

[
|Il,i|2rl

]
= E

[
|Is,i|2

]
|hi|2rl. Define

Pi := E
[
|Is,i|2

]
(rs + |hi|2rl) (2)

as the power consumed at the transmitting end in the i-th
band (note that power delivered to the load is also provided
by the transmitter). The total power is bounded by P avail,
that is,

n∑
i=1

Pi ≤ P avail. (3)



At the same time, the total power delivered is required to be

P del, i.e.
n∑
i=1

E
[
|Is,i|2

]
|hi|2rl ≥ P del. Thus, the constraint

on the receiver side is
n∑
i=1

|hi|2rlPi
rs + |hi|2rl

≥ P del. (4)

Define the efficiency of the power transfer in band i as

ηi =
|hi|2rl

rs + |hi|2rl
. (5)

The objective is to convey a message M ∈ {1, 2, . . . , 2nR}
to the receiver with error probability Pe = Pr(M̂ 6= M) < ε.
In the usual capacity formulation, we want to understand
what is the maximum rate R for reliable communication
(ε→ 0) under the power constraints (3) and (4).

B. Continuous frequency bands

The continuous frequency band problem is defined analo-
gously. The total power in frequency f is given by P (f) =
E
[
|Is(f)|2

]
(rs + |H(f)|2rl), where Is(·) is power spectral

density of the source current is(·). The constraints are given
by ∫

f

P (f)df ≤ P avail, (6)

and ∫
f

η(f)P (f)df ≥ P del. (7)

The efficiency function η(f) is defined as follows

η(f) =
|H(f)|2rl

rs + |H(f)|2rl
. (8)

For rigorous definition of capacity of a continuous-time
channel such as this, we refer the reader to [1, Ch. 8].

III. SOLUTION TO THE DISCRETE VERSION

The maximum rate across the channel without the con-
straint on the power delivered is given by the waterfilling
solution [10, Pg. 252]. Denote the power delivered by the
waterfilling solution by P delwater. A system operating on
the optimal

(
P del, C(P avail, P del)

)
-tradeoff curve for fixed

P avail would therefore deliver power that is lower bounded
by P delwater.

The following theorem provides the characterization of ca-
pacity C(P avail, P del) as a function of the power constraints
P avail and P del.

Theorem 1: For the problem described in Section II-A,
define λwater as the solution to the following

n∑
i=1

(
log2 (e)
λwater

− N

ηi

)+

= P avail, (9)

and let P delwater =
∑n
i=1

(
log2(e)
λwater

− N
ηi

)+

. Then for P del ≥
P delwater, the optimal power allocation that attains the
maximum rate for P ≥ P delwater is given by P ∗i :=

(
log2(e)
λ∗−ηiµ∗

− N
ηi

)+

, where λ∗ and µ∗ satisfy the following
two conditions

n∑
i=1

(
log2 (e)
λ∗ − ηiµ∗

− N

ηi

)+

= P avail, (10)

and
n∑
i=1

ηi

(
log2 (e)
λ∗ − ηiµ∗

− N

ηi

)+

= P del. (11)

For any P del ≤ P delwater, the optimal power allocation is
attained at µ = 0 and λ = λwater, and the delivered power
is still P delwater.

The optimal power allocation attains the following maxi-
mum rate C(P avail, P del))

C(P avail, P del) =
n∑
i=1

log2

(
1 +

ηiP
∗
i

N

)
. (12)

Further, µ∗ lies in the interval
(
0, λ

ηmax
− log2(e)

N+ηmaxPavail

)
where ηmax = maxi ηi.

Proof: See Appendix II.
The parameter λwater corresponds to the Lagrange multiplier
value that solves the waterfilling problem, i.e. the problem
of maximizing rate without any constraint of the power
delivered.

IV. SOLUTION TO THE CONTINUOUS VERSION

When only the transmit power is constrained, the water-
filling solution extends naturally to the continuous case, as
shown by Gallager [1, Ch. 8]. However, his rigorous deriva-
tion is long and tedious, and to provide insights he himself
provides a heuristic argument to complement his rigorous
proofs. Gallager starts by considering signals that are limited
in time-duration by T . The problem is then discretized by
decomposing the input and output waveforms into different
orthogonal bases. In a manner that is reminiscent of discrete-
time problems, he then lets T →∞ to obtain (heuristically)
the capacity region. However [1, Pg. 387], the noises on
the parallel channels are correlated. Even though asymptotic
pairwise independence of noises is plausible in the limit of
T →∞, existence of mutual independence is unclear. In [1,
Sec. 8.4, 8.5], Gallager uses a different technique to obtain
a rigorous proof. Here we present a heuristic derivation
(similar to that of waterfilling problem in [11, Pg. 184-185])
which can be made rigorous using Gallager’s techniques.

Theorem 2: For the problem described in Section II-B,
define λwater to be the solution to the following∫

f

(
log2 (e)
λwater

− N0

η(f)

)+

df = P avail, (13)

and let P delwater =
∫
f

(
log2(e)
λwater

− N
η(f)

)+

df . Then for P del ≥
P delwater, the optimal power allocation that attains the max-
imum rate for P ≥ P delwater is given by P ∗(f) =



(
log2(e)

λ∗−η(f)µ∗ −
N
η(f)

)+

, where λ∗ and µ∗ satisfy the follow-
ing two conditions∫

f

(
log2 (e)

λ∗ − η(f)µ∗
− N

η(f)

)+

df = P avail, (14)

and ∫
f

η(f)
(

log2 (e)
λ∗ − η(f)µ∗

− N

η(f)

)+

df = P del. (15)

For any P del ≤ P delwater, the optimal power allocation is
attained at µ = 0 and λ = λwater, and the delivered power
is still P delwater.

The optimal power allocation attains the following maxi-
mum rate C(P avail, P del))

C(P avail, P del) =
∫
f

log2

(
1 +

η(f)P ∗(f)
N0

)
df. (16)

Proof: See Appendix III.
The resulting tradeoff is plotted in Fig. 3 for a set of
parameter values.
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APPENDIX I
CALCULATION OF THE POWER EFFICIENCY FUNCTION

η(f)
For reproducibility of our results, we include an analysis

of the efficiency function η(f) for the circuit shown in Fig. 1.
Writing the equation on the right and side of the circuit.

L2
di2(t)
dt

+M
dis(t)
dt

+ il(t)rl = 0. (17)

Taking a Fourier transform,

jωL2I2(jω) + jωMIs(jω) + Il(jω)rl = 0. (18)

Further,

Il(jω) =
I2(jω) 1

jωcl

rl + 1
jωcl

=
I2(jω)

1 + jωrlcl
. (19)

Algebraic manipulations of (18) and (19) yields

Il(jω)
Is(jω)

=
jωM

jωL2(1 + jωrlcl) + rl
. (20)

Power consumed at the load is
∫
ω
|Il(jω)|2rldω, and that

consumed at the source resistance rs is
∫
ω
|Is(jω)|2rsdω.

Thus,

η(ω) =
|Il(jω)|2rl

|Il(jω)|2rl + |Is(jω)|2rs
(21)

Finally, η(f) = η
(
ω
2π

)
yields the efficiency function. We

note here that η(f) can be larger than 0.5. Also, the condition
for maximizing η(f) is not the same as “impedance match-
ing,” which is optimal when the objective is to maximize
P del with no constraint on P avail.
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Fig. 3. Tradeoff between capacity and received power P del for a set of
parameter values for Pavail = 100 W. The maximum efficiency of 0.989
(corresponding to P del = 98.9 W) is obtained at zero-capacity. The plot
on the bottom shows the optimal power allocation at three points on the
plot at the top. For each point, the lower curve is the power allocation, and
the upper curve is the sum of power in the band and the ratio N(f)

η(f)
. The

power allocation becomes narrower, approaching the Tesla-strategy, as P del
increases to the maximum value of 98.9. We note that circuit parameters
here are different from those in Fig. 2.

APPENDIX II
TRADEOFF BETWEEN INFORMATION RATE AND POWER IN

THE DISCRETE CASE

For notational convenience, we use the notation Xi :=
Is,irl. We first bound the mutual information across the
channel.

I(Xn;Yn) = h(Yn)− h(Yn|Xn)
= h(Yn)− h(Zn)

≤
n∑
i=1

h(Yi)− h(Zi)

≤
n∑
i=1

log2

(
1 +
|hi|2rlE

[
|Is,i|2

]
N

)
.



Using (2),

I(Xn;Yn) ≤
n∑
i=1

log2

(
1 +

|hi|2rlPi
(rs + |hi|2rl)N

)
.

With the constraints (3) and (4), the capacity is upper
bounded by

C(P avail, P del)

≤ max
p(Xn) s.t.

nP
i=1

Pi ≤ Pavail,

nP
i=1

|hi|
2rlPi

rs+|hi|2rl
≥ Pdel

n∑
i=1

log2

(
1 +

|hi|2rlPi
(rs + |hi|2rl)N

)

= max
P1, . . . , Pn s.t.
nP

i=1
Pi ≤ Pavail,

nP
i=1

|hi|
2rlPi

rs+|hi|2rl
≥ Pdel

n∑
i=1

log2

(
1 +

|hi|2rlPi
(rs + |hi|2rl)N

)
.

Observe that this rate is also achievable using indepen-
dent random Gaussian codebooks in each sub-channel, and
therefore the inequality above is actually an equality. Using
ηi = |hi|2rl

rs+|hi|2rl
,

C(P avail, P del) = max
P1, . . . , Pn s.t.
nP

i=1
Pi ≤ Pavail,

nP
i=1

ηiPi ≥ Pdel

n∑
i=1

log2

(
1 +

ηiPi
N

)
. (22)

The problem in (22) is one of convex optimization — the
objective to be maximized is a concave-∩ function, while
the constraints are linear. Introducing non-negative Lagrange
multipliers λ and µ,

n∑
i=1

log2

(
1 +

ηiPi
N

)
− λ

(
n∑
i=1

Pi − P avail
)

+µ

(
n∑
i=1

ηiPi − P del
)

= 0.

Differentiating w.r.t. Pi and equating to zero,

log2 (e)×

(
1

1 + ηiPi

N

)
×
( ηi
N

)
− λ+ µηi = 0,

which along with the constraint Pi ≥ 0 (as in [10, Pg. 252])
results in,

Pi =
(

log2 (e)
λ− ηiµ

− N

ηi

)+

. (23)

The upper bound on µ follows from the fact that P avail > Pi
for all i. The variables λ and µ can now be obtained using

complementary-slackness conditions. Instead of stating the
these conditions directly, we provide intuitive explanations
for them.

For maximum rate, the first condition
n∑
i=1

Pi ≤ P avail

should be satisfied with with an equality, yielding one
relationship between λ and µ.

For any P del ≥ P delwater, the second inequality
n∑
i=1

ηiPi ≥

P del is also tight, and µ > 0. Values of λ and µ can thus
be calculated from these two equations for P del ≥ P delwater.
For P del < P delwater, the waterfilling solution is optimal and
µ = 0.

APPENDIX III
TRADEOFF BETWEEN INFORMATION RATE AND POWER IN

THE DISCRETE CASE

Divide the frequency space into bands of uniform (and
small) bandwidth df . The noise across the bands is iid
distributed Gaussian with zero mean and variance N0df . The
power allocated to the i-th band of center-frequency f is
given by P (f)df . Rewriting (22),

maxP
f P (f)df ≤ Pavail,P

f η(f)P (f)df ≥ Pdel

∑
f

df log2

(
1 +

η(f)P (f)df
N0df

)
. (24)

Following the derivation of (23),

P (f) =
(

log2 (e)
λ− η(f)µ

− N0

η(f)

)+

. (25)
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