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Abstract

This paper presents a shape adaptive wavelet coding technique for coding arbitrarily shaped still

texture. This technique includes shape adaptive discrete wavelet transforms (SA-DWT) and extentions

of zerotree entropy (ZTE) coding and embedded zerotree wavelet (EZW) coding. Shape adaptive wavelet

coding is needed for eÆciently coding arbitrarily shaped visual objects, which is essential for object-

oriented multimedia applications. The challenge is to achieve high coding eÆciency while satisfying the

functionality of representing arbitrarily shaped visual texture. One of the features of the SA-DWT is that

the number of coeÆcients after SA-DWT is identical to the number of pixels in the original arbitrarily

shaped visual object. Another feature of the SA-DWT is that the spatial correlation, locality properties

of wavelet transforms, and self-similarity across subbands are well preserved in the SA-DWT. Also, for

a rectangular region, the SA-DWT becomes identical to the conventional wavelet transforms. For the

same reason, the extentions of ZTE and EZW to coding arbitrarily shaped visual objects carefully treat

\don't-care" nodes in the wavelet trees. Comparison of shape adaptive wavelet coding with other coding

schemes for arbitrarily shaped visual objects shows that shape adaptive wavelet coding always achieves

better coding eÆciency than other schemes. One implementation of the shape adaptive wavelet coding

technique has been included into the new multimedia coding standard MPEG-4 for coding arbitrarily

shaped still texture. Software implementation is also available.

KEYWORDS: object-oriented image coding, arbitrarily shaped object coding, shape adaptive discrete

wavelet transform (SA-DWT), extension of zerotree entropy coding (ZTE), extension of embedded zerotree

wavelet coding (EZW), MPEG-4

1 INTRODUCTION

The functionality of making visual objects available in the compressed form has become a very important

feature in the next generation visual coding standards such as MPEG-4 [1, 2], since it provides great 
exibility

for manipulating visual objects in multimedia applications and could potentially improve visual quality in

very low bit rate coding. There are two parts in coding an arbitrarily shaped visual object. The �rst part is

to code the shape of the visual object and the second part is to code the texture of the visual object (pixels

inside the object region). This paper is on the texture coding part. More speci�cally, this paper is on texture

coding of still objects (not video objects).

Since there have been a considerable amount of research e�orts on coding rectangular-shaped images

and video, such as discrete cosine transform (DCT) coding and wavelet transform coding, it would be

straightforward to �rst �nd the bounding box of the arbitrarily shaped visual object, then pad values into

the pixel positions outside object, and code pixels inside the object and the padded pixels in the rectangular

bounding box together using the conventional methods. However, this approach would not be eÆcient.

Therefore, there have been continuous e�orts in developing new signal processing and coding techniques

for arbitrarily shaped regions [7, 8, 9, 10, 11, 14, 15]. Among them, the shape-adaptive DCT (SA-DCT)
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is the most popular one. The SA-DCT generates the same number of DCT coeÆcients as the number of

pixels in an arbitrarily shaped 8 � 8 image block. The SA-DCT algorithm achieves a transform eÆciency

similar to the shape-adaptive Gilge DCT [8, 10], but is implemented with a lower complexity. For standard

rectangular image blocks containing 8�8 pixels, the SA-DCT becomes identical to the standard 8�8 DCT.

Since the SA-DCT always 
ushes samples in an arbitrarily shaped block to a certain edge of a rectangular

bounding block before performing row or column DCT transforms, some spatial correlation may be lost. It

is not eÆcient to perform column DCT transforms on a set of coeÆcients that are from di�erent frequency

bands after the row DCT transforms [10, 12, 13].

There have been some proposals for coding arbitrarily shaped image objects using the wavelet transforms.

One of them is based on padding techniques [16, 17]. The conventional wavelet transform is performed in

the padded rectangular region, and coding coeÆcient selection (CCS) and coding coeÆcient insertion (CCI)

techniques are used to improve coding eÆciency. Another one is macroblock-region based wavelet coding

[18]. This technique �rst pads unde�ned region with zeros and then apply the wavelet transforms on the

padded rectangular region. In order to use ZeroTree Coding (ZTC), an arbitrary shape is quantized into

wavelet block boundary. In this scheme, the wavelet transform inevitably blurs the edges of the arbitrarily

shaped objects and results in more coeÆcients to be coded than the number of pixels contained in the object.

These two methods try to make improvement on the straightforward padding methods and do not solve the

fundamental problem of how to eÆciently perform wavelet transform directly to an arbitrarily shaped region

and eÆciently code just enough wavelet coeÆcients. Consequently, the performance of these techniques is

not competitive.

In [22, 23], Egger et al. proposed a wavelet transform scheme that adapts to an arbitrary shape similar

to the idea of the SA-DCT. In this scheme, before a 1-D wavelet transform, all the pixels in a row (or

column) are �rst 
ushed to the right boundary of a bounding box, and a wavelet transform is then applied

on all the valid pixels in that row (or column). After the wavelet transform, the wavelet coeÆcients are

then redistributed back to the proper spatial locations to prepare for the wavelet transform in the other

direction. By taking advantage of the locality property of wavelet transform, this scheme distinguishes itself

from the concept of SA-DCT by redistribution of wavelet coeÆcients, which preserves the spatial relations

of the wavelet coeÆcients and thus makes the wavelet decompositions in the second direction more eÆcient

than the SA-DCT. However, this scheme has its problems too. First, the 
ushing operation would merge

unrelated image segments in the same row (or column) into one segment, which could cause signi�cant high

frequency components at the merged boundaries. Secondly, redistribution of the wavelet coeÆcients obtained

from such a merged segment can not guarantee that the distributed coeÆcients have exactly the same phase

with each other. This degrades the eÆciency of the wavelet decompositions in the second direction. Thirdly,

the scheme handles an odd-length segment without taking advantage of the properties of wavelet �lters. The

wavelet transforms are only applied to the even-length segments and the last pixel of an odd-length segment

is always independently scaled and put into the lowpass bands, which could cause some discontinuities in

the wavelet decompositions in the second direction.

A novel shape adaptive discrete wavelet transform (SA-DWT) for arbitrarily shaped object coding was

proposed by Li, et al [19, 20, 21, 24]. This SA-DWT scheme can be directly applied to the arbitrarily shaped

region. The SA-DWT transforms the samples in the arbitrarily shaped region into the same number of

coeÆcients in the subband domain while keeping the spatial correlation, locality, and self-similarity across

subbands. Approaches applying the SA-DWT scheme to Embedded Zerotree Wavelet (EZW) Coding and

Vector Wavelet Coding (VWC) schemes were also proposed [6].

This paper provides a comprehensive description of the shape adaptive wavelet coding technique. In

Section 2, wavelet transforms specially designed for arbitrarily shaped regions are described. Methods

of using di�erent wavelet �lters, such as orthogonal �lters, even symmetric biorthogonal �lters, and odd

symmetric biorthogonal �lters in the SA-DWT are presented. The number of coeÆcients after SA-DWT is

identical to the number of pixels contained in the arbitrarily shaped image region. The spatial correlation and

other wavelet transform properties, such as locality and self-similarity across subbands, are well preserved in

the SA-DWT. For a rectangular region, the SA-DWT becomes identical to a conventional wavelet transform.

Keeping the number of wavelet coeÆcients the same as the number of pixels is a necessary condition

for an eÆcient coding method. On the other hand, lossy shape coding may reduce the number of pixels

to be coded at the expense of shape quality. As mentioned previously, there are two aspects of coding an

arbitrarily shaped visual object. First is to code the shape. This may be a lossless or a lossy coding method.
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If a lossy shape coding method is used, the number of pixels within the reconstructed shape is usually less

than that within the original shape. Because shape coding is always performed before texture coding, the

reconstructed shape is always used for the SA-DWT. Therefore, as far as the SA-DWT is concerned, the

number of pixels in the image domain is referred to as that within the reconstructed shape. In other words,

the tradeo� between the number of pixels to be coded and the quality of shape is made at the time of shape

coding. The SA-DWT just maintains the number of wavelet coeÆcients to be the same as the number of

pixels to be coded.

In addition to the transform part, another challenge is how to extend zerotree coding for arbitrarily

shaped regions. Section 3 addresses this issue and presents an eÆcient method for applying zerotree coding

to partial wavelet trees that are formed by the SA-DWT of an arbitrarily shaped object. Results of shape

adaptive wavelet coding and comparisons of di�erent options and with other coding schemes are reported

in Section 4. It is shown that shape adaptive wavelet coding always achieves better coding eÆciency than

other schemes. Section 5 concludes this paper.

2 SHAPE ADAPTIVE DISCRETE WAVELET TRANSFORMS

There are two components in the shape adaptive discrete wavelet transform (SA-DWT). One is a way to

handle wavelet transforms for arbitrary length image segments. The other one is a subsampling method

for arbitrary length image segments at arbitrary locations. The SA-DWT allows odd length or small length

image segments to be decomposed into the transform domain in a similar manner to the even and long length

segments, while maintaining the number of coeÆcients in the transform domain identical to the number of

pixels in the image domain. The scale of the transform domain coeÆcients within each subband is the same

to avoid sharp changes in subbands.

A proper subsampling method is important for the SA-DWT too. One consideration is that it should

preserve the spatial correlation and self-similarity property of wavelet transforms so that 2-D (horizontal

and vertical directions) separable wavelet decompositions and pyramid wavelet decompositions can still be

applied to the arbitrarily shaped image region without loss of spatial correlation. Another consideration is

the e�ect of the subsampling strategy on the eÆciency of zerotree coding.

2.1 Arbitrary Length Wavelet Decomposition

Depending on the wavelet �lters used, the methods to handle the wavelet decomposition of an arbitrary length

segment may di�er. In this sub-section, we discuss three categories of wavelet �lters, namely, orthogonal

wavelets, odd symmetric biorthogonal wavelets, and even symmetric biorthogonal wavelets. The orthogonal

wavelets have orthogonal lowpass and highpass �lters and an even number of taps for each �lter. The odd

symmetric biorthogonal wavelets have biorthogonal and symmetric lowpass and highpass �lters and an odd

number of taps for each �lter. The even symmetric biorthogonal wavelets have biorthogonal symmetric

lowpass and anti-symmetric highpass �lters and an even number of taps for each �lter. For image and video

coding, all these wavelet �lters are FIR �lters with real taps.

2.1.1 Boundary extensions for wavelet decomposition

One of the issues in applying a wavelet decomposition to a �nite-length signal segment is how to deal with

the boundaries (leading and trailing) of the signal segment. In order to maintain the perfect reconstruction

property of the wavelet transform, the unde�ned pixel locations outside the �nite-length signal segment are

�lled with values related to the pixels inside the �nite-length signal segment. This is called a boundary

extension. The extensions for our discussion include periodic extension and symmetric extensions.

Fig. 1 illustrates the periodic extension in which the �nite-length signal segment is considered to be one

period of a periodic signal. To describe the symmetric extension, we adopt the same terminology used in

MPEG-4[3]. There are several symmetric extensions and they are classi�ed into two categories for leading

boundary and trailing boundary respectively. There are three types of symmetric extensions in each category

(Type A, Type B, and Type C). Fig. 2 illustrates the di�erent types of symmetric extensions. In each �gure,

the arrow points to the symmetric point of the corresponding extension type. If the signal segment is much

shorter than the �lter length, the symmetric extension is performed several times by alternately extending

3



Periodic extension

a b c dyx z ... a b c ......x zy...

Figure 1: Periodic extensions at leading and trailing boundaries of a �nite length signal segment.
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Figure 2: Symmetric extension types at the leading and trailing boundaries of a signal segment.

the values at both leading and trailing boundaries. Fig. 3 illustrates how to alternately extend the leading

and trailing boundaries for a short signal segment.

Once extensions are applied on a �nite-length, say N points, signal segment, the signal can be considered

to have in�nite length in any mathematical equations. The signal samples with indexes less than 0 or greater

than N � 1 are derived from the extensions.

2.1.2 Arbitrary-length wavelet decomposition for orthogonal wavelets

Let g(i), h(i), e(i), and f(i) be the impulse responses of the lowpass analysis, highpass analysis, lowpass

synthesis, and highpass synthesis orthogonal wavelet �lters with L taps and i = 0; : : : ; L� 1. For orthogonal

wavelet �lters, the �lter length, L is an even number. Let x(i) be the input signal with a �nite and even

length N and periodic extensions. The relations between these �lters and wavelet analysis and synthesis

processes are given in Appendix A.1.

From Appendix A.1, we learn that the subsampling positions for wavelet coeÆcients can be either at

odd positions or at even positions. If subsampling occurs at even positions, including its extensions, i.e.,

: : : ;�2; 0; 2; : : : ; 2i; : : :, we refer this kind of subsampling to even subsampling. If the subsampling occurs at

odd positions, including its extensions, i.e., : : : ;�1; 1; : : : ; 2i+1; : : :, we refer this kind of subsampling to odd

subsampling. We'll use these terms for the rest of this paper.

A BA BBB A A BAA A

trailing symmetric  point
leading symmetric point

Figure 3: Symmetric extensions (type A) at leading and trailing boundaries for a short signal segment.
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Fig. 4 illustrates the analysis and synthesis processes where the subsampling takes place at the even

positions.

Let fx(j), j = 0; : : : ; N � 1g be the input signal segment with a �nite length N . If N is odd, the

straightforward periodic extension approach cannot be used, since one cannot recover the coeÆcients needed

for periodic extension in the synthesis process. Li et al [19, 21] proposed an approach to handle the odd

length signal segment. A complete description of this approach together with the even length case is given

as follows. (s is de�ned in Appendix A.1 to indicate subsampling positions.)

1. If N = 1, this isolated sample is repeatedly extended and the lowpass wavelet analysis �lter is applied

to obtain a single lowpass wavelet coeÆcient. (Note: this is equivalent to scaling this isolated sample

by a factor
PL�1

i=0 g(i) and this happens to be
p
2 for orthogonal wavelets.) The synthesis process just

scales the single wavelet coeÆcient by 1=
p
2 and puts it in the correct position in the original signal

domain.

2. If N is greater than 1 and N is even, the L-tap wavelet analysis is performed on the N samples with

periodic extension (Fig. 4). N=2 lowpass wavelet coeÆcients C(i), i = 0; : : : ; N=2� 1, are generated

by Eq. (A-4) and (A-6), and N=2 highpass wavelet coeÆcients D(i), i = 0; : : : ; N=2� 1, are generated

by Eq. (A-5) and (A-7).

The synthesis process begins with periodic extension of the lowpass and highpass wavelet coeÆcients

C(i) and D(i) (Fig. 4). The extended lowpass and highpass wavelet coeÆcients are then upsampled

according to Eq. (A-8) and (A-9), respectively. Eq. (A-10), (A-11), and (A-12) are then applied to

reconstruct the signal segment r(j), j = 0; : : : ; N � 1.

3. If N is greater than 1 and N is odd, the L-tap wavelet transform is performed on the �rst N � 1 (an

even number) samples with periodic extension. (N�1)=2 wavelet coeÆcients are generated in the same

way as in 2 (segment length N � 1) for the lowpass and highpass wavelet coeÆcients, respectively. The

left-over sample is treated in the same way as in 1 (scaled by
p
2) and is then appended to the end of

lowpass wavelet coeÆcients forming a total of (N + 1)=2 coeÆcients.

From the above description, we observe that,

1. the number of coeÆcients in the transform domain is identical to that of the pixels in the image domain;

2. there is a unique inverse wavelet transform that can perfectly reconstruct the original image segment

as long as the L-tap wavelet �lters used have perfect reconstruction property and the subsampling

positions are known;

3. this length-adaptive wavelet transform preserves the locality of an image segment without generating

out-of-boundary coeÆcients;

4. this length-adaptive wavelet transform keeps the same scale for coeÆcients in lowpass object for odd

length segment by scaling the left-over sample. This avoids a sharp change that may occur at the

segment boundary if this sample is not scaled.

2.1.3 Arbitrary length wavelet decomposition for odd symmetric biorthogonal wavelets

Periodic extensions used in orthogonal wavelets work for any wavelet transforms. However, if the signal

segment is long, the correlation between the end of the signal and the start of the signal is small. There

could be a good chance of a sharp change at the transition from the end of previous signal period to the start

of the next signal period if the periodic extension method is used. Another commonly used extension type

is symmetric extensions. However, to ensure perfect reconstruction, symmetric extensions are only possible

for symmetric biorthogonal wavelet transforms. Another reason for using biorthogonal wavelets is because

there is no non-trivial orthogonal wavelet that is linear-phase (thus symmetric or antisymmetric), perfect

reconstruction, and FIR with real �lter taps.

In the symmetric extension scheme, the signal is extended symmetrically at the leading and trailing

boundaries of a signal segment. The neighboring samples with such symmetric extensions have the same close
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Figure 4: The analysis and synthesis processes of an even length signal segment using orthogonal wavelet

transforms.
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correlation as in the original signal segment. Therefore, sharp transitions are avoided. Another advantage of

biorthogonal wavelets is that they can provide linear phase �lters, therefore, eliminating the phase distortion

caused by magnitude distortion of transformed coeÆcients. This is very important when they are applied to

signal compression where magnitudes of the transformed coeÆcients is most likely to be quantized.

Let fg(i), i = 0; : : : ; Lg�1g, fh(i), i = 0; : : : ; Lh�1g, fe(i), i = 0; : : : ; Lh�1g, and ff(i), i = 0; : : : ; Lg�1g
be the impulse responses of the lowpass analysis �lter, highpass analysis �lter, lowpass synthesis �lter, and

highpass synthesis �lter, respectively. The �lter lengths, both Lg and Lh, are odd numbers. Let x(i) be the

input signal with a �nite length with appropriate extensions at the leading and trailing boundaries. The

relations between these �lters, and wavelet analysis and synthesis processes are given in Appendix A.2.

Assuming a signal segment fx(j), j = 0; : : : ; N � 1g, with length of N , and combining symmetric exten-

sions, �ltering, and subsampling together, the arbitrary length wavelet decomposition using odd symmetric

wavelet transforms can be described as follows. (s is de�ned in Appendix A.2 to indicate subsampling

positions.)

1. If N = 1, this isolated sample is repeatedly extended and the lowpass wavelet analysis �lter is applied to

obtain a single lowpass wavelet coeÆcient. (Note: this is equivalent to scaling this sample by a factor

K =
PLg�1

i=0 g(i) and it happens to be
p
2 for some normalized biorthogonal wavelets.)

The synthesis process simply scales this single lowpass wavelet coeÆcient by a factor of 1=K and puts

it in the correct position in the original signal domain.

2. If N is greater than 1, and p = 0 if N is even, p = 1 if N is odd, the signal segment is extended

using the type B extensions (Fig. 2). The (N=2 + p(1 � s)) lowpass wavelet coeÆcients C(i), i =

s; : : : ; (N=2� (1�p)(1�s)), are generated by Eq. (A-17) and (A-19). The (N=2+ps) highpass wavelet

coeÆcients D(i), i = 0; : : : ; (N=2� 1 + ps), are generated by Eq. (A-18) and (A-20).

The synthesis process begins with upsampling the lowpass and highpass wavelet coeÆcients using Eq.

(A-21) and (A-22), respectively. As the results, an upsampled lowpass segment P (j) and an upsampled

highpass segment Q(j) are obtained, where j = 0; : : : ; N � 1. The upsampled lowpass and highpass

segments P (j) and Q(j) are then extended using the type B extension (Fig. 2). The extended lowpass

and highpass signal P (j) and Q(j) are then synthesized using Eq. (A-23), (A-24), and (A-25) to

reconstruct the signal segment r(j), j = 0; : : : ; N � 1.

Fig. 5 illustrates the analysis and synthesis processes with even-subsampling for the lowpass wavelet

coeÆcients and odd-sampling for the highpass wavelet coeÆcients for an odd length signal segment.

The default wavelet in MPEG-4 [2] is an odd symmetric biorthogonal wavelet. The above description

is completely equivalent to that in [2]. The di�erence is in the description of upsampling and symmetric

extensions for synthesis. In [2], symmetric extensions are described before upsampling. The above description

puts upsampling before symmetric extensions, which is more concise. The MPEG-4 reference software

actually follows the above concise description.

2.1.4 Arbitrary-length wavelet decomposition for even symmetric biorthogonal wavelets

Let fg(i), i = 0; : : : ; Lg�1g, fh(i), i = 0; : : : ; Lh�1g, fe(i), i = 0; : : : ; Lh�1g, and ff(i), i = 0; : : : ; Lg�1g
be the impulse responses of the lowpass analysis �lter, highpass analysis �lter, lowpass synthesis �lter, and

highpass synthesis �lter, respectively. The �lter lengths, both Lg and Lh, are even numbers. Let x(i) be

the input signal with a �nite length and appropriate extensions at the leading and trailing boundaries. The

relations between these �lters, and wavelet analysis and synthesis processes are given in Appendix A.3.

Assuming a signal segment fx(j), j = 0; : : : ; N � 1g, with length of N , and combining symmetric exten-

sions, �ltering, and subsampling together, the arbitrary length wavelet decomposition using even symmetric

wavelet transform can be described as follows. (s is de�ned in Appendix A.3 to indicate subsampling posi-

tions.)

1. If N = 1, this isolated sample is repeatedly extended, and the lowpass wavelet �lter is applied to

obtain a single lowpass wavelet coeÆcient. (Note: this is equivalent to scaling this sample by a factor

K =
PLg�1

i=0 g(i).)
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The synthesis process simply scales this single lowpass wavelet coeÆcient by a factor of 1=K and puts

it in the correct position in the original signal domain.

2. If N is greater than 1, and p = 0 if N is even, p = 1 if N is odd, the signal segment is extended

using the type A extension (Fig. 2). The (N=2 + 1� (1� p)(1� s)) lowpass wavelet coeÆcients C(i),

i = 0; : : : ; (N=2�(1�p)(1�s)), are generated by Eq. (A-30) and (A-32). The (N=2+1�(1�p)(1�s))
highpass wavelet coeÆcients D(i), i = 0; : : : ; (N=2� (1� p)(1� s)), are generated by Eq. (A-31) and

(A-33).

For the odd-subsampling case (s = 1) and N is even (p = 0), the wavelet decomposition generates

N=2 + 1 wavelet coeÆcients for both lowpass and highpass bands. However, the �rst and last highpass

wavelet coeÆcients are always zeros. In this case, only N=2 � 1 highpass coeÆcients, fD(i), i =

1; : : : ; N=2� 1g, need to be transmitted to the synthesis end. Similarly, when p = 1 and s = 1, the �rst

highpass wavelet coeÆcient, D(0), is always zero; and when p = 1 and s = 0 the last highpass wavelet

coeÆcient, D((N + 1)=2� 1), is always zero. Therefore when p = 1, only (N � 1)=2 highpass wavelet

coeÆcients D(i), i = s; : : : ; ((N � 1)=2� 1 + s) need to be transmitted.

The synthesis process begins by inserting the known and not-transmitted zeros, if there are any, into

the highpass wavelet coeÆcients. Then the lowpass wavelet coeÆcients C(i) and the highpass wavelet

coeÆcients D(i) are upsampled using Eq. (A-34) and (A-35), respectively. The upsampled lowpass

signal segment P (j), j = �1; : : : ; N�1 is symmetrically extended using the type B extensions (Fig. 2).

The upsampled highpass segment Q(j), j = �1; : : : ; N �1, is extended using the type C anti-symmetric

extensions (Fig. 2). Eq. (A-36), (A-37), and (A-38) are then applied to the extended lowpass and

highpass wavelet coeÆcients to reconstruct the signal segment r(j), j = 0; : : : ; N � 1.

Fig. 6 gives an example of the analysis and synthesis processes with even-subsampling for an odd-length

signal segment.

2.2 Subsampling Strategies in Shape Adaptive Discrete Wavelet Transforms

The length-adaptive wavelet transforms discussed in the previous subsections solve the problem of wavelet

decomposition on an arbitrary length signal segment (long or short, even or odd). In the discussions, we

purposely leave the subsampling issue open. For each case of the arbitrary length wavelet transforms, we

discussed two options in subsampling the lowpass and highpass wavelet coeÆcients, i.e., even subsampling

and odd subsampling. Di�erent subsampling strategies have di�erent advantages and disadvantages in terms

of coding eÆciency. In this sub-section, we discuss two possible subsampling strategies.

2.2.1 Subsampling strategy favoring zerotree coding eÆciency

Since Zerotree Coding (ZTC) scheme is used for entropy coding, the properties of ZTC should be considered

to choose a proper subsampling strategy. One of the features of ZTC is that, when all the descendants

of a tree node are insigni�cant or zeros or don't-cares, the coding process does not need to continue for

that tree branch from that node on. Therefore, the obvious subsampling strategy to take advantage of this

ZTC property is to always allocate more valid wavelet coeÆcients in the lower subbands (close to roots of

the wavelet tree) and more don't-care nodes in the higher subbands. Li, et al [21] observed that by always

choosing even subsampling locally across all signal segments for orthogonal wavelets, we can guarantee that

the number of the lowpass band wavelet coeÆcients is not less than that of the highpass band wavelet

coeÆcients. Here, local sampling positions refer to positions relative to the beginning of a signal segment,

and global subsampling positions refer to positions relative to the bounding box of the visual object. The

same observation is true for the even symmetric biorthogonal �lters. For odd symmetric �lters, this is

achieved if the lowpass subsampling is locally �xed to even subsampling and the highpass subsampling is

locally �xed to odd subsampling.

Since the signal segments in an arbitrarily shaped visual object are neither all starting from odd positions

nor all starting from even positions, the phases of some of the lowpass and highpass wavelet coeÆcients may

be skewed by one sample when subsampling is locally �xed for all signal segments. This is not desired

for wavelet decomposition in the second direction. However, since the phases of the subsampled wavelet

coeÆcients di�er at most by one sample, the spatial relations across subbands can still be preserved to a

9
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Figure 6: The analysis and synthesis processes of an odd length signal segment using even symmetric

biorthogonal wavelet transforms.
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certain extent. For very low bit rate coding, zerotree coding eÆciency is more important and this subsampling

strategy achieves better overall coding eÆciency.

2.2.2 Subsampling strategy favoring signal processing gain

In contrast, another subsampling strategy does not �x even sampling or odd sampling locally for all the

signal segments. It strictly maintains the spatial relations across the subbands by using either even sampling

or odd sampling according to the position of a signal segment relative to the bounding box. Instead of

�xing subsampling positions locally for each signal segment, this strategy �xes subsampling positions of the

highpass and lowpass wavelet coeÆcients at global even or odd positions relative to the bounding box. Since

the starting position of each segment in a visual object may not be always at an even or odd position, the

local subsampling positions in each segment have to be adjusted to achieve global even or odd subsampling.

For example, with odd symmetric biorthogonal �lters, to achieve global even subsampling in lowpass bands

and global odd subsampling in highpass bands, we need to choose local even subsampling in lowpass bands

and local odd subsampling in highpass bands for all segments starting from even positions, and choose local

odd subsampling in lowpass bands and local even subsampling in highpass bands for all segments starting

from odd positions.

This subsampling strategy preserves the spatial correlation across subbands, therefore, it can achieve

more signal processing gain. Its drawback is that it may introduce more highpass band coeÆcients than

lowpass band coeÆcients and could potentially degrade zerotree coding eÆciency.

For a rectangular region, the above two subsampling strategies converge into a normal wavelet subsam-

pling scheme.

2.3 Two-dimensional shape adaptive discrete wavelet transforms

Based on the length-adaptive wavelet transform algorithms and the subsampling strategies discussed above,

the 2-D SA-DWT (pyramid decomposition) for an arbitrarily shaped visual object can be described as

follows:

1. Within the bounding box of the arbitrarily shaped object, use shape information to identify the �rst row

of pixels belonging to the object to be transformed;

2. Within each row, identify the �rst segment of consecutive pixels;

3. Apply the length-adaptive 1-D wavelet transform to this segment with a proper subsampling strategy;

4. The lowpass wavelet coeÆcients are placed into the corresponding row in the lowpass band. The highpass

wavelet coeÆcients are placed into the corresponding row in the highpass band; (Fig. 7(a)(b) illustrates

this step for the subsampling strategy favoring the ZTC gain.)

5. Perform the above operations for the next segment of consecutive pixels in the row;

6. Perform the above operations for the next row of pixels;

7. Perform the above operations for each column of the lowpass and highpass objects;

8. Perform the above operations to the lowpass-lowpass band object until the level of wavelet decomposition

is reached. (Fig. 7(c) illustrates the result of a 2-level wavelet decomposition of an arbitrarily shaped

object.)

The above 2-D SA-DWT algorithm provides a way to eÆciently decompose an arbitrarily shaped object

into a multi-resolution object pyramid. The spatial correlation, locality and object shape are well preserved

throughout the SA-DWT. Thus it enables multi-resolution coding of arbitrarily shaped objects. This method

ensures that the number of coeÆcients to be coded in the transform domain is exactly the same as that in the

image domain. The treatment of odd number of pixels in a segment ensures that there is not too much energy

leaked into highpass bands in a pyramid wavelet decomposition. Note that if the object is a rectangular

image, the 2-D SA-DWT is identical to a standard 2-D wavelet transform.
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Figure 7: 2-D SA-DWT. (a) and (b): Examples of locations of the lowpass and highpass objects in the

transform domain; (c) Multi-resolution decomposition of an arbitrarily shaped object.

The discussion of optimized implementation of the SA-DWT is out of the scope of this paper. However,

based on the discussion in this section, we can provide an estimation on the memory requirement and the

computational complexity. The SA-DWT can be implemented as line based wavelet transform as described

above. Thus the working bu�er needed is no larger than the larger of width and height of the bounding box.

In order to store the orginal image and the transformed coeÆcients, there needs a main memory of W �H

words, where W and H are width and height of the bounding box of the visual object, respectively. Memory

access is another aspect of memory requirement, sometimes especially in hardware implementation, it is

more important than memory size. The current implementation of SA-DWT is performed using separable

1D wavelet transforms, that is, each level of decomposition needs to read and write the memory for that

subband twice. In contrast, the SA-DCT needs a working bu�er of 8� 8 = 64 words and a main memory of

W �H words and each frame needs only to read and write memory once.

The computational complexity of the SA-DWT depends on the number of pixels in the object. If the

bounding box of the visual object has a width W and a height H , the computational complexity of the

SA-DWT is no more than that of a conventional wavelet transform on a W �H image. The overhead of the

SA-DWT comes from searching segments in a row or column. Since this is a simple logic operation, it doesn't

require too much in computational complexity. It increases the hardware design complexity since new logic

for handling the segment search is required. Similar to the conventional wavelet transform, the complexity

of the SA-DWT depends on the number of �lter taps. It could be simpler than the SA-DCT if the number

of �lter taps is few and it could also be more complex than the SA-DCT if the wavelet �lter has a large

number of taps. Table 1 gives the estimation of the memory requirement and computational complexity of

the worst-case SA-DWT and SA-DCT. For the SA-DWT, we use MPEG-4 default (9,3) wavelet �lters in

Table 4 and take advantage of the symmetric property of the wavelet �lters. The computation of SA-DWT

can be much simpler if implemented using lifting scheme, further discussion is beyond the scope of this paper.

For the SA-DCT, we use the fast algorithm for 8-point DCT (i.e. 11 multiplications and 29 additions)[25] for

the estimation. Again, we assume the bounding box has size W �H and there are L levels of the SA-DWT

decomposition.
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Table 1: Comparisons of Memory Requirements and Computation Complexity between SA-DWT and SA-

DCT schemes

working bu�er main memory memory access computational complexity

(words) (words) (words) (additions (+) and multiplications (�))

SA-DWT max(W;H) WH
8

3
(1� 4�L)WH (reads) 40

3
(1� 4�L)WH (+)

8

3
(1� 4�L)WH (writes) 28

3
(1� 4�L)WH (�)

SA-DCT 64 WH WH (reads) 29

4
WH (+)

WH (writes) 11

4
WH (�)

3 EXTENSIONS OF ZEROTREE CODING

In the SA-DWT decomposition, the shape mask is decomposed into a pyramid of subbands in the same

way as the SA-DWT so that we know which wavelet tree nodes have valid wavelet coeÆcients and which

ones have don't-care values. We have to pay attention to the way of coding the multi-resolution arbitrarily

shaped objects with these don't-care values (corresponding to the out-of-boundary pixels or out-nodes). In

this section, we discuss how to extend the conventional zerotree coding methods to the shape adaptive case.

In the MPEG-4 standard, both Embedded Zerotree Wavelet (EZW) coding and ZeroTree Entropy (ZTE)

coding are included [2] for still texture coding to support a wide range of functionalities with spatial and

SNR scalabilities. EZW coding [4] provides an embedded bit stream with very �ne SNR scalability and

precise bit rate control. An extension of the EZW coding technique into shape adaptive wavelet coding

is described in [21]. ZTE coding is an improvement over EZW coding in terms of coding eÆciency [5].

One prominent feature of ZTE coding is to use explicit quantization and therefore it can be optimized and

dynamically adapted to scene content. Another improvement made in MPEG-4 is to separately code the

low-low subband from the higher subbands. The wavelet coeÆcients in the low-low subband are coded with

an adaptive prediction method. For shape adaptive wavelet coding, there are some don't-care values in the

low-low subband and they are not coded. For prediction of other wavelet coeÆcients in the low-low subband,

the don't-care values are considered to be zeros.

As discussed previously, the SA-DWT decomposes the arbitrarily shaped objects in the image domain

to a hierarchical structure with a set of subbands of varying resolutions. Each subband has a corresponding

shape mask associated with it to specify the locations of the valid coeÆcients in that subband. Fig. 8 shows

the parent-child relation of SA-DWT trees descending from a coeÆcient in the subband LL3. As shown in

the �gure, there are three types of nodes in a tree: zeros, non-zeros, and out-nodes (with don't-care values).

The major task is to extend the conventional zerotree coding (EZW or ZTE) methods to the case with

out-nodes. A simple way is to set those don't-care values to zeros and then apply the conventional EZW or

ZTE coding method. However, this requires bits to code the out-notes such as a don't-care tree (the parent

and all of its children have don't-care values). This is a waste of bits because out-nodes do not need to be

coded as the shape mask already indicates their status. Therefore, we should treat out-nodes di�erently

from zeros. Although we don't want to use bits to code an out-node, we have to decide what to do with

its children nodes. One way is not to code any information about the status of the children nodes of the

don't-care node. In this way, we always assume that it has four children to be examined further. When the

decoder scans to this node, it will be informed by the shape information that this node is a don't-care node

and it will continue to scan its four children nodes. By doing so, all the don't-care nodes in a tree structure

need not be coded. This approach performs well when there are only sparse valid nodes in a tree structure.

One disadvantage of this approach is that, even if a don't-care node has four zerotree root children, it still

needs to code four zerotree root symbols instead of one (if the don't-care value is treated as a zero). Another

way is to selectively treat an out-node as a zero. But this is equivalent to creating another symbol for coding

some don't-care values. Through extensive experiments, we decide to use the method of not coding out-nodes

[2, 24]. The extensions of ZTC coding to handle the SA-DWT coeÆcients are then given as follows.

Encoding and decoding SA-DWT coeÆcients are the same as encoding and decoding regular wavelet

coeÆcients except keeping track of the locations of the wavelet coeÆcients according to the shape informa-
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Figure 8: Parent-child relation of wavelet trees in SA-DWT subbands.

tion. Same as encoding and decoding regular wavelet coeÆcients, a zerotree symbol is used to determine

whether encoding and decoding are needed for its children nodes. The di�erence is that some zerotree nodes

correspond to the pixel locations outside the shape boundary and no bits should be used for these out-nodes.

The following description applies to both EZW and ZTE coding schemes for each coding pass (i.e. for each

bit-plane coding in EZW and each quantization step in ZTE).

At the root layer of the wavelet tree (the top 3 AC bands), the shape information is examined to determine

whether a node is an out-node.

� If it is an out-node, no bits are used for this node and the four children of this node are marked

\to-be-encoded" (TBE) in encoding or \to-be-decoded" (TBD) in decoding;

� otherwise, a symbol is encoded/decoded for this node using an adaptive arithmetic encoder/decoder.

{ If the symbol is either isolated-zero (IZ) or value (VAL), the four children of this node are marked

TBE/TBD; otherwise, the symbol is either zerotree-root (ZTR) or valued-zerotree-root (VZTR)

and the four children of this node are marked \no-code" (NC).

{ If the symbol is VAL or VZTR, a non-zero wavelet coeÆcient is encoded/decoded for this node;

otherwise, the symbol is either IZ or ZTR and the wavelet coeÆcient is set to zero for this node.

At any layer between the root layer and the leaf layer, the shape information is examined to determine

whether a node is an out-node.

� If it is an out-node, no bits are used for this node and the four children of this node are marked as either

TBE/TBD or NC depending on whether this node itself is marked TBE/TBD or NC respectively;

� otherwise,

{ if it is marked NC, no bits are used for this node and the wavelet coeÆcient is zero for this node

and the four children nodes are marked NC;

{ otherwise, a symbol is encoded/decoded for this node using an adaptive arithmetic encoder/decoder.

� If the symbol is either isolated-zero (IZ) or value (VAL), the four children of this node are

marked TBE/TBD; otherwise, the symbol is either zerotree-root (ZTR) or valued-zerotree-root

(VZTR) and the four children of this node are marked \no-code" (NC).
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Table 2: Number of decomposition levels

picture size luminance chrominance

QCIF 4 levels 3 levels

CIF 5 levels 4 levels

� If the symbol is VAL or VZTR, a non-zero wavelet coeÆcient is encoded/decoded for this

node using an arithmetic encoder/decoder; otherwise, the symbol is either IZ or ZTR and the

wavelet coeÆcient is set to zero for this node.

At the leaf layer, the shape information is examined again to determine whether a node is an out-node.

� If it is an out-node, no bits are used for this node;

� otherwise,

{ if it is marked NC, no bits are used for this node and the wavelet coeÆcient is set to zero for this

node;

{ otherwise, a wavelet coeÆcient is encoded/decoded for this node using an adaptive arithmetic

encoder/decoder.

For rectangular visual objects, the above extensions are exactly the same as regualr ZTC schemes.

4 EXPERIMENTAL RESULTS

Extensive experiments have been conducted to study the shape adaptive wavelet coding schemes described

above. The results have been compared with that of other coding schemes, such as, SA-DCT coding [3, 10]

and Egger's wavelet coding scheme [22, 23]. Comparison results have also been obtained for di�erent wavelet

�lters (orthogonal, odd-symmetric biorthogonal, even-symmetric biorthogonal), for di�erent subsampling

strategies, and for di�erent entropy coding schemes (EZW and ZTE).

The object shape information in the simulation are coded using the MPGE-4 shape coding tool. The

objective test results are represented in the form of PSNR-bitrate curves and the shape bits are excluded

from the bitrate since they are independent of the texture coding scheme. Only the texture bitrate (including

both luminance and chrominance components) are used for comparison. Note that the bitrate (in bits per

pixel) is calculated based on the number of pixels in an object with the reconstructed shape and the PSNR

value is also calculated over the pixels in the object with the reconstructed shape.

4.1 Simulation Setup

For SA-DCT coding, the simulation program is the MPEG-4 veri�cation model (VM) reference software

(version 7) [3]. The software used for the wavelet schemes are modi�ed based on the MPEG-4 still texture

coding tools in which we contributed the shape adaptive wavelet coding implementation. The source material

used in the simulations is from MPEG-4 test sequences. Single frames that have arbitrarily shaped regions

are used in this experiment. The test conditions are given in Table 2 and Table 3.

The simulation results show a consistent similarity across these test sequences and across the luminance

and chrominance color components. Therefore, only the Y component of Akiyo CIF sequence is presented

in the PNSR-bitrate curves hereafter.

4.2 Comparison of Di�erent Wavelet Filters for SA-DWT

We have discussed three di�erent types of wavelet �lters that can be used in SA-DWT, namely, orthogonal

wavelet �lters, odd-symmetric biorthogonal wavelet �lters, even-symmetric biorthogonal wavelet �lters. The

comparison results presented are by no means complete and conclusive due to the vast variety of di�erent
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Table 3: Test sequences from MPEG-4

Sequence Object Frame number Format Shape Bitrate(bpp)

Akiyo Woman 0 CIF 0.03657

Akiyo Woman 0 QCIF 0.06059

Sean Man 0 CIF 0.04380

Sean Man 0 QCIF 0.07856

Coast guard Big boat 100 CIF 0.15267

Coast guard Big boat 100 QCIF 0.29966

Weather Woman 0 CIF 0.03167

Weather Woman 0 QCIF 0.05581

Table 4: Wavelet �lters used in the simulation

Filter Type Lowpass Taps g(n) Highpass Taps h(n)

Orthogonal (4,4) f 0.48296291314453, 0.83651630373781, f-0.12940952255126, -0.22414386804201

(Daubechies ) 0.22414386804201, -0.12940952255126 g 0.83651630373781, -0.48296291314453 g

Odd-Symmetric (9,3)
p
2

128
�f3, -6, -16, 38, 90, 38, -16, -6, 3 g

p
2

4
�f-1,2,-1g

(MPEG-4 default)

Even-Symmetric (12,4) f-0.01381067932005, 0.04143203796015, f 0.17677669529664, -0.53033008588991,

0.05248058141619, -0.26792717880897, 0.53033008588991, -0.17677669529664g

-0.07181553246426, 0.96674755240348,

0.96674755240348, -0.07181553246426,

-0.26792717880897, 0.05248058141619,

0.04143203796015, -0.01381067932005g

wavelet �lters. They are presented here to give the readers some ideas on how much a di�erence the di�erent

wavelet �lters could make in the SA-DWT.

Fig. 9 gives a typical PSNR-bitrate curve we have obtained in our simulation. The orthogonal wavelet

�lters are the Daubechies 4-tap orthogonal �lters; the odd symmetric biorthogonal �lters are the default 9-3

�lters for MPEG-4 visual texture coding; the even-symmetric �lters are 12-4 �lters. The �lter taps of all the

�lters are given in Table 4.

In this test, the SA-DWT subsampling strategy was chosen to be favoring the signal processing gain. For

orthogonal �lters and even-symmetric �lters, this is global even-subsampling. For odd-symmetric �lters this

is global even-subsampling for lowpass wavelet coeÆcients and global odd-subsampling for highpass wavelet

coeÆcients. Both EZW and ZTE coding schemes are simulated, since they give the similar results, only

the results for ZTE (single quantizer mode) coding is presented. The simulation results show that the odd-

symmetric �lters usually achieve about 1 dB PSNR gain over orthogonal �lters and even-symmetric �lters.

The orthogonal �lters achieve almost the same performance as even-symmetric �lters.

4.3 Comparison of EZW and ZTE Coding Schemes with SA-DWT

Fig. 10 gives the comparison of EZW and ZTE coding schemes. In the ZTE coding scheme, single quantizer

(SQ) mode is used. The wavelet �lters are the default wavelet �lters used in MPEG-4 still texture coding

given in Table 4. Subsampling strategy is chosen to favor the signal processing gain as in the last test. It

is clearly shown in Fig. 10 that using either EZW or ZTE coding scheme with the SA-DWT produces more

or less the same coding eÆciency. While EZW has the embedded bitstream feature, ZTE has the 
exible

quantization feature. That's why they both have been adopted in the MPEG-4 standard to support di�erent

applications[2].
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Figure 9: Comparison of di�erent wavelet �lters in shape adaptive wavelet coding (Akiyo-CIF).
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Figure 10: Comparison of di�erent entropy coding schemes in shape adaptive wavelet coding (Akiyo-CIF).
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Figure 11: Comparison of di�erent subsampling strategies in shape adaptive wavelet coding (Akiyo-CIF).

4.4 Comparison of Di�erent Subsampling Strategies

As discussed in section 2.2, there are two subsampling strategies that may be useful in practice. One

favors the zero-tree coding eÆciency, the other one favors the signal processing gain. Fig. 11 presents the

comparison of the simulation results of these two subsampling strategies under the same test conditions. In

these simulations, ZTE (SQ) coding scheme and the default MPEG-4 wavelet �lters are used. The simulation

results show that under most bitrates, the subsampling strategy favoring signal processing gain have about

2-2.5 dB performance improvement over the subsampling strategy favoring the zerotree coding eÆciency.

However, at the lower bitrate end, the di�erence between these two subsampling strategies becomes smaller

as we expected.

4.5 Comparison with Other Coding Schemes

In this set of tests, the SA-DWT results are used to compare with the results of SA-DCT coding [10] and

Egger's wavelet coding [22, 23], macroblock region-based wavelet coding [18]. The SA-DCT results are

obtained using the MPEG-4 VM 7.0 software and Table 5 shows the conditions for the simulation, where

the meanings of �elds in Table 5 are as follows [3].

video object layer shape indicates whether object shape is rectangular (00), gray scale shape (10) or

binary shape (01); video layer quant type indicates the type of quantization method selected: H. 263 quan-

tization method (0) or MPEG-1/2 quantization method (1); intra acdc pred disable indicates whether the

AC/DC prediction of intra-coded blocks is disabled (0 means enabled); if separate motion shape texture is

1, all the coding data (e.g. motion, shape, texture, etc.) are grouped together, if this �eld is 0, the coding

data are grouped macroblock by macroblock; disable sadct indicates whether to turn on SA-DCT (0) or not

(1).

For the wavelet based coding schemes, the default MPEG-4 wavelet �lters and the ZTE (SQ) coding

scheme are used. The subsampling strategy for SA-DWT is chosen to be favoring signal processing gain.

Fig. 12 presents the PSNR-bitrate curves for these di�erent coding schemes. Clearly, the shape adaptive

wavelet coding scheme in MPEG-4 achieves the best coding eÆciency. The SA-DCT achieves the second

best coding eÆciency which is about 1.5-2dB lower than SA-DWT. The wavelet method proposed by Egger

et al [22, 23] is about 2-2.5dB lower than SA-DWT. The macroblock based wavelet coding method has the
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Table 5: Test conditions for SA-DCT in MPEG-4 VM 7.0

video object layer shape 01(binary shape)

video object layer quant type 0

intra acdc pred disable 0

separate motion shape texture 0

disable sadct 0
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Figure 12: Comparison of SA-DWT coding with other coding schemes (Akiyo-CIF).

worst performance.

The reconstructed visual objects (Akiyo Cif) using these di�erent schemes are given in Fig. 13 (a) through

(e). Fig. 13(a) gives the original visual object to be encoded. Fig. 13(b) through Fig. 13(e) give the the

enlarged portion (the white box in Fig.13(a)) of the results of the original, SA-DWT coding in MPEG-4,

SA-DCT coding, and Egger's wavelet method, respectively.

A more demanding visual object is the foreground buidlings in building image (1024x1024 size). Fig. 14

(a) through (e) give the enlargments of portion of the visual object.

It is clearly shown in Fig. 13 and 14, that the SA-DWT scheme produces much superior visual quality

than SA-DCT and Egger's wavelet schemes. SA-DCT scheme su�ers the blocking artifacts and the Egger's

wavelet scheme su�ers more noise.

4.6 Summary

SA-DWT coding is a very eÆcient technique for coding arbitrarily shaped visual objects. In our simulation,

odd-symmetric wavelet �lters provide better coding performance than orthogonal wavelet �lters and even-

symmetric �lters. The EZW coding and ZTE coding schemes provide more or less the same coding eÆciency

but di�erent 
exibilities and functionalities. In most cases, the subsampling strategy that favors the signal

processing gain achieves better coding performance. However, in very low bit rate case, the subsampling

strategy that favors zerotree coding gain tends to be more eÆcient. Compared with SA-DCT coding and

Egger's wavelet coding, SA-DWT coding provides higher PSNR values and visibly better quality for all test
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(a) Original visual object (Akiyo cif) where region in the white box is to be enlarged in (b) through (e)

(b) 2x enlarged portion of the original visual object

(c) 2x enlarged portion of the reconstructed visual object at 0.9538bpp using SA-DWT coding in MPEG-4

(PSNR-Y=38.06dB; PSNR-U=43.43dB; PSNR-V=43.25dB).
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(d) 2x enlarged portion of the reconstructed visual object at 1.0042bpp using SA-DCT coding

(PSNR-Y=37.09dB; PSNR-U=42.14dB; PSNR-V=42.36dB).

(e) 2x enlarged portion of the reconstructed visual object at 1.0065bpp using Egger's wavelet method

(PSNR-Y=36.40dB; PSNR-U=42.53dB; PSNR-V=42.40dB).

Figure 13: Original and reconstructed visual objects in the Akiyo-CIF sequence.
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(a) Original visual object (Building 1024x1024) where region in the white box is to be enlarged in (b) through (e)

(b) 2x enlarged portion of the original visual object

(c) 2x enlarged portion of the reconstructed visual object at 0.8889bpp using SA-DWT coding in MPEG-4

(PSNR-Y=32.73dB; PSNR-U=42.26dB; PSNR-V=42.43dB).
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(d) 2x enlarged portion of the reconstructed visual object at 0.9542bpp using SA-DCT coding

(PSNR-Y=32.64dB; PSNR-U=41.89dB; PSNR-V=42.20dB).

(e) 2x enlarged portion of the reconstructed visual object at 0.9227bpp using Egger's wavelet method

(PSNR-Y=31.80dB; PSNR-U=42.81dB; PSNR-V=42.12dB).

Figure 14: Original and reconstructed visual objects in the building image.
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sequences at all bitrate levels (in most cases, with a smaller number of total bits too).

5 CONCLUSION

This paper presents a comprehensive description of shape adaptive wavelet coding schemes for coding arbi-

trarily shaped visual objects. The number of wavelet coeÆcients after the SA-DWT is identical to the number

of pixels in the arbitrarily shaped visual object. The spatial correlation and wavelet transform properties,

such as locality property and self-similarity across subbands, are well preserved in the SA-DWT. For a rect-

angular region, the SA-DWT becomes identical to a conventional wavelet transform. Detailed descriptions of

the SA-DWT techniques for three di�erent types of wavelet �lters, namely, orthogonal �lters, odd symmetric

biorthogonal �lters, and even symmetric biorthogonal �lters, are presented. The subsampling strategies for

the SA-DWT coeÆcients are discussed. An eÆcient method of extending the Zerotree Coding technique

to coding the SA-DWT coeÆcients with don't-care values is presented. Extensive experiment results have

shown that the shape adaptive wavelet coding technique consistently performs better than SA-DCT coding

and other wavelet based schemes for coding arbitrarily-shaped visual objects.
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Appendix

The properties of di�erent wavelet �lters and wavelet analysis and synthesis processes are summarized as

follows.

A.1 Orthogonal Filters

Assuming orthogonal wavelet �lters with L taps, let the lowpass analysis �lter taps be g(i), i = 0; : : : ; L� 1

and highpass analysis �lter taps be h(i), i = 0; : : : ; L� 1. They have the following relationship,

h(i) = (�1)L�1�ig(L� 1� i); for i = 0; : : : ; L� 1: (A-1)

Let the lowpass synthesis �lter be e(i), then

e(i) = g(L� 1� i); for i = 0; : : : ; L� 1: (A-2)

Let the highpass synthesis �lter be f(i), then

f(i) = h(L� 1� i); for i = 0; : : : ; L� 1: (A-3)

Note that, for orthogonal �lters, the �lter length L is an even number.

The analysis �ltering process is given by

T (i) =

L�1X

j=0

x(i+ j � L=2 + 1)g(L� 1� j) (lowpass); (A-4)

S(i) =

L�1X

j=0

x(i+ j � L=2 + 1)h(L� 1� j) (highpass); (A-5)

where T (i) and S(i) are the lowpass band and highpass band �lter outputs before subsampling, respectively.

The wavelet coeÆcients from the analysis are obtained by subsampling the above �ltering results by a factor

of 2. Subsampling can be either at even positions or at odd positions and can be described as follows,
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C(i) = T (2i� s); (A-6)

D(i) = S(2i� s); (A-7)

where C(i) and D(i) are the lowpass and highpass wavelet coeÆcients, respectively, and s = 0 if subsampling

at even positions and s = 1 if subsampling at odd positions.

To perform wavelet synthesis, these coeÆcients are �rst upsampled by a factor of 2. The upsampling

process is given as follows,

P (2i� s) = C(i);P (2i+ 1� s) = 0; (A-8)

Q(2i� s) = D(i);Q(2i+ 1� s) = 0; (A-9)

where P (k) and Q(k) are upsampled lowpass and highpass coeÆcients, respectively. Then the synthesis

�ltering process is given as follows:

u(i) =

L�1X

j=0

P (i� L=2 + j)e(L� 1� j) (lowpass); (A-10)

v(i) =

L�1X

j=0

Q(i� L=2 + j)f(L� 1� j) (highpass); (A-11)

r(i) = u(i) + v(i); (A-12)

where r(i) is the reconstructed signal.

A.2 Odd Symmetric Biorthogonal Filters

Assuming odd symmetric biorthogonal wavelet �lters with Lg (odd) taps for the lowpass �lter and Lh (odd)

taps for the highpass �lter, let the lowpass analysis �lter taps be g(i), i = 0; : : : ; Lg � 1 and the highpass

analysis �lter taps be h(i), i = 0; : : : ; Lh � 1. They have the following properties,

g(i) = g(Lg � 1� i); for i = 0; : : : ; (Lg � 1)=2; (A-13)

h(i) = h(Lh � 1� i); for i = 0; : : : ; (Lh � 1)=2: (A-14)

Let the lowpass synthesis �lter be e(i), then

e(i) = (�1)i+1h(i); for i = 0; : : : ; Lh � 1; (A-15)

Let the highpass synthesis �lter be f(i), then

f(i) = (�1)ig(i); for i = 0; : : : ; Lg � 1: (A-16)

The analysis �ltering process is given by

T (i) =

Lg�1X

j=0

x(i+ j � (Lg � 1)=2)g(Lg � 1� j) (lowpass), (A-17)

S(i) =

Lh�1X

j=0

x(i+ j � (Lh � 1)=2)h(Lh � 1� j) (highpass), (A-18)

where T (i) and S(i) are the lowpass band and highpass band �lter outputs before subsampling, respectively.

The wavelet coeÆcients from the analysis are obtained by subsampling the above �ltering results by a

factor of 2. Subsampling can be either at even positions or at odd positions. However, in order to use

the symmetric extensions, the subsampling of lowpass coeÆcients and that of highpass coeÆcients always

have one sample shift. If the subsampling positions of lowpass coeÆcients are even, then the sub-sampling
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positions of highpass coeÆcients should be odd, or vice versa. The subsampling process is described as

follows,

C(i) = T (2i� s); (A-19)

D(i) = S(2i+ 1� s); (A-20)

where C(i) and D(i) are the lowpass and highpass wavelet coeÆcients, respectively. s = 0 if the lowpass

subsampling positions are even and s = 1 if they are odd. Note that subsampling of highpass coeÆcients

always has one sample advance. To perform synthesis, these coeÆcients are �rst upsampled by a factor of

2. The upsampling process is given as follows,

P (2i� s) = C(i);P (2i+ 1� s) = 0; (A-21)

Q(2i+ 1� s) = D(i);Q(2i+ s) = 0; (A-22)

where P (k) and Q(k) are upsampled lowpass and highpass coeÆcients, respectively. Then the synthesis

�ltering process is given as follows:

u(i) =

Lh�1X

j=0

P (i� (Lh � 1)=2 + j)e(Lh � 1� j) (lowpass), (A-23)

v(i) =

Lg�1X

j=0

Q(i� (Lg � 1)=2 + j)f(Lg � 1� j) (highpass), (A-24)

r(i) = u(i) + v(i); (A-25)

where r(i) is the reconstructed signal.

A.3 Even Symmetric Biorthogonal Filters

Assuming even symmetric biorthogonal wavelet �lters with Lg (even) taps for the lowpass �lter and Lh

(even) taps for the highpass �lter, let the lowpass analysis �lter taps be g(i), i = 0; : : : ; Lg � 1 and the

highpass analysis �lter taps be h(i), i = 0; : : : ; Lh � 1. They have the following properties,

g(i) = g(Lg � 1� i); for i = 0; : : : ; Lg=2� 1; (A-26)

h(i) = h(Lh � 1� i); for i = 0; : : : ; Lh=2� 1: (A-27)

Let the lowpass synthesis �lter be e(i), then

e(i) = (�1)i+1h(i); for i = 0; : : : ; Lh � 1: (A-28)

Let the highpass synthesis �lter be f(i), then

f(i) = (�1)ig(i); for i = 0; : : : ; Lg � 1: (A-29)

The analysis �ltering process is given by

T (i) =

Lg�1X

j=0

x(i+ j � Lg=2 + 1)g(Lg � 1� j) (lowpass), (A-30)

S(i) =

Lh�1X

j=0

x(i+ j � Lh=2 + 1)h(Lh � 1� j) (highpass), (A-31)

where T (i) and S(i) are the lowpass band and highpass band �lter outputs before subsampling, respectively.

The wavelet coeÆcients from the analysis are obtained by subsampling the above �ltering results by a factor
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of 2. Subsampling can be either at even positions or at odd positions. The subsampling process is described

as follows,

C(i) = T (2i� s); (A-32)

D(i) = S(2i� s); (A-33)

where C(i) and D(i) are the lowpass and highpass wavelet coeÆcients, respectively. s = 0 if the subsampling

positions for lowpass and highpass coeÆcients are even and s = 1 otherwise. To perform synthesis, these

wavelet coeÆcients are �rst upsampled by a factor of 2. The upsampling process is given as follows,

P (2i� s) = C(i);P (2i+ 1� s) = 0; (A-34)

Q(2i� s) = D(i);Q(2i+ 1� s) = 0; (A-35)

where P (k) and Q(k) are upsampled lowpass and highpass wavelet coeÆcients, respectively. Then the

synthesis �ltering process is given as follows,

u(i) =

Lh�1X

j=0

P (i� Lh=2 + j)e(Lh � 1� j) (lowpass), (A-36)

v(i) =

Lg�1X

j=0

Q(i� Lg=2 + j)f(Lg � 1� j) (highpass), (A-37)

r(i) = u(i) + v(i) (A-38)

where r(i) is the reconstructed signal.
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