
To appear in: CAV 2007. 1

Shape Analysis for Composite Data Structures

Josh Berdine†, Cristiano Calcagno], Byron Cook†, Dino Distefano‡,
Peter W. O’Hearn‡, Thomas Wies?, and Hongseok Yang‡

† = Microsoft Research,] = Imperial College
‡ = Queen Mary ? = University of Freiburg

Abstract. We propose a shape analysis that adapts to some of the
complex composite data structures found in industrial systems-level pro-
grams. Examples of such data structures include “cyclic doubly-linked
lists of acyclic singly-linked lists”, “singly-linked lists of cyclic doubly-
linked lists with back-pointers to head nodes”, etc. The analysis intro-
duces the use of generic higher-order inductive predicates describing spa-
tial relationships together with a method of synthesizing new parame-
terized spatial predicates which can be used in combination with the
higher-order predicates. In order to evaluate the proposed approach for
realistic programs we have performed experiments on examples drawn
from device drivers: the analysis proved safety of the data structure ma-
nipulation of several routines belonging to an IEEE 1394 (firewire) driver,
and also found several previously unknown memory safety bugs.

1 Introduction

Shape analyses are program analyses which aim to be accurate in the presence
of deep-heap update. They go beyond aliasing or points-to relationships to infer
properties such as whether a variable points to a cyclic or acyclic linked list (e.g.,
[6, 8, 11, 12]). Unfortunately, today’s shape analysis engines fail to support
many of the composite data structures used within industrial software. If the
input program happens only to use the data structures for which the analysis is
defined (usually unnested lists in which the field for forward pointers is specified
beforehand), then the analysis is often successful. If, on the other hand, the input
program is mutating a complex composite data structure such as a “singly-
linked list of structures which each point to five cyclic doubly-linked lists in
which each node in the singly-linked list contains a back-pointer to the head of
the list” (and furthermore the list types are using a variety of field names for
forward/backward pointers), most shape analyses will fail to deliver informative
results. Instead, in these cases, the tools typically report false declarations of
memory-safety violations when there are none. This is one of the key reasons
why shape analysis has to date had only a limited impact on industrial code.

In order to make shape analysis generally applicable to industrial software
we need methods by which shape analyses can adapt to the combinations of
data structures used within these programs. Towards a solution to this problem,
we propose a new shape analysis that dynamically adapts to the types of data
structures encountered in systems-level code.

In this paper we make two novel technical contributions. We first propose
a new abstract domain which includes a higher-order inductive predicate that
specifies a family of linear data structures. We then propose a method that syn-
thesizes new parameterized spatial predicates from old predicates using infor-
mation found in the abstract states visited during the execution of the analysis.
The new predicates can be defined using instances of the inductive predicate in
combination with previously synthesized predicates, thus allowing our abstract
domain to express a variety of complex data structures.

We have tested our approach on set of small (i.e. <100 LOC) examples
representative of those found in systems-level code. We have also performed a
case study: applying the analysis to data-structure manipulating routines found
in a Windows IEEE 1394 (firewire) device driver. Our analysis proved safety
of the data structure manipulation in a number of cases, and found several
previously unknown memory-safety violations in cases where the analysis failed
to prove memory safety.

Related work. A few shape analyses have been defined that can deal with more
general forms of nesting. For example, the tool described in [7] infers new in-
ductive data-structure definitions during analysis. Here, we take a different tack.
We focus on a single inductive predicate which can be instantiated in multiple
ways using higher-order predicates. What is discovered here is the predicates
for instantiation. The expressiveness of the two approaches is incomparable. [7]
can handle varieties of trees, where the specific abstraction given in this paper
cannot. Conversely, our domain supports doubly-linked list segments and lists of
cyclic lists with back-pointers, where [7] cannot due to the fact that these data
structures require inductive definitions with more than two parameters and the
abstract domain of [7] cannot express such definitions.

The parametric shape analysis framework of [9, 16] can in principle describe
any finite abstract domain: there must exist some collection of instrumentation
predicates that could describe a range of nested structures. Indeed, it could be the
case that the work of [10], which uses machine learning to find instrumentation
predicates, would be able in principle to infer predicates precise enough for the
kinds of examples in this paper. The real question is whether or not the resulting
collection of instrumentation predicates would be costly to maintain (whether in
TVLA or by other means). There has been preliminary work on instrumentation
predicates for composite structures [14], but as far as we are aware it has not
been implemented or otherwise evaluated experimentally.

Work on analysis of complex structures using regular model checking includes
an example on a list of lists [3]. The encoding scheme in [3] seems capable of
describing many of the kinds of structure considered in this paper; again, the
pertinent question is about the cost of the subsequent fixed-point calculation. It
would be interesting to apply that analysis to a wider range of test programs.

A recent paper [17] also considers a generalized notion of linear data struc-
ture. It synthesizes patterns from heap configurations in a way that has some
similarities with our predicate discovery method, in particular in generalizing re-
peated subgraphs with a kind of list structure. However, unlike ours, the abstract

2

domain in [17] does not treat nested data structures such as lists of lists.

2 Synthesized Predicates and General Induction Schemes

The analysis described in this paper fits into the common structure of shape
analyses based on abstract interpretation (e.g. [15, 16]) in which a fixed-point
computation performs symbolic execution (a.k.a. update) together with focusing
(a.k.a. rearrangement or coercion) to partially concretize abstract heaps and
abstraction (a.k.a. canonicalization or blurring) to aid convergence to a fixed
point. In this work we use a representation of abstract states based on separation
logic formulæ, building on the methods of [1, 4].

There are two key technical ideas used in our new analysis:

Generic inductive spatial predicates: We define a new abstract domain which
uses a higher-order generalization of the list predicates considered in the
literature on separation logic.1 In effect, we propose using a restricted subset
of a higher-order version of separation logic [2]. The list predicate used in
our analysis, ls Λ (x, y, z, w), describes a (possibly empty, possibly cyclic,
possibly doubly-) linked list segment where each node in the segment itself
is a data structure (e.g. a singly-linked list of doubly-linked lists) described
by Λ. The ls predicate allows us to describe lists of lists or lists of structs of
lists, for example, by an appropriate choice of Λ.

Synthesized parameterized non-recursive predicates: The abstraction phase of
the analysis, which simplifies the symbolic representations of heaps, in our
case is also designed to discover new predicates which are then fed as param-
eters to the higher-order inductive (summary) predicates, thereby triggering
further simplifications. It is this predicate discovery aspect that gives our
analysis its adaptive flavor.

Example. Fig. 1 shows a heap configuration typical of a Windows device driver.
This configuration can be found, for example, in the Windows device driver sup-
porting IEEE 1394 (firewire) devices, 1394DIAG.SYS. In this figure the pointer
devObj is a pointer to a device object, defined by a Windows kernel structure
called DEVICE_OBJECT. Each device object has a pointer to a device extension,
which is used in essence as a method of polymorphism: device drivers declare
their own driver-specific device extension type. In the case of 1394DIAG.SYS, the
device extension is named DEVICE_EXTENSION and is defined to hold a number
of locks, lists, and other data. For simplicity, in Fig. 1 we have depicted only
three of the five cyclic doubly-linked lists in DEVICE_EXTENSION. Two of the
three circular lists contain nested acyclic lists, and the nodes of these two lists
have pointers back to the shared header DEVICE_EXTENSION. A subtle point is
that these nested lists (via pMdl or IsochDescriptor_Mdl) can be either empty
or nonempty. This requires using a Λ in ls Λ (x, y, z, w) that covers both empty
1 In this paper we concentrate on varieties of linked list, motivated by problems in

device drivers, but the basic ideas might also be applied with other structures.

3

MDL
DEVICE_OBJECT

AsynchAddressData_Flink

pMld
AsynchAddressData_Blink

pMld pMld

NULL

ASYNCH_ADDRESS_DATA ASYNCH_ADDRESS_DATA ASYNCH_ADDRESS_DATA

NextNext Next NULL NextNext
NULL

AsynchAddressData_Flink

AsynchAddressData_Blink

AsynchAddressData_Flink

AsynchAddressData_Blink

BusReserIrp_Flink

BusResetIrp_Blink

D
E
V
I
C
E
_
E
X
T
E
N
S
I
O
N

IsochDetachData_Flink

DeviceExtension
DeviceExtension

DeviceExtension

IsochDetachData_Blink

DeviceExtension

devObj
NULL

BUS_RESET_IRPS BUS_RESET_IRPS BUS_RESET_IRPS BUS_RESET_IRPS

ISOCH_DETACH_DATA ISOCH_DETACH_DATA ISOCH_DETACH_DATA

NextNext Next Next NULL

NextNext Next NULL

IsochDescriptor_Mdl

IsochDescriptor_Mdl

IsochDescriptor_Mdl

IsochDetachData_Flink

IsochDetachData_Blink

IsochDetachData_Flink

IsochDetachData_Blink

IsochDetachData_Flink
IsochDetachData_Blink

BusReserIrp_Flink

BusResetIrp_Blink

BusReserIrp_Flink BusReserIrp_Flink BusReserIrp_Flink

BusResetIrp_Blink BusResetIrp_Blink BusResetIrp_Blink

AsynchAddressData_Flink

DeviceExtension AsynchAddressData_Blink

DeviceExtension
DeviceExtension

MDL MDL MDL MDL

MDL MDL

MDL MDL MDL MDL MDL

Fig. 1. Device driver-like heap configuration.

and nonempty linked lists; in contrast, when dealing with lists without nesting,
it was possible to consider nonempty lists only [4].

There is further nesting that the kernel can see, that we have not depicted
in the diagram. Each DEVICE_OBJECT participates in two further linked lists,
one a list of all firewire drivers connected to a system, and the other a stack
containing various drivers. This yields a “lists of lists of lists” nesting structure.
More significantly, since DEVICE_OBJECT nodes participate in different linked
lists we have overlapping structures, resulting in “deep sharing” reminiscent of
that found in graphs. It is possible to write a logical formula to describe such
structures. But, as far as we are aware, a tractable treatment of deep sharing
remains an open problem in shape analysis. This paper is no different. Our
abstract domain can describe nesting of disjoint sublists, but not overlapping
structures. We state this just to be clear about this limitation of our approach.

When the abstraction step from our analysis is applied to the heap in Fig. 1
several predicates are discovered. Consider the singly-linked lists coming out of
nodes in the first and third doubly-linked lists. Fig. 1 shows six of those lists,
two of which are empty. These lists consist of C structures of type MDL, and
they can be described by “ls ΛMDL (e′, , 0,)” for some e′. Here the predicate
ΛMDL(x′, y′, z′, w′) (shown in Fig. 2) is a predicate that takes in four parameters

4

ΛMDL , λ[x′, y′, z′, w′, ()]. x=w′ ∧ x′ 7→ MDL(Next : z′)

ΛAsync , λ[x′, y′, z′, w′, (e′)]. x′=w′ ∧
x′ 7→ ASYNC ADDRESS DATA(AsyncAddressData Blink : y′, AsyncAddressData Flink : z′,

DeviceExtension : de, pMdl : e′) ∗ ls ΛMDL (e′, , 0,)

ΛBus , λ[x′, y′, z′, w′, ()]. x′=w′ ∧ x′ 7→BUS RESET IRP(BusResetIrp Blink : y′, BusResetIrp Flink : z′)

ΛIsoch , λ[x′, y′, z′, w′, (e′)]. x′=w′ ∧
x′ 7→ ISOCH DETACH DATA(IsochDetachData Blink : y′, IsochDetachData Flink : z′,

DeviceExtension : de, IsochDescriptor Mdl : e′) ∗
ls ΛMDL (e′, , 0,)

H , devObj 7→ DEVICE OBJECT(DeviceExtension : de) ∗
de 7→ DEVICE EXTENSION(AsyncAddressData Flink : a′, AsyncAddressData Blink : a′′,

BusResetIrp Flink : b′, BusResetIrp Blink : b′′,

IsochDetachData Flink : i′, IsochDetachData Blink : i′′) ∗
ls ΛAsync (a′, de, de, a′′) ∗ ls ΛBus (b′, de, de, b′′) ∗ ls ΛIsoch (i′, de, de, i′′)

Fig. 2. Parameterized predicates inferred from the heap in Fig. 1, and the result H
of abstracting the heap with those predicates. In the predicates ΛAsync and ΛIsoch , e′

is not a parameter, but an existentially quantified variable inside the body of Λ.

(as do all parameterized predicates in this work) and then, using 7→ from sepa-
ration logic, says that a cell with type MDL is allocated at the location pointed
to by x′, and that the value of the Next field is equal to z′.

Next, the three doubly-linked lists are described with further instances of ls,
obtained from predicates ΛAsync , ΛBus , and ΛIsoch in Fig. 2. ΛAsync and ΛIsoch

describe nodes which have pointers to the header de, and which also point to
nested singly-linked lists. Those predicates are built from ΛMDL, a parameterized
predicate for describing singly-linked lists.

The original heap is covered by the separation logic formula H in Fig. 2. The
separating conjunction ∗ is used to describe three distinct doubly-linked lists
which themselves are disjoint from structures de and devObj. In reading these
formulæ, it is crucial to realize that the device extension, de, is not one of the
nodes in the portion of memory described by any of the three ∗-conjuncts at
the bottom. For instance, ls ΛAsync (a′, de, de, a′′) describes a “partial” doubly-
linked list from a′ to a′′, with an incoming pointer from de to a′ and an out-
going pointer from a′′ to de. Circularity in this case is decomposed into the
∗-composition of a single node, de, and an acyclic structure. The formula H is
more abstract than the beginning heap in that the lengths of the doubly-linked
lists and of nested singly-linked lists have been forgotten: this formula is also
satisfied by heaps similar to that in Fig. 1 but of different size.

3 Symbolic Heaps with Higher-Order Predicates

We now define the abstract domain of symbolic heaps over which our analysis is
defined. Let Var be a finite set of program variables, and Var ′ be an infinite set
of variables disjoint from Var . We use Var ′ as a source of auxiliary variables to
represent quantification, parameters to predicates, etc. Let Fld be a finite set of

5

field names and Loc be a set of memory locations.
In this paper, we consider the storage model given by Stack , (Var ∪

Var ′)�Val , Heap , Loc ⇀fin (Fld ⇀ Val), and States , Stack × Heap. Thus, a
state consists of a stack s and a heap h, where the stack s specifies the values of
program (non-primed) variables as well as those of auxiliary (primed) variables.
In our model, each heap cell stores a whole structure; when h(l) is defined, it is
a partial function k where the domain of k specifies the set of fields declared in
the structure l, and the action of k specifies the values of those fields.

Our analysis uses symbolic heaps specified by the following grammar:

x ∈ Var variables
x′ ∈ Var ′ primed variables
f ∈ Fld fields

E ::= x | x′ | nil expressions
Π ::= true | E=E | E 6=E | Π ∧Π pure formulæ

Σ ::= emp | Σ ∗Σ | E 7→T (~f : ~E) | ls Λ (E,E,E, E) | true spatial formulæ
H ::= Π ∧Σ symbolic heaps
Λ ::= λ[x′, x′, x′, x′, ~x′].H par. symb. heaps

When Λ = λ[x′, y′, z′, w′, ~v′].H, we could have written Λ(x′, y′, z′, w′, ~v′) = H.
We write Λ[D,E, F, G, ~C] for the symbolic heap obtained by instantiating Λ’s pa-
rameters: (λ[x′, y′, z′, w′, ~v′].H)[D,E, F, G, ~C] = H[D/x′, E/y′, F/z′, G/w′, ~C/~v′].

The predicate “ls Λ (If , Ob, Of , Ib)” represents a segment of a (generic)
doubly-linked list, where the shape of each node in the list is described by the first
parameter Λ (i.e., each node satisfies this parameter), and some links between
this segment and the rest of the heap are specified by the other parameters. Pa-
rameters If (the forward input link) and Ib (the backward input link) denote the
(externally visible) memory locations of the first and last nodes of the list seg-
ment. The analysis maintains the links from the outside to these exposed cells,
so that the links can be used, say, to traverse the segment. Usually, If denotes
the address of the “root” of a data structure representing the first node, such
as the head of a singly-linked list. The common use of Ib is similar. Parameters
Ob (called backward output link) and Of (called forward output link) represent
links from (the first and last nodes of) the list segment to the outside, which the
analysis decides to maintain. Pictorially this can be viewed as:

....
Ib

Λ Λ
Of

Λ
Ob

If

When lists are cyclic, we will have Of=If and Ob=Ib.

Generalized ls. The formal definition of ls is given as follows. For a parameterized
symbolic heap Λ, ls Λ (If , Ob, Of , Ib) is the least predicate that holds iff

(If = Of ∧ Ib = Ob∧emp)∨ (∃x′, y′, ~z′. (Λ[If , Ob, x
′, y′, ~z′]) ∗ ls Λ (x′, y′, Of , Ib))

6

where x′, y′, ~z′ are chosen fresh. A list segment is empty, or it consists of a node
described by an instantiation of Λ and a tail satisfying ls Λ (x′, y′, Of , Ib). Note
that Λ is allowed to have free primed or non-primed variables. They are used to
express the links from the nodes that are targeted for the same address, such as
head pointers common to every element of the list.

Examples. The generic list predicate can express a variety of data structures:

– When Λs is λ[x′, y′, z′, x′, ()]. (x′ 7→ Node(Next : z′)) then the symbolic heap
ls Λs (x, y′, z, w′) describes a standard singly-linked list segment from x to
z. (Here note how we use the syntactic shorthand of including x′ twice in
the parameters instead of adding an equality to the predicate body.)

– A standard doubly-linked list segment is expressed by ls Λd (x, y, z, w) when
Λd is λ[x′, y′, z′, x′, ()]. x′ 7→ DNode(Blink : y′, Flink : z′).

– If Λh is λ[x′, y′, z′, x′, ()]. x′ 7→ HNode(Next : z′, Head : k), the symbolic heap
ls Λh (x, y′, nil, w′) expresses a nil-terminated singly-linked list x where each
element has a head pointer to location k.

– Finally, when Λ is

λ[x′, y′, z′, x′, (v′, u′)].
x′ 7→ SDNode(Next : z′, Blink : u′, Flink : v′) ∗ ls Λd (v′, x′, x′, u′)

then ls Λ (x, y′, nil, w′) describes a singly-linked list of cyclic doubly-linked
lists where each singly-linked list node is the sentinel node of the cyclic
doubly-linked list.

Abstract domain. Let FV(X) be the non-primed variables occurring in X and
FV′(X) be the primed variables. Let close(H) be an operation which existentially
quantifies all the free primed variables in H (i.e. close(H) , ∃FV′(H).H). We
use � to mean semantic entailment (i.e. that any concrete state satisfying the
antecedent also satisfies the consequent). The meaning of a symbolic heap H
(i.e. set of concrete states H represents) is defined to be the set of states that
satisfy close(H) in the standard semantics [13]. Our analysis assumes a sound
theorem prover `, where H ` H ′ implies H � close(H ′). The abstract domain
D# of our analysis is given by: SH , {H | H 0 false} and D# , P(SH)>. That
is, the abstract domain is the powerset of symbolic heaps with the usual subset
order, extended with an additional greatest element > (indicating a memory-
safety violation such as a double disposal). Semantic entailment � can be lifted
to D# as follows: d � d′ if d′ is >, or if neither d nor d′ is > and any concrete
state that satisfies the (semantic) disjunction

∨
d also satisfies

∨
d′.

4 Canonicalization

As is standard, our shape analysis computes an invariant assertion for each pro-
gram point expressed by an element of the abstract domain. This computation
is accomplished via fixed-point iteration of an abstract post operator that over-
approximates the concrete semantics of the program.

7

Define spatial(Π ∧ Σ) to be Σ.

E=x′ ∧ H ; H[E/x′]
(Equality)

x′ 6∈ FV′(spatial(H))

E 6=x′ ∧ H ; H
(Disequality)

FV(If , Ib) = ∅ FV′(If , Ib) ∩ FV′(spatial(H)) = ∅
H ∗ ls Λ (If , Ob, Of , Ib) ; H ∗ true

(Junk 1)

FV(E) = ∅ FV′(E) ∩ FV′(spatial(H)) = ∅

H ∗ (E 7→ T (~f : ~E)) ; H ∗ true
(Junk 2)

H0 ` H1 ∗ ls Λ (If , Ob, x′, y′) ∧ If 6= x′ {x′, y′} ∩ FV′(spatial(H1)) ⊆ {If , Ib}

H0 ∗ ls Λ (x′, y′, Of , Ib) ; H1 ∗ ls Λ (If , Ob, Of , Ib)
(Append Left)

H0 ` H1 ∗ ls Λ (x′, y′, Of , Ib) ∧ x′ 6= Of {x′, y′} ∩ FV′(spatial(H1)) ⊆ {If , Ib}

H0 ∗ ls Λ (If , Ob, x′, y′) ; H1 ∗ ls Λ (If , Ob, Of , Ib)
(Append Right)

Λ ∈ Preds(H0) H0 ` H1 ∗ Λ[If , Ob, x
′
, y

′
, ~u′] ∗ Λ[x

′
, y

′
, Of , Ib, ~v′]

({x′
, y

′} ∪ ~u′ ∪ ~v′) ∩ FV′
(spatial(H)) ⊆ {If , Ib}

H0 ; H1 ∗ ls Λ (If , Ob, Of , Ib)
(Predicate Intro)

Fig. 3. Rules for Canonicalization.

The abstract semantics consists of three phases: materialization, execution,
and canonicalization. That is, the abstract post [[C]] for some loop-free concrete
command C is given by the composition materializeC ; executeC ; canonicalize.
First, materializeC partially concretizes an abstract state into a set of abstract
states such that, in each, the footprint of C (that portion of the heap that C
may access) is concrete. Then, executeC is the pointwise lift of symbolically
executing each abstract state individually. Finally, canonicalize abstracts each
abstract state in effort to help the analysis find a fixed point.

The materialization and execution operations of [1, 4] are easily modified for
our setting. In contrast, the canonicalization operator for our abstract domain
significantly departs from [4] and forms the crux of our analysis. We describe it
in the remainder of this section.

Canonicalization performs a form of over-approximation by soundly removing
some information from a given symbolic heap. It is defined by the rewriting rules
(;) in Fig. 3. Canonicalization applies those rewriting rules to a given symbolic
heap according to a specific strategy until no rules apply; the resulting symbolic
heap is called canonical .

The AppendLeft and AppendRight rules (for the two ends of a list) roll up
the inductive predicate, thereby building new lists by appending one list onto
another. Note that the appended lists may be single nodes (i.e. singleton lists).
Crucially, in each case we should be able to use the same parameterized predicate
Λ to describe both of the to-be-merged entities: The canonicalization rules build
homogeneous lists of Λ’s. The variable side-conditions on the rules are necessary
for precision but not soundness; they prevent the rules from firing too often.

The Predicate Intro rule from Fig. 3 represents a novel aspect of our canonical-
ization procedure. It requires a predicate Λ that can be used to describe similar

8

portions of heap, and two appropriately connected Λ nodes are removed from
the symbolic heap and replaced with an ls Λ formula. The function Preds in the
rule takes a symbolic heap as an argument and returns a set of predicates Λ. It is
a parameter of our analysis. One possible choice for Preds is “fixed abstraction”,
where a fixed finite collection of predicates is given beforehand, and Λ is drawn
from that fixed collection. Another approach is to consider an “adaptive abstrac-
tion”, where the predicates Λ are inferred by scrutinizing the linking structure in
symbolic heaps encountered during analysis. There is a tradeoff here: the fixed
abstraction is simpler and can be effective, but requires more input from the
user. We describe an approach to adaptive abstraction in the next section.

There is one further issue to consider in implementing the Predicate Intro
rule. The first has to do with the entailment H0 ` – in the premise of the
rule. We require a frame inferring theorem prover [1]—a prover for entailments
H0 ` H1 ∗H2 where only H0 and H2 are given and H1 is inferred. While the aim
of a frame inferring theorem prover is to find a decomposition of H0 into H1 and
H2 such that the entailment holds, frame inference should just decompose the
formula, not weaken it (or else frame inference could always return H1 = true).
So for a call to frame inference, we not only require the entailment to hold, but
also require that there exists a disjoint extension of the heap satisfying H2, and
the extended heap satisfies H0.2

There is a progress measure for the rewrite rules, so ; is strongly normal-
izing. The crucial fact underlying soundness is that all canonicalization rules
correspond to true implications in separation logic, i.e. we have that H � H ′

whenever H ; H ′. This means that however we choose to apply the rules,
we will always maintain soundness of the analysis. In particular, soundness is
independent of the choice of the Preds function used in the Predicate Intro rule.

There are two sources of nondeterminism in the ; relation: the choice of
order in which rules are applied, and the choice of which Λ to use in the Predicate
Intro rule. The latter appears to be much more significant in practice than the
former. In the implementation we have used a deterministic reduction strategy
with no backtracking. But changes in the strategy for choosing Λ can have a
dramatic impact on the performance and precision of the analysis algorithm.

5 Predicate Discovery

We now give a particular specification of the Preds function in the (Predicate Intro)
rule, based on the idea of similar repeated subgraphs. We emphasize that the
graph view of a symbolic heap is intuitive but does not need semantic analysis
here: as we indicated above, soundness of the analysis is independent of Preds.
We are just describing one particular instance of Preds, which might be viewed
as an heuristic constraint on the choice of new predicates.

The idea is to treat the spatial part of a symbolic heap H as a graph,
where each atomic ∗-conjunct in H becomes a node in the graph; for instance,
2 Different strengths of prover ` can be considered. A weak one would essentially just

do graph decomposition for frame inference.

9

E 7→ T (~f : ~E) becomes a node E with outgoing edges ~E. The algorithm starts by
looking for nodes that are connected together by some fields, in a way that they
can in principle become the forward and/or backward links of a list. Call these
potential candidates root nodes, say El and Er. Once root nodes are found, the
procedure Preds(H) traverses the graph from El as well as from Er simultane-
ously, and checks whether those two traverses can produce two disjoint isomor-
phic subgraphs. The shape defined by these subparts is then generalized to give
the definition of the general pattern of their shape which provides the definition
of the newly discovered predicate Λ. Preds(H) returns the candidate heaps for
use in the (Predicate Intro) rule.

discover(H : symbolic heap) : predicate =

let Σ = spatial(H)
let ΣΛ = emp

let I = ∅ : set of expression pairs

let C = ∅ : multiset of expression pairs

choose (El, Er) ∈ {(El, Er) | Σ = El 7→f : Er ∗ Er 7→f : E ∗ Σ′}
let W = {(El, Er)} : multiset of expression pairs
do

choose (E0, E1) ∈ W
if E0 6= E1 then

if (E0, E1) /∈ C ∧ E0 /∈ rng(I) ∧ E1 /∈ dom(I) then

if Σ ` P (E0, ~F0) ∗ P (E1, ~F1) ∗ Σ′ then

W := W ∪ {(F0,0, F1,0), . . . , (F0,n, F1,n)}
I:= I ∪ {(E0, E1)}
Σ:= Σ′

ΣΛ:= ΣΛ ∗ P (E0, ~F0)
else fail

C:= C ∪ {(E0, E1)}
W := W − {(E0, E1)}

until W = ∅
let ~If , ~Of = [(E, F) | ∃G. (F, G) ∈ C ∧ (E, F) ∈ I]

let ~Ib, ~Ob = [(E, F) | ∃G. (F, E) ∈ C ∧ (E, G) ∈ I]

let ~x′ = FV′(ΣΛ)− FV′(~If , ~Of , ~Ib, ~Ob)

return (λ(~If , ~Ob, ~Of , ~Ib, ~x′). ΣΛ)

Fig. 4. Predicate discovery algorithm, where Preds(H) = {P | P = discover(H)}

Fig. 4 shows the pseudocode for the discovery algorithm. So far we have, in
the interest of clarity, dealt with Λ’s with parameters such as x′, y′, z′, w′, ~v′,
however in this section we admit that the analysis actually treats the more
general situation where there are multiple links between nodes, and so predicates
take parameters ~x′, ~y′, ~z′, ~w′, ~v′. The algorithm is expressed as a nondeterministic
function, using choose twice. Preds then collects the set of all possible results, for
instance by enumerating through the nondeterministic choices. The set I denotes
the subgraph isomorphism between the already traversed subgraphs reachable
from the chosen root nodes. The algorithm ensures that the two traverses are
disjoint. Here dom(I) denotes the projection of I to the left traverse starting
from root node El, respectively rng(I) denotes the right traverse starting from

10

Input symbolic heap
H = x′

0 7→T (f : x′
1, g : y′

0) ∗ x′
1 7→T (f : x′

2, g : y′
1) ∗ x′

2 7→T (f : x′
3, g : y′

2) ∗
ls Λ1 (y′

0, nil, z′
1, nil) ∗ y′

1 7→S(f : nil, b : x′
0) ∗ ls Λ1 (y′

2, x′
1, z′

2, nil)
where Λ1 = (λ(x′

1, x′
0, x′

2, x′
1). x′

1 7→S(f : x′
2, b : x′

0))

#Iters W C I ΣΛ

0 {(x′
1, x′

2)} ∅ ∅ emp
1 {(x′

2, x′
3), (y

′
1, y′

2)} {(x′
1, x′

2)} {(x′
1, x′

2)} x′
1 7→T (f : x′

2, g : y′
1)

2 {(y′
1, y′

2)} {(x′
1, x′

2), (x
′
2, x′

3)} {(x′
1, x′

2)} x′
1 7→T (f : x′

2, g : y′
1)

3 {(x′
0, x′

1)}
{(x′

1, x′
2), (x

′
2, x′

3),

(y′
1, y′

2)}
{(x′

1, x′
2), (y

′
1, y′

2)}
x′
1 7→T (f : x′

2, g : y′
1) ∗

ls Λ1 (y′
1, x′

0, z′
1, nil)

4 ∅
{(x′

1, x′
2), (x

′
2, x′

3),

(y′
1, y′

2), (x
′
0, x′

1)}
{(x′

1, x′
2), (y

′
1, y′

2)}
x1 7→T (f : x′

2, g : y′
1) ∗

ls Λ1 (y′
1, x′

0, z′
1, nil)

Discovered predicate
λ(x′

1, x′
0, x′

2, x′
1, (y′

1, z′
1)). x′

1 7→T (f : x′
2, g : y′

1) ∗ ls Λ1 (y′
1, x′

0, z′
1, nil)

Table 1. Example run of discovery algorithm

Er. The set C marks how often each pair of nodes is reachable from the two root
nodes. It is used for cycle detection and ensures termination of the traversal.

Whenever a new pair of nodes E0, E1 in the graph is discovered, the algo-
rithm needs to check whether they actually correspond to ∗-conjuncts of the
same shape. The simplest solution would be to check for syntactic equality. Un-
fortunately, this makes the discovery heuristic rather weak, e.g. we would not
be able to discover the list of lists predicate from a list where the sublists are
alternating between proper list segments and singleton instances of the sublist
predicate. Instead of syntactic equality our algorithm therefore uses the theorem
prover to check that the two nodes have the same shape. If they are not syntac-
tically equal, then the theorem prover tries to generalize it via frame inference:

Σ ` P (E0, ~F0) ∗ P (E1, ~F1) ∗Σ′ .

Here the predicate P (E, ~F) stands for either a points-to predicate or a list seg-
ment ls Λ (~If , ~Ob, ~Of , ~Ib) where E ∈ ~If ∪ ~Ib and ~F = ~Of , ~Ob. The generalized
shape P (E0, ~F0) of the node in the left traverse then contributes to the spatial
part of the discovered predicate.

Once the body of the predicate is complete the parameter list is constructed
to determine forward and backward links between instances of the predicate.
The forward and backward links between the two traverses are encoded in sets
I and C: e.g. if for a pair of nodes (F,G) ∈ C we have that F is in the right
traverse then there is a forward link going from the left traverse to node F . Thus
F is an outgoing forward link and the node E which is isomorphic to F is the
corresponding input link into the left traverse. If a pair (E,F) is reachable from
the root nodes in more than one way, then C keeps track of all of them. Multiple
occurrences of the same pair (E,F) in C then may contribute multiple links.

Table 1 shows an example run of the discovery algorithm. The input heap H
consists of a doubly-linked list of doubly-linked sublists where the backward link
in the top-level list comes from the first node in the sublist. The discovery of
the predicate describing the shape of the list would fail without the use of frame
inference. Note that Λ1 in the input symbolic heap could have been discovered

11

Routine LOC Space (Mb) Time (sec) Result

t1394 BusResetRoutine 718 322.44 663 X
t1394Diag CancelIrp 693 1.97 0.56 �
t1394Diag CancelIrpFix 697 263.45 724 X
t1394 GetAddressData 693 2.21 0.61 �
t1394 GetAddressDataFix 698 342.59 1036 X
t1394 SetAddressData 689 2.21 0.59 �
t1394 SetAddressDataFix 694 311.87 956 X
t1394Diag PnpRemoveDevice 1885 >2000.00 >9000 T/O

t1394Diag PnpRemoveDevice∗ 1801 369.87 785 X

Table 2. Experimental results on IEEE 1394 (firewire) Windows device driver rou-
tines. “X” indicates the proof of memory safety and memory-leak absence. “�”
indicates that a genuine memory-safety warning was reported. The lines of code
(LOC) column includes the struct declarations and the environment model code. The
t1394Diag PnpRemoveDevice∗ experiment used a precondition expressed in separa-
tion logic rather than non-deterministic environment code. Experiments conducted on
a 2.0GHz Intel Core Duo with 2GB RAM.

by a previous run of the algorithm on a more concrete symbolic heap, possibly
one containing no Λ’s at all.

6 Experimental Results

Before applying our analysis to larger programs we first applied it to a set of
small challenge problems reminiscent of those described in the introduction (e.g.
“Creation of a cyclic doubly-linked list of cyclic doubly-linked lists in which the
inner link-type differs from the outer list link-type”, “traversal of a singly-linked
list of singly-linked list which reverses each sublist twice”, etc). These challenge
problems were all less than 100 lines of code. We also intentionally inserted
memory leaks and faults into variants of these and other programs, which were
also correctly discovered.

We then applied our analysis to a number of data-structure manipulating
routines from the IEEE 1394 (firewire) device driver. This was much more chal-
lenging than the small test programs. We used an implementation restricted to
a simplified, singly-linked version of our abstract domain, in order to focus ex-
perimentation with the adaptive aspect of the analysis (we do not believe this
restriction to be fundamental). As a result, our model of the driver’s data struc-
tures was not exactly what the kernel can see. It turns out that the firewire code
happens not to use reverse pointers (except in a single library call, which we were
able to model differently) which means that our model is not too inaccurate for
the purpose of these experiments. Also, the driver uses a small amount of address
arithmetic in the way it selects fields (the “containing record idiom”), which we
replaced with ordinary field selection, and our tool does not check array bounds
errors, concentrating on pointer structures.

Our experimental results are reported in Table 2. We expressed the calling
context and environment as non-deterministic C code that constructed five cir-

12

cular lists with common header, three of which had nested acyclic lists, and two
of which contained back-pointers to the header; there were additionally numer-
ous other pointers to non-recursive objects. In one case we needed to manually
supply a precondition due to performance difficulties. The analysis proved safety
of a number of driver routines’ usage of these data structures, in a sequential
execution environment (see [5] for notes on how we can lift this analysis to a
concurrent setting). We also found several previously unknown bugs. As an ex-
ample, one error (from t1394 CancelIrp, Table 2) involves a procedure that
commits a memory-safety error on an empty list (the presumption that the list
can never be empty turns out not to be justified). This bug has been confirmed
by the Windows kernel team and placed into the database of device driver bugs
to be repaired. Note that this driver has already been analyzed by Slam and
other analysis tools—These bugs were not previously found due to the limited
treatment of the heap in the other tools. Indeed, Slam assumes memory safety.

The routines did scanning of the data structures, as well as deletion of a single
node or a whole structure. They did not themselves perform insertion, though the
environment code did. Predicate discovery was used in handling nesting of lists.
Just as importantly, it allowed us to infer predicates for the many pointers that
led to non-recursive objects, relieving us of the need to write these predicates
by hand. The gain was brought home when we wrote the precondition in the
t1394Diag PnpRemoveDevice∗ case. It involved looking at more than 10 struct
definitions, some of which had upwards of 20 fields.

Predicate discovery proved to be quite useful in these experiments, but fur-
ther work is needed to come to a better understanding of heuristics for its ap-
plication. And, progress is needed on the central scalability problem (illustrated
by the timeout observed for t1394Diag PnpRemoveDevice) if we are to have an
analysis that applies to larger programs.

7 Conclusion

We have described a shape analysis designed to fill the gap between the data
structures supported in today’s shape analysis tools and those used in industrial
systems-level software. The key idea behind this new analysis is the use of a
higher-order inductive predicate which, if given the appropriate parameter, can
summarize a variety of composite linear data structures. The analysis is then de-
fined over symbolic heaps which use the higher-order predicate when instantiated
with elements drawn from a cache of non-recursive predicates. Our abstraction
procedure incorporates a method of synthesizing new non-recursive predicates
from an examination of the current symbolic heap. These new predicates are
added into the cache of non-recursive predicates, thus triggering new rewrites
in the analysis’ abstraction procedure. These new predicates are expressed as
the combination of old predicates, including instantiations of the higher-order
predicates, thus allowing us to express complex composite structures.

We began this work with the idea sometimes heard, that systems code often
“just” uses linked lists, and we sought to test our techniques on such code. We
obtained encouraging, if partial, experimental results on routines from a firewire

13

device driver. However, we also found that lists can be used in combination in
subtle ways, and we even encountered an instance of sharing (described in Sec-
tion 2) which, as far as we know, is beyond current automatic shape analyses.
In general, real-world systems programs contain much more complex data struc-
tures than those usually found in papers on shape analysis, and handling the full
range of these structures efficiently and precisely presents a significant challenge.

Acknowledgments. We are grateful to the CAV reviewers for detailed comments
which helped us to improve the presentation. The London authors were sup-
ported by EPSRC.

References

[1] J. Berdine, C. Calcagno, and P. O’Hearn. Symbolic execution with separation
logic. In APLAS, 2005.

[2] B. Biering, L. Birkedal, and N. Torp-Smith. BI hyperdoctrines and higher-order
separation logic. In ESOP, 2005.

[3] A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract tree regular
model checking of complex dynamic data structures. SAS 2006.

[4] D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on
separation logic. In TACAS, 2006.

[5] A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-modular shape analysis.
In To appear in PLDI, 2007.

[6] B. Hackett and R. Rugina. Region-based shape analysis with tracked locations.
In POPL. 2005.

[7] O. Lee, H. Yang, and K. Yi. Automatic verification of pointer programs using
grammar-based shape analysis. In ESOP, 2005.

[8] T. Lev-Ami, N. Immerman, and M. Sagiv. Abstraction for shape analysis with
fast and precise transfomers. In CAV. 2006.

[9] T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses.
SAS 2000.

[10] A. Loginov, T. Reps, and M. Sagiv. Abstraction refinement via inductive learning.
CAV 2005.

[11] R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate abstraction
and canonical abstraction for singly-linked lists. In VMCAI. 2005.

[12] A. Podelski and T. Wies. Boolean heaps. In SAS, 2005.
[13] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In

LICS, 2002.
[14] N. Rinetzky, G. Ramalingam, M. Sagiv, and E. Yahav. Componentized heap

abstraction. TR-164/06, School of Computer Science, Tel Aviv Univ., Dec 2006.
[15] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages

with destructive updating. ACM TOPLAS, 20(1):1–50, 1998.
[16] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.

ACM TOPLAS, 24(3):217–298, 2002.
[17] M. Češka, P. Erlebach, and T. Vojnar. Generalised multi-pattern-based verifica-

tion of programs with linear linked structures. Formal Aspects Comput., 2007.

14

