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Shape Analysis of Elastic Curves in Euclidean
Spaces

Anuj Srivastava, Eric Klassen, Shantanu H. Joshi and Ian H. Jermyn

Abstract—This paper introduces a square-root velocity (SRV) representation for analyzing shapes of curves in Euclidean spaces

under an elastic metric. Due to this SRV representation the elastic metric simplifies to the L
2 metric, the re-parameterization

group acts by isometries, and the space of unit length curves becomes the unit sphere. The shape space of closed curves is

quotient space of (a submanifold of) the unit sphere, modulo rotation and re-parameterization groups, and we find geodesics

in that space using a path-straightening approach. These geodesics and geodesic distances provide a framework for optimally

matching, deforming and comparing shapes. These ideas are demonstrated using: (i) Shape analysis of cylindrical helices for

studying protein backbones, (ii) Shape analysis of facial curves for recognizing faces, (iii) A wrapped probability distribution for

capturing shapes of planar closed curves, and (iv) Parallel transport of deformations for predicting shapes from novel poses.

Index Terms—Elastic curves, Riemannian shape analysis, elastic metric, Fisher-Rao metric, square-root representations, path-

straightening method, elastic geodesics, parallel transport, shape models.

✦

1 INTRODUCTION

Shape is an important feature for characterizing objects

in several branches of science, including computer vision,

medical diagnostics, bioinformatics, and biometrics. The

variability exhibited by shapes within and across classes

are often quite structured and there is a need to capture

these variations statistically. One of the earliest works in

statistical analysis and modeling of shapes of objects came

from Kendall and colleagues [6], [12]. While this formu-

lation took major strides in shape analysis, its limitation

was the use of landmarks in defining shapes. Since the

choice of landmarks is often subjective, and also because

objects in images or in imaged scenes are more naturally

viewed as having continuous boundaries, there has been a

recent focus on shape analysis of curves and surfaces, albeit

in the same spirit as Kendall’s formulation. Consequently,

there is now a significant literature on shapes of continu-

ous curves as elements of infinite-dimensional Riemannian

manifolds called shape spaces. This highly-focused area

of research started with the efforts of Younes [33] who

first defined shape spaces of planar curves and imposed

Riemannian metrics on them. In particular, he computed

geodesic paths between curves under these metrics as open

curves and “closed” the curves along those geodesics to

obtain deformations between closed curves. Klassen et

al. [14] restricted to arc-length parameterized planar curves

and derived numerical algorithms for computing geodesics

between closed curves, the first ones to do so directly on
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Mathematics, Florida State University, Tallahassee, USA. S. H. Joshi
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the space of closed curves and in a manner that is invariant

to re-parameterization. Among other things, they applied

this framework to statistical modeling and analysis using

large databases of shapes [30]. Michor and Mumford [18]

and Mennucci [17], [32] have exhaustively studied several

choices of Riemannian metrics on spaces of planar curves

for the purpose of comparing their shapes. Mio et al. [20]

presented a family of elastic metrics that quantified the

relative amounts of bending and stretching needed to de-

form shapes into each other. Similarly, Shah [27] derived

geodesic equations for planar closed curves under different

elastic metrics and different representations of curves. In all

these formulations, a shape space is typically constructed

in two steps. First, a mathematical representation of curves

with appropriate constraints leads to a pre-shape space.

Then, one identifies elements of the pre-shape space that

belong to the same orbits of shape-preserving transforma-

tions (rotations, translations, and scalings, as well as re-

parameterizations). The resulting quotient space, i.e. the set

of orbits under the respective group actions, is the desired

shape space. If a pre-shape space is a Riemannian (Hilbert)

manifold, then the shape space can inherit this Riemannian

structure and become a quotient manifold or an orbifold.

The choice of a shape representation and a Riemannian

metric are critically important - for improved understand-

ing, physical interpretations, and efficient computing. This

paper introduces a particularly convenient representation

that enables simple physical interpretations of the resulting

deformations. This representation is motivated by the well-

known Fisher-Rao metric used previously for imposing a

Riemannian structure on the space of probability densities.

Taking the positive square-root of densities results in a

simple Euclidean structure where geodesics, distances, and

statistics are straightforward to compute [2], [28]. A similar

idea was introduced by Younes [33] and later used in

Younes et al. [34] for studying shapes of planar curves
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under an elastic metric. The representation used in the cur-

rent paper is similar to these earlier ideas, but is sufficiently

different to be applicable to curves in arbitrary R
n. The

main contributions of this paper are as follows:

1) Presentation of a square-root velocity (SRV) repre-

sentation for studying shapes of elastic closed curves

in R
n, first introduced in the conference papers [8],

[9]. This has several advantages as discussed later.

2) The use of a numerical approach, termed path-

straightening, for finding geodesics between shapes

of closed elastic curves. It uses a gradient-based

iteration to find a geodesic where, using the Palais

metric on the space of paths, the gradient is available

in a convenient analytical form.

3) The use of a gradient-based solution for optimal re-

parameterization of curves when finding geodesics

between their shapes. This paper compares the

strengths and weaknesses of this gradient solution

versus the commonly used Dynamic Programming

(DP) algorithm.

4) The application and demonstration of this framework

to: (i) shape analysis of cylindrical helices in R
3

for use in studies of protein backbone structures,

(ii) shape analysis of 3D facial curves, (iii) devel-

opment of a wrapped normal distribution to capture

shapes in a shape class, and (iv) parallel transport

of deformations from one shape to another. The last

item is motivated by the need to predict individual

shapes or shape models for novel objects, or novel

views of the objects, using past data. A similar

approach has been applied to shape representations

using deformable templates [35] and for studying

shapes of 3D triangulated meshes [13].

The proposed representation spaces for curves are

infinite-dimensional manifolds, or rather their quotient

spaces under the actions of infinite-dimensional groups.

The infinite-dimensionality of such representations is an

important challenge. At a conceptual level, however, it may

help a reader to understand the proposed solutions on finite-

dimensional manifolds at first and consider the issue of

infinite-dimensionality later. Also, we clarify the use of

word geodesic in this paper. We refer to a path with a

(covariantly) constant velocity (defined later in Section IV)

as a geodesic and the shortest geodesic between any two

points as a minimizing geodesic.

The paper is organized as follows. Section 2 introduces

the proposed elastic shape framework, while Section 3 dis-

cusses its merits relative to existing literature. Section 4 de-

scribes a path-straightening approach for finding geodesics

and a gradient-based approach for elastic curve registration.

Section 5 presents four applications of this framework. The

paper ends with a short summary in Section 6.

2 SHAPE REPRESENTATION

In order to develop a formal framework for analyzing

shapes of curves, one needs a mathematical representation

that is natural, general and efficient. We describe one such

representation.

2.1 SRV Representation and Pre-Shape Space

Let β be a parameterized curve (β : D → R
n), where D

is a certain domain for the parameterization. We are going

to restrict to those β that are absolutely continuous on D.

In general D will be [0, 1], but for closed curves it will be

more natural to have D = S
1. We define a mapping: F :

R
n → R

n according to F (v) ≡ v/
√

‖v‖ if ‖v‖ 6= 0 and 0
otherwise. Here, ‖ · ‖ is the Euclidean 2-norm in R

n; note

that F is a continuous map. For the purpose of studying

the shape of β, we will represent it using the square-root

velocity (SRV) function defined as q : D → R
n, where

q(t) ≡ F (β̇(t)) = β̇(t)/

√

‖ ˙β(t)‖ .

This representation includes those curves whose parame-

terization can become singular in the analysis. Also, for

every q ∈ L
2(D,Rn) there exists a curve β (unique up

to a translation) such that the given q is the SRV function

of that β. In fact, this curve can be obtained using the

equation: β(t) =
∫ t

0
q(s)‖q(s)‖ds. The motivation for

using this representation and comparisons with other such

representations are presented in the Section 3.1.

To remove the scaling variability, we rescale all curves

to be of unit length. This restriction to an orthogo-

nal section of the full space of curves is identical to

Kendall’s [12] approach for removing the scale variability.

The remaining transformations (rotation, translation, and re-

parameterization) will be dealt with differently. This is due

to the differences in the actions of scaling and other groups

on the representation space of curves, as described later.

The restriction that β is of unit length translates to the

condition that
∫

D ‖q(t)‖2dt =
∫

D ‖β̇‖dt = 1. Therefore,

the SRV functions associated with these curves are elements

of a unit hypersphere in the Hilbert manifold L
2(D,Rn);

we will use Co to denote this hypersphere. According to

Lang [15] pg. 27, Co is a Hilbert submanifold in L
2(D,Rn).

For studying shapes of closed curves, we impose an

additional condition that the curve starts and ends at the

same point. In view of this condition, it is natural to have

the domain D be the unit circle S
1 for closed curves. For

a certain placement of the origin on S
1, it can be identified

with [0, 1] using the function t 7→ (cos(2πt), sin(2πt)).
We will use either one according to convenience. In terms

of the SRV function, this closure condition is given by:
∫

S1 q(t)‖q(t)‖dt = 0. Thus, we have a space of fixed

length, closed curves represented by their SRV functions:

Cc = {q ∈ L
2(S1,Rn)|

∫

S1

‖q(t)‖2dt = 1,

∫

S1

q(t)‖q(t)‖dt = 0}.

The superscript c implies the closure condition. With

the earlier identification of [0, 1] with S
1, Cc ⊂ Co ⊂

L
2(D,Rn). What is the nature of the set Cc? In the

Appendix, we sketch a proof that Cc is a codimension-n
submanifold of Co.

Now we have two submanifolds – Co and Cc – containing

all curves and only closed curves in R
n, respectively.

They are called pre-shape spaces for their respective cases.

We will call Co the pre-shape space of open curves just
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to emphasize that the closure constraint is not enforced

here, even though it does contain closed curves also, while

Cc is purely the pre-shape space of closed curves. To

impose Riemannian structures on these pre-shape spaces,

we consider their tangent spaces.

1. Open Curves: Since Co is a sphere in L
2([0, 1],Rn),

its tangent space at a point q is given by: Tq(Co) = {v ∈
L

2([0, 1],Rn)|〈v, q〉 = 0}. Here 〈v, q〉 denotes the inner

product in L
2([0, 1],Rn): 〈v, q〉 =

∫ 1

0
〈v(t), q(t)〉dt.

2. Closed Curves: The tangent space to Cc at a point q is, of

course, a subset of L
2(S1,Rn). Since Cc is a submanifold,

this subset is often defined using the differential of the

map q 7→ G(q) =
∫

S1 q(t)‖q(t)‖dt. In fact, the tangent

space Tq(Cc) at a point q ∈ Cc is given by the kernel

of the differential of G at that point [19]. Therefore, it is

often easier to specify the normal space, i.e. the space of

functions in L
2(S1,Rn) that are perpendicular to Tq(Cc).

This normal space is found using the directional derivatives

of G and is given by:

Nq(Cc) = span {q(t), ( qi(t)

||q(t)||q(t)+||q(t)||ei), i = 1, . . . , n} .
(1)

Hence, Tq(Cc) = {v ∈ L
2(S1,Rn)|〈v, w〉 = 0, ∀w ∈

Nq(Cc)}.

The standard metric on L
2(D,Rn) restricts to the two

manifolds Co and Cc to form Riemannian structures on

them. These structures can then be used to determine

geodesics and geodesic lengths between elements of these

spaces. Let C be a Riemannian manifold denoting either Co
or Cc, and let α : [0, 1] → C be a parameterized path such

that α(0) = q0 and α(1) = q1. Then, the length of α is

defined to be: L[α] =
∫ 1

0 〈α̇(τ), α̇(τ)〉1/2dτ , and α is a said

to be a minimizing geodesic if L[α] achieves the infimum

over all such paths. The length of this geodesic becomes a

distance: dc(q0, q1) = inf{α:[0,1]→C|α(0)=q0,α(1)=q1} L[α].
The computation of geodesics in Co is straightforward,

since it is a sphere, but the case of Cc is more complicated

and requires a numerical methods described in Section 4.

2.2 Shape Space as Quotient Space

By representing a parameterized curve β by its SRV func-

tion q, and imposing the constraint
∫

D
〈q(t), q(t)〉dt = 1,

we have taken care of the translation and the scaling

variability, but the rotation and the re-parameterization

variability still remain. A rotation is an element of SO(n),
the special orthogonal group of n × n matrices, and a

re-parameterization is an element of Γ, the set of all

orientation-perserving diffeomorphisms of D. In the fol-

lowing discussion, C stands for either Co or Cc.
The rotation and re-parameterization of a curve β are

denoted by the actions of SO(n) and Γ on its SRV.

While the action of SO(n) is the usual: SO(n) × C →
C, (O, q(t)) = Oq(t), the action of Γ is derived as

follows. For a γ ∈ Γ, the composition β ◦ γ denotes its

re-parameterization (as shown in Fig. 1); the SRV of the

re-parameterized curve is F (β̇(γ(t))γ̇(t)) = q(γ(t))

√

˙γ(t),
where q is the SRV of β. This gives us the right action

Fig. 1. Re-parameterizations of open and closed

curves using orientation-preserving diffeomorphisms.

C × Γ → C, (q, γ) = (q ◦ γ)√γ̇. In order for our shape

comparison to be invariant to these transformations, it is

important for these groups to act by isometries. We note

the following properties of these actions.

Lemma 1: The actions of SO(n) and Γ on C commute.

Proof: It follows from the definition.

Therefore, we can form a joint action of the product group

SO(n) × Γ on C according to ((O, γ), q) = O(q ◦ γ)√γ̇.

Lemma 2: The action of the product group Γ×SO(n) on

C is by isometries with respect to the chosen metric.

Proof: For a q ∈ C, let u, v,∈ Tq(C). Since

〈Ou(t), Ov(t)〉 = 〈u(t), v(t)〉, for all O ∈ SO(n) and

t ∈ D, the proof for SO(n) follows. For the Γ part, fix an

arbitrary element γ ∈ Γ, and define a map φ : C → C by

φ(q) = (q, γ). A glance at the formula for (q, γ) confirms

that φ is a linear transformation. Hence, its derivative dφ
has the same formula as φ. In other words, the mapping

dφ : Tq(C) → T(q,γ)(C) is given by: u 7→ ũ ≡ (u ◦ γ)√γ̇.

The Riemannian metric after the transformation is: 〈ũ, ṽ〉=
∫

D

〈ũ(t), ṽ(t)〉dt =

∫

D

〈u(γ(t))
√

γ̇(t), v(γ(t))
√

γ̇(t)〉dt

=

∫

D

〈u(τ), v(τ)〉dτ, with τ = γ(t) .

Putting these two results together, the joint action of Γ ×
SO(n) on C is by isometries with respect to the chosen

metric. �

Since the action of the product group is by isometries,

we can form a quotient space of C modulo Γ×SO(n) and

try to inherit the Riemannian metric from C to that quotient

space. The orbit of a function q ∈ C is given by:

[q] = {O(q ◦ γ)
√

γ̇)|(γ,O) ∈ Γ × SO(n)} .

An orbit is associated with a shape uniquely and com-

parisons between shapes are performed by comparing the

orbits of the corresponding curves and, thus, the need for

a metric on the set of orbits. We would like to use the

basic fact that if a compact Lie group H acts freely on

a Riemannian manifold M (i.e. , no elements of M are

fixed by h ∈ H unless h is the identity) by isometries,

and if the orbits are closed, then the quotient M/H is

a manifold, and inherits a Riemannian metric from M .

The trouble is that while we have our group Γ × SO(n)
acting by isometries, the orbits are not closed. The reason

for this is that the space of diffeomorphisms is not closed

with respect to either the L
2 or the Palais metric, since a
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sequence of diffeomorphisms might approach a map which

is not a diffeomorphism under either of these two metrics.

To resolve this theoretical difficulty, we propose that instead

of modding out by the orbits, we mod out by the closures

of these orbits. Thus, if we there is a sequence qi in the

orbit [q], and this sequence converges to a function q̃ in

Co (with respect to the L
2-metric), then we identify q with

q̃ in this quotient construction. As evidence that this idea

has merit, one can prove that in this situation, if we let β
and β̃ be the curves corresponding to q and q̃, both β and

β̃ contain exactly the same points. (This is assuming that

we set β(0) = β̃(0).) With a slight abuse of notation, we

will use [q] to denote the closure of the orbit of q. Define

the quotient space S as the set of all such closed orbits

associated with the elements of C, i.e. S = {[q]|q ∈ C}.

Since we have a quotient map from C to S, its differential

induces a linear isomorphism between T[q](S) and the

normal space to [q] at any point q̃ ∈ [q]. The Riemannian

metric on C (i.e. the L
2 inner product) restricts to an inner

product on the normal space which, in turn, induces an

inner product on T[q](S). The fact that Γ × SO(n) acts

by isometries implies that the resulting inner product on

T[q](S) is independent of the choice of q̃ ∈ [q]. In this

manner, S inherits a Riemannian structure from C. Conse-

quently, the geodesics in S correspond to those geodesics

in C that are perpendicular to all the orbits they meet in C
and the geodesic distance between any two points in S is

given by:

ds([q0], [q1]) = inf
(γ,O)∈Γ×SO(n)

dc(q0, O(q1 ◦ γ)
√

γ̇) . (2)

We state without proof that if q0 and q1 lie in two different

orbits which are not in each other’s closure, then this

distance is strictly positive.

3 MOTIVATION & COMPARISONS

We first motivate the choice of SRV and the elastic metric

for shape analysis and then compare our choice with

previous ideas.

3.1 Motivation for the SRV Representation

Let β : D → R
n be a curve in R

n. Assume that for all

t ∈ D, β̇(t) 6= 0 (this is only for comparing with past

works, our method does not require it). We then define

φ : D → R by φ(t) = ln(‖β̇(t)‖), and θ : D → S
n−1 by

θ(t) = β̇(t)/‖β̇(t)‖. Clearly, φ and θ completely specify β̇,

since for all t, β̇(t) = eφ(t)θ(t). Thus, we have defined a

map from the space of open curves in R
n to Φ×Θ, where

Φ and Θ are sets of smooth maps. This map is surjective; it

is not injective, but two curves are mapped to the same pair

(φ, θ) if and only if they are translates of each other, i.e. ,

if they differ by an additive constant. In physical terms, φ
is the (log of the) speed of traversal of the curve, while θ
is the direction of the curve at each t.

The tangent space of Φ×Θ at any point (φ, θ) is given

by T(φ,θ)(Φ×Θ) = Φ×{v ∈ L
2(D,Rn)|v(t) ⊥ θ(t), ∀t ∈

D}. We now define a Riemannian metric on Φ × Θ.

Definition 1 (Elastic Metric): Let a and b be positive

real numbers. For (u1, v1), (u2, v2) ∈ T(φ,θ)(Φ×Θ), define

an inner product:

〈(u1, v1), (u2, v2)〉(φ,θ) = a2

∫

D

u1(t)u2(t)e
φ(t) dt

+b2
∫

D

〈v1(t), v2(t)〉eφ(t) dt. (3)

Note that 〈·, ·〉 in the second integral on the right denotes the

standard dot product in R
n. This elastic metric, introduced

in [20], has the interpretation that the first integral measures

the amount of “stretching”, since u1 and u2 are variations

of the log speed φ of the curve, while the second integral

measures the amount of “bending”, since v1 and v2 are

variations of the direction φ of the curve. The constants a2

and b2 are weights that we choose depending on how much

we want to penalize these two types of deformations.

Perhaps the most important property of this Rieman-

nian metric is that the groups SO(n) and Γ both act by

isometries. To elaborate on this, recall that O ∈ SO(n)
acts on a curve β by (O, β)(t) = Oβ(t), and γ ∈ Γ
acts on β by (γ, β)(t) = β(γ(t)). Using our identification

of the set of curves with the space Φ × Θ results in the

following actions of these groups. O ∈ SO(n) acts on

(φ, θ) by (O, (φ, θ)) = (φ,Oθ) and γ ∈ Γ acts on (φ, θ)
by (γ, (φ, θ)) = (φ ◦ γ + ln ◦γ̇, θ ◦ γ).

We now need to understand the differentials of these

group actions on the tangent spaces of Φ × Θ. SO(n) is

easy; since each O ∈ SO(n) acts by the restriction of a

linear transformation on Φ × L2(D,Rn), it acts in exactly

the same way on the tangent spaces: (O, (u, v)) = (u,Ov),
where (u, v) ∈ T(φ,θ)(Φ × Θ), and (u,Ov) ∈ T(φ,Oθ)(Φ ×
Θ). The action of γ ∈ Γ given in the above formula is

not linear, but affine linear, because of the additive term

ln ◦γ̇. Hence, its action on the tangent space is the same, but

without this additive term: (γ, (u, v)) = (u◦γ, θ◦γ), where

(u, v) ∈ T(φ,θ)(Φ×Θ), and (u◦γ, θ◦γ) ∈ T(γ,(φ,θ))(Φ×Θ).
Combining these actions of SO(n) and Γ with the above

inner product on Φ×Θ, it is an easy verification that these

actions are by isometries, i.e. ,

〈(O, (u1, v1)), (O, (u2, v2))〉(O,(φ,θ)) = 〈(u1, v1), (u2, v2)〉(φ,θ)
〈(γ, (u1, v1)), (γ, (u2, v2))〉(γ,(φ,θ)) = 〈(u1, v1), (u2, v2)〉(φ,θ).

Since we have identified the space of curves with Φ ×
Θ, we may identify the space of shapes with the quotient

space (Φ×Θ)/(SO(n)×Γ). Furthermore, since these group

actions are by isometries with respect to all the metrics

we introduced above, no matter what values we assign to

a and b, we get a corresponding two-parameter family of

metrics on the quotient space (Φ×Θ)/(SO(n)×Γ). Note

that in distinguishing between the structures (for example,

geodesics) associated to these metrics, only the ratio of a
to b is important, since if we multiply both by the same

real number we just rescale the metric, which results in the

same geodesics.

This is not the only consideration, however. The issue of

computing geodesics between curves for different choices
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of c = b/2a remains, especially once we restrict attention to

the space of unit length curves. One can ask: Is there some

particular choice of weights which will be especially natural

and which will result in the geodesics becoming easier

to compute? We now show that the SRV representation

provides an answer to this question.

In terms of (φ, θ) SRV is given by q(t) = e
1
2
φ(t)θ(t).

A simple derivation shows that if (u, v) ∈ T(φ,θ)(Φ × Θ),
then the corresponding tangent vector to L

2(D,Rn) at q is

given by f = 1
2e

1
2
φuθ+e

1
2
φv. Now let (u1, v1) and (u2, v2)

denote two elements of T(φ,θ)(Φ × Θ), and let f1 and f2
denote the corresponding tangent vectors to L

2(D,Rn) at

q. Computing the L
2 inner product of f1 and f2 yields

〈f1, f2〉 =

∫

D

〈1
2
e

1
2
φu1θ + e

1
2
φv1,

1

2
e

1
2
φu2θ + e

1
2
φv2〉 dt

=

∫

D

(

1

4
eφu1u2 + eφ〈v1, v2〉

)

dt. (4)

In this computation we have used the fact that 〈θ(t), θ(t)〉 =
1, since θ(t) is an element of the unit sphere, and that

〈θ(t), vi(t)〉 = 0, since each vi(t) is a tangent vector to

the unit sphere at θ(t). This expression, when compared

with Eqn. 3, shows that the L
2 metric on the space of

SRV representations corresponds precisely to the elastic

metric on Φ × Θ, with a = 1/2 and b = 1. However,

expressed in terms of the SRV functions, the L
2-metric

is the “same” at every point of L
2(D,Rn) (it is simply

〈f1, f2〉 =
∫

D〈f1(t), f2(t)〉 dt, which does not depend on

the point at which these tangent vectors are defined), and we

will thus have access to more efficient ways of computing

geodesics in our pre-shape and shape spaces using the SRV

formulation. We emphasize again that this is true for curves

in arbitrary dimension.

3.2 Comparison with Prior Work

The previous subsection showed that the SRV representa-

tion provides Euclidean coordinates for the space of pa-

rameterized curves in R
n equipped with the elastic metric.

In this subsection, we compare the SRV representation to

previous work, and provide evidence that this is the only

case for which Euclidean coordinates can be found.

When n = 1, there is no θ component and the

elastic metric in Eqn. 3 takes the form: 〈u1, u2〉 =
∫

D
u1(t)u2(t)e

φ(t)dt. This is called the Fisher-Rao metric

and has been used for imposing a Riemannian structure on

the space of probability density functions on D [1], [2], [4].

Note that eφ(t) can be interpreted as a probability density

function for a curve of fixed length. It is well known, at least

since 1943 [2], that under the square-root representation,

i.e. for q(t) = e
1
2
φ(t), this metric reduces to the L

2 metric,

given by Eqn. 4 with n = 1.

To discuss n > 1, it is useful to use a slightly different

representation. Let us define qc = β̇(t)/‖ ˙β(t)‖1− 1
2c . For vc,

wc in the tangent space at qc, the elastic metric becomes:

〈vc, wc〉qc
= b2

∫

D

‖qc(t)‖(2c−2) 〈vc(t), wc(t)〉 dt . (5)

Notice that when c = 1, the integrand is the Euclidean

metric on R
n, otherwise it is not. If we use a discrete rep-

resentation of curves, say using N points sampled on each

curve, one can calculate the curvature of the resulting finite-

dimensional representation space (details are omitted). This

calculation shows that:

• when c 6= 1: for n = 2, the representation space of

curves is flat except at qc = 0, where it is singular;

for n > 2, the curvature is again singular at qc = 0,

otherwise it is non-flat (the curvature is not zero).

• when c = 1: the curvature is identically zero for all

n; the space of curves is flat.

Euclidean coordinates thus exist for all n only when

c = 1: these coordinates are the SRV representation.

We conjecture that this situation continues to hold in the

infinite-dimensional case. This would mean that the SRV

representation occupies a unique position amongst curve

representations. We are unaware of any previous work that

discusses an SRV-type representation for n > 2; the method

described in Younes et al. [34] is for n = 2.

4 COMPUTATION OF GEODESICS

In this section, we focus on the task of computing geodesics

between any given pair of shapes in a shape space. This

task is accomplished in two steps. First, we develop tools

for computing geodesics in the pre-shape spaces, Co or

Cc and, then, we remove the remaining shape-preserving

transformations to obtain geodesics in the shape spaces. In

the case of Co, the underlying space is a sphere and the

task of computing geodesic paths there is straightforward.

For any two points q0 and q1 in Co, a geodesic connecting

them is given by: α : [0, 1] → Co,

α(τ) =
1

sin(θ)
(sin(θ(1 − τ))q0 + sin(θτ)q1) , (6)

where θ = cos−1(〈q0, q1〉) is the length of the geodesic.

However, we will use a path-straightening approach to

compute geodesics in Cc.
Notationally, we are using τ to parameterize paths on

spaces of curves and t to parameterize individual curves.

4.1 Path-Straightening Method: Theory

For any two closed curves, denoted by q0 and q1 in Cc, we

are interested in finding a geodesic path between them in

Cc. We start with an arbitrary path α(τ) connecting q0 and

q1, i.e. α : [0, 1] 7→ Cc such that α(0) = q0 and α(1) = q1.

Then, we iteratively “straighten” α until it achieves a local

minimum of the energy:

E(α) ≡ 1

2

∫ 1

0

〈dα
dτ

(τ),
dα

dτ
(τ)〉dτ , (7)

over all paths from q0 to q1. It can be shown that a critical

point of E is a geodesic on Cc. However, it is possible

that there are multiple geodesics between a given pair q0
and q1, and a local minimum of E may not correspond

to a minimizing geodesic. Therefore, this approach has the
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Fig. 2. An example of path-straightening method for
computing geodesics between two points on S

2. The

right panel shows the decrease in the path length.

limitation that it finds a geodesic between a given pair but

may not reach the minimizing geodesic, if it exists.

Let H be the set of all paths in Cc and H0 be the subset

of H of paths that start at q0 and end at q1. The tangent

spaces of H and H0 are: Tα(H) = {w| ∀τ ∈ [0, 1], w(τ) ∈
Tα(τ)(Cc)}, where Tα(τ)(Cc) is specified as a set orthogonal

to Nq(Cc) (defined in Eqn. 1). A tangent w is actually a

tangent vector field along α such that w(τ) is tangent to

Cc at α(τ). Similarly, Tα(H0) = {w ∈ Tα(H)|w(0) =
w(1) = 0}. To ensure that α stays at the desired end points,

the allowed vector field on α has to be zero at the ends.

Our study of paths on H requires the use of covariant

derivatives and integrals of vector fields along these paths.

For a given path α ∈ H and a vector field w ∈ Tα(H),
the covariant derivative of w along α is the vector

field obtained by projecting dw
dτ (τ) onto the tangent space

Tα(τ)(Cc), for all τ , and is denoted by Dw
dτ (τ). Similarly, a

vector field u ∈ Tα(H) is called a covariant integral of w
along α if the covariant derivative of u is w, i.e. Dudτ = w.

To make H a Riemannian manifold, an obvious metric

would be 〈w1, w2〉 =
∫ 1

0 〈w1(τ), w2(τ)〉dτ , for w1, w2 ∈
Tα(H). Instead, we use the Palais metric [22], which is:

〈〈w1, w2〉〉 = 〈w1(0), w2(0)〉+
∫ 1

0

〈Dw1

dτ
(τ),

Dw2

dτ
(τ)〉dτ ,

where 〈·, ·〉 is the chosen metric on Cc. The reason for using

the Palais metric is that with respect to this metric, Tα(H0)
is a closed linear subspace of Tα(H), and H0 is a closed

subset of H. Therefore, any vector w ∈ Tα(H) can be

uniquely projected into Tα(H0). This enables us to derive

the gradient of E as a vector field on α.

Our goal is to find the minimizer of E in H0, and we

will use a gradient flow to do that. Therefore, we wish to

find the gradient of E in Tα(H0). To do this, we first find

the gradient of E in Tα(H) and then project it into Tα(H0).

Theorem 1: The gradient vector of E in Tα(H) is given

by the unique vector field u such that Du/dτ = dα/dτ
and u(0) = 0. In other words, u is the covariant integral

of dα/dτ with zero initial value at τ = 0.

Proof: Please refer to the appendix.

We will introduce some additional properties of vector

fields along α that are useful in our construction. A vector

field w is called covariantly constant if Dw/dτ is zero at

all points along α. Similarly, a path α is called a geodesic
if its velocity vector field is covariantly constant. That is, α
is a geodesic if D

dτ (dαdτ ) = 0 for all τ . Also, a vector field

w along the path α is called covariantly linear if Dw/dτ
is a covariantly constant vector field.

Lemma 3: The orthogonal complement of Tα(H0) in

Tα(H) is the space of all covariantly linear vector fields

w along α.

Proof: Please refer to the appendix.

A vector field u is called the forward parallel trans-
lation of a tangent vector w0 ∈ Tα(0)(Cc), along α, if

and only if u(0) = w0 and
Du(τ)
dτ = 0 for all τ ∈ [0, 1].

Similarly, u is called the backward parallel translation
of a tangent vector w1 ∈ Tα(1)(Cc), along α, when for

α̃(τ) ≡ α(1−τ), u is the forward parallel translation of w1

along α̃. It must be noted that parallel translations, forward

or backward, lead to vector fields that are covariantly

constant.

According to Lemma 3, to project the gradient u into

Tα(H0), we simply need to subtract off a covariantly linear

vector field which agrees with u at τ = 0 and τ = 1 (recall

that u(0) = 0). Clearly, the correct covariantly linear field

is simply τũ(τ), where ũ(τ) is the covariantly constant

field obtained by parallel translating u(1) backwards along

α. Hence, we have proved the following theorem.

Theorem 2: Let α : [0, 1] 7→ Cc be a path, α ∈ H0. Then,

for u as defined in Theorem 1, the gradient of the energy

function E restricted to H0 is w(τ) = u(τ)−τũ(τ), where

ũ is the vector field obtained by parallel translating u(1)
backwards along α.

To finish this discussion we show that the critical points of

E are geodesics.

Lemma 4: For a given pair q0, q1 ∈ Cc, a critical point of

E on H0 is a geodesic on Cc connecting q0 and q1.

Proof: Let α be a critical point of E in H0. That is, the

gradient of E is zero at α. Since the gradient vector field is

given by u(τ)− τũ(τ), we have that u(τ) = τũ(τ) for all

τ . Therefore, dαdτ = Du
dτ = D(τũ)

dτ = ũ. Since ũ is a parallel

translation of u(1), it is covariantly constant, and therefore,

the velocity field dα
dτ is covariantly constant. By definition,

this implies that α is a geodesic. �

4.2 Path-Straightening Method: Implementation
We present some numerical procedures for computing

geodesic paths between curves represented by q0 and q1
in Cc. There are two basic items that are used repeatedly

in these procedures: 1. For projecting arbitrary points in

L
2(S1,Rn) into Cc, and 2. For projecting arbitrary points

in L
2(S1,Rn) into Tq(Cc) for some q ∈ Cc.

Item 1: The projection from L
2(D,Rn) to Co is simple:

q 7→ q/‖q‖. The further projection from Co to Cc is realized

as follows. Recall the mapping G : Co given by G(q) =
∫ 2π

0
q(t)‖q(t)‖dt ∈ R

n. Our idea is to iteratively update q
in such a way that G(q) becomes (0, . . . , 0). The update

is performed in the normal space Nq(Cc) since changing q
along the tangent space Tq(Cc) does not change its G value.

The question is: which particular normal vector should be

used in this update?

1) Calculate the Jacobian matrix, Ji,j = δij +
3

∫

S1 qi(s)qj(s)ds, i, j = 1, 2, . . . , n. Here, δij = 1
if i = j, else it is zero.
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2) Compute the residual r = ψ(q) and solve the equa-

tion Jβ = −r for β ∈ R
n.

3) Update q = q +
∑n

i=1 βibi, δ > 0, where {bi|i =
1, . . . , n} form an orthonormal basis of the normal

space Nq(Cc) given in Eqn. 1. Rescale using q 7→
q/‖q‖.

4) If ‖r(q)‖ < ǫ, stop. Else, go to Step 1.

Item 2: For the second item, take the orthonormal basis

{bi} of the normal space Nq(Cc) and project the given

vector w using w 7→ w − ∑n+1
i=1 〈bi, w〉bi.

With these two items, we can address the task of

straightening paths into geodesics. Let {α(τ/k) : τ =
0, 1, 2, . . . , k} be a given path between q0 and q1 in Cc.
First, we need to compute the velocity vector dαdτ at discrete

points along α.

Algorithm 1: [Compute dα
dτ along α]

For all τ = 0, 1, . . . , k,

1) Compute: c(τ/k) = k(α(τ/k)−α((τ − 1)/k)). This

difference is computed in L
2(S1,Rn).

2) Project c(τ/k) into Tα(τ/k)(Cc) using Item 2 to get

an approximation for dα
dτ (τ/k).

Next, we want to approximate the covariant integral of
dα
dt along α, using partial sums, i.e. we want to add the

current sum, say u((τ − 1)/k), to the velocity dα
dτ (τ/k).

However, these two quantities are elements of two different

tangent spaces and cannot be added directly. Therefore, we

project u((τ − 1)/k) into the tangent space at the point

α(τ/k) first and then add it to dα
dt (τ/k) to estimate u(τ/k).

Algorithm 2: [Compute covariant integral of dα
dτ along α]

Set u(0) = 0 ∈ Tα(0)(Cc). For all τ = 1, 2, . . . , k,

1) Project u((τ − 1)/k) into the tangent space

Tα(τ/k)(Sc) (Item 2) and rescale to the original

length to result in u‖((τ − 1)/k).
2) Set u(τ/k) = 1

k
dα
dτ (τ/k) + u‖((τ − 1)/k)

Next, we compute an estimate for the backward parallel

transport of u(1):
Algorithm 3: [Backward parallel transport of u(1)]
Set ũ(1) = u(1) and l = ‖u(1)‖. For all τ = k − 1, k −
2, . . . , 0,

1) Project ũ((τ + 1)/k) into Tα(τ/k)(Cc) using Item 2

to obtain c(τ/k).
2) Set ũ(τ/k) = lc(τ/k)/‖c(τ/k)‖.

Now we can compute the desired gradient:

Algorithm 4: [Gradient vector field of E in H0]

For all τ = 1, 2, . . . , k, compute w(τ/k) = u(τ/k) −
(τ/k)ũ(τ/k).
By construction, this vector field, w, is zero at τ = 0 and

τ = k. As a final step, we need to update the path α in

direction opposite to the gradient of E.

Algorithm 5: [Path update]

Select a small ǫ > 0 as the update step size. For all τ =
0, 1, . . . , k, perform

1) Compute the gradient update α′(τ/k) = α(τ/k) −
ǫw(τ/k). This update is performed in the ambient

space L
2(S1,Rn).

2) Project α′(τ/k) to Cc using Item 1 to obtain the

updated α(τ/k).

4.3 Path-Straightening Algorithm

Now we describe an algorithm for computing geodesics in

Cc using path straightening. The sub-algorithms referred to

here are listed in the previous section.

Path-Straightening Algorithm: To find a geodesic be-

tween two curves β0 and β1 in Cc.
1) Compute their representations q0 and q1 in Cc.
2) Initialize a path α between q0 and q1 in Co using

Eqn. 6 and project it in Cc using Item 1.

3) Compute the velocity vector field dα/dτ along the

path α using Algorithm 1.

4) Compute the covariant integral of dα/dτ , denoted by

u, using Algorithm 2.

5) Compute the backward parallel transport of the vec-

tor u(1) along α using Algorithm 3; denote it by ṽ.

6) Compute the full gradient vector field of the energy

E along the path α, denoted by w, using w(τ) =
u(τ) − τũ1(τ) (Algorithm 4).

7) Update α along the vector field w using Algorithm 5.

If
∑k

τ=1〈w(τ), w(τ)〉 is small, then stop. Else, return

to Step 3.

In these implementations, each curve is represented by

its coordinates at some sampled points and the algorithm

smoothly interpolates between them when needed. The

derivatives are approximated using symmetric finite differ-

ences and integrals are approximated using summations.

4.4 Removing Shape-Preserving Transformations

Now that we have procedures for constructing geodesics be-

tween points in a preshape space C (Co or Cc), we focus on

the same task for shape spaces. Towards this goal, we need

to solve the joint minimization problem on (γ,O) stated in

Eqn. 2, with the cost function being H : Γ× SO(n) → R,

H(γ,O) = dc(q0, O(q1◦γ)
√
γ̇). This optimization problem

is depicted using a cartoon diagram in Fig. 3 (left). Our

strategy is to fix one variable and iteratively optimize over

the other. In case of Co, this procedure is simple since

the solutions to individual optimizations are well known.

For a fixed γ, the optimization of Hγ = H(γ, ·) over

SO(n) is obtained using the SVD while, for a fixed O,

the optimization of HO = H(·, O) over Γ is performed

using the dynammic programming (DP) algorithm.

In case of Cc, these direct solutions do not apply and we

resort to a gradient-based approach. Let γ(m) = γ1 ◦ γ2 ◦
· · · ◦ γm and O(m) = O1 ·O2 · · · · ·Om be the cumulative

group elements and at the kth iteration we seek the incre-

ments (γm+1, Om+1) that minimize H(γ(m+1), O(m+1)).
Let q̃1 denote the current element of the orbit [q1], i.e.

q̃1 = O(m)(q1 ◦ γ(m))

√

˙γ(m) and let α : [0, 1] → C be

a geodesic from q0 to q̃1. So, α̇1 is the velocity vector at

q̃1 and define v ≡ α̇(1)/‖α̇(1)‖. This v is precisely the

gradient of dc(q0, q̃1) with respect to q̃1.

1) Rotations: In the case of Co, since Co is a sphere,

the geodesic length is given by an arc-length, and

minimizing arc-length is same as minimizing the
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([q1])

∫
(·)2

Fig. 3. Left: Computing geodesics in the quotient space

C/(Γ × SO(n)). Right: The mapping from u ∈ T1(Ψ) to

the tangent vector in Tq̃1([q1]) in two steps.

corresponding chord-length. Therefore, the optimal

rotation is directly written as:

Ôm+1 = argmin
O∈SO(n)

‖q0 −Oq̃1‖ = UV T , (8)

where UΣV T = svd(B) and B =
∫

D q0(t)q̃1(t)
T dt.

If the det(B) < 0, then the last column of V T

changes sign before multiplication.

In the case of Cc, the update uses the gradient of Hγ .

The tangent space to the rotation orbit is {Aq̃1|A ∈
R
n×n, A + AT = 0}. Let E1, E2, . . . , En(n−1)/2

be an orthonormal basis for the space of n × n
skew-symmetric matrices. The gradient updates for

rotation are performed by projecting v in this space

to obtain A =
∑

i〈Eiq̃1, v〉Ei and updating using

Ok+1 = eδoAq̃1 for a step size δo > 0.

2) Re-parameterizations: In case of Co, the optimiza-

tion over HO can be performed using the DP al-

gorithm but for Cc we develop the following gra-

dient iteration. We seek the incremental γm+1 that

minimizes HO. There are two possibilities: One is

to take the gradient of HO(γ(m+1)) directly with

respect to γm+1 and use it to update γ(m+1). The

other possibility, the one that we have used in this

paper, is to use a square-root representation of γ̇ that

often simplifies its analysis. Define ψm+1 =
√
γ̇m+1

and re-express γm+1 as the pair (γm+1(0), ψm+1).
With a slight abuse of notation, let HO be a function

of (γm+1(0), ψm+1). Note that the space Ψ of all

ψ-functions is the unit hypersphere in L
2(D,R) (of

radius one). We initialize with γ0(t) = t, with the

corresponding representation being (0,1) and 1 being

the constant function with value one. At the iteration

m, we take the gradients of HO, with respect to

γm+1(0) and ψm+1, and update these individually.

The derivative with respect to γm+1(0), evaluated at

(0,1), is ∂HO

∂γm+1(0)
=

∫

D
〈v(t), dq̃1(t)dt 〉dt. To obtain

the derivative with respect to ψm+1, consider the

sequence of maps ψ

R

t

0
ψ(s)2ds7−→ γ

φ7−→ r, where

r ≡ φ(γ) = (q̃1 ◦ γ)
√
γ̇, as shown in Fig. 3 (right).

For the constant function 1 ∈ Ψ and a tangent

u ∈ T1(Ψ), the differential of the first mapping

at 1 is u(t) 7→ 2ū(t) = 2
∫ t

0
u(s)ds and for a

tangent w ∈ Tγid
(Γ), the differential of the second

mapping at γid is: w(t) 7→ φ∗(w) ≡ dq̃1
dt w + 1

2 q̃1ẇ.

Concatenating these two linear maps, we obtain the

directional partial derivative of HO in a direction

u ∈ T1(Ψ) as:

∇ψHO(u) =

∫

D

〈v(t),
(

2
dq̃1(t)

dt
ū(t) + q̃1(t)u(t)

)

〉dt .

Since T1(Ψ) is an infinite-dimensional space, we

can approximate the gradient of HO , with re-

spect to the ψ-component, by considering a finite-

dimensional subspace of T1(Ψ), as follows. Form

a subspace of T1(Ψ) = {f : D → R|〈f,1〉 =
0} using: {( 1√

π
sin(2πnt), 1√

π
cos(2πnt))|n =

1, 2, . . . ,m/2}. Then, approximate the partial deriva-

tive of H with respect to ψ using c =
∑m

i=1 ∇ψHO(ci)ci, where the cis are the basis el-

ements of that subspace. Then, update the ψ com-

ponent according to: 1 7→ ψk+1 ≡ cos(δg‖c‖)1 +
sin((δg‖c‖) c

‖c‖ , for a step size δg > 0. Since Ψ is

a hypersphere, this update is simply the exponential

map on that sphere, at the point 1 and applied to the

tangent vector c. This ψm+1 in turn gives γm+1(t) =
γm+1(0) +

∫ t

0 ψm+1(s)
2ds and thus γ(m+1).

We can now state the algorithm for computing geodesics

on shape spaces.

Shape Geodesic Algorithm: Find a geodesic between

shapes of two parameterized curves β0 and β1 in S (So
or Sc). Compute the representations of each curve in C;

denote them by q0 and q1, respectively. Set q̃1 = q1.

1) Compute the geodesic α between q0 and q̃1 in the

preshape space. For Co, use the analytical expression,

while for Cc use the path-straightening algorithm

given in the previous section.

2) Removal of nuisance variables:

a) Rotation: For Co, use the SVD-based solution

(Eqn. 8). For Cc compute A, the derivative

of Hγ with respect to SO(n). and form the

rotation update Om+1.

b) Re-parameterization: For Co one can use the

DP algorithm. More generally, compute the

derivatives of HO with respect to ψm+1 and

γm+1(0), and for the re-parameterization up-

date γm+1.

3) Update q̃1 7→ Om+1(q̃1 ◦ γm+1)
√
γ̇m+1.

4) If the norms of the increments are small, then stop.

Else return to step 1.

The two rows in Fig. 4 shows two examples of optimiza-

tion over Γ. In each case we start with a parameterized

curve, shown in (a) and represented by q1, generate a

random γ ∈ Γ (shown in (b)) and form a re-parameterized

curve using q0 = (q1 ◦ γ)
√
γ̇ (shown in (c)). Then, we use

the gradient approach described above to find an optimal

re-parameterization of q1 that best matches this q0 by

minimizing the cost function HO . The evolution of the cost
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Fig. 4. (a) The original shape represented by q0, (b)
an arbitrary γ ∈ Γ, (c) the second shape formed using

q0 = (q1 ◦ γ)√γ̇, (d) evolution of H in matching q̃1 with

q0, (e) final curve represented by q̃1.

Shape Method DP AlgorithmGradient Approach (m)
10 30 50 70 90

Circle Time (sec) 12.00 0.881.722.553.39 4.22

CircleRelative Final Cost (%) 0.06 1.190.400.280.24 0.21

Bird Time (sec) 12.13 0.891.722.583.43 4.33

Bird Relative Final Cost (%) 0.016 3.651.631.331.31 1.17

TABLE 1
Timing analysis of gradient-based re-parameterization

and comparison with DP algorithm.

function HO is shown in (d), and the final re-parameterized

curve q̃1 is shown in (e). In these examples, since q0 is

simply a re-parmeterization of q1, the minimum value of

HO should be zero. Note that in the top row, where the

original γ is closer to the identity, the cost function goes

to zero but in the bottom case where γ is rather drastic,

the algorithm converges to a final value of H that is not

close to zero. We conjecture that this can be mitigated by a

improved numerical implementation of the basic procedure.

To illustrate the strengths and limitations of a gradient-

based approach with respect to a common DP algorithm [7],

[26], we present a comparison of computational costs (using

Matlab on a 2.4GHz Intel processor) and performance in

Table 1. In this experiment we consider the shape space

So since DP is not applicable for optimization in the case

of closed curves. The computational complexity of the

gradient approach is O(Tmk), where T is the number of

samples on the curve, m is the number of basis functions,

and k is the number of iterations, while that of DP algorithm

is O(T 2). The table is generated for T = 100 and k = 200.

As a measure of matching performance, we also present the

relative final cost as a percentage ((HO(final)/HO(initial))

×100). This table shows that while the DP algorithm is

very accurate in estimating the unknown γ, its computa-

tional cost is relatively high. One gets to solutions, albeit

approximate, much faster when using the gradient method.

An important limitation of the gradient method is that its

solution is always local.

Figure 5 shows some elastic geodesics between several

pairs of shapes. We have drawn ticks on these curves to

Fig. 5. Examples of planar elastic geodesics.

show the optimal re-parametrizations. The spacings be-

tween the ticks are uniform in the leftmost shapes (q0) but

have been adjusted for the other shapes during the mini-

mization of H . The reader can see that the combinations

of bending and stretching used in these deformations are

successful in the sense that geometrical features are well

preserved.

Fig. 6. In each case the top row shows a non-elastic

geodesic ( [14]) while the bottom rows the elastic

geodesic between the same shapes.

Figure 6 compares the elastic geodesics in Sc with the

non-elastic method of Klassen et al. [14] where the repre-

sentation is restricted to arc-length parameterizations. The

resulting deformation is purely bending and no stretching is

allowed. We observe that the elastic shape analysis results

in a better matching of features across shapes and a more

natural deformation along the geodesic path.

5 APPLICATIONS

In this section we illustrate the proposed elastic shape anal-

ysis using some applications. Some additional applications

have been presented elsewhere: symmetry analysis of two-

and three-dimensional shapes [24]; shape classification of

point clouds [29]; and joint gait-cadence analysis for human

identification in videos [11].
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Fig. 7. (a), (b): original curves, (c) optimal registration

between them, and (d) optimal γ∗. Bottom: correspond-

ing geodesic paths.
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Fig. 8. A set of helices with different numbers and
placements of spirals and their clustering using the

elastic distance function.

5.1 Shapes Analysis of 3D Helices

As the first example we will study shapes of helical in

R
3 by matching and deforming one into another. One

motivation for studying shapes of cylindrical helices comes

from protein structure analysis. A primary structure in a

protein is a linked chain of carbon, nitrogen, and oxygen

atoms known as the backbone, and the geometry of the

backbone is often a starting point in structural analysis of

proteins. These backbones contain certain distinct geometri-

cal pieces and one prominent type is the so-called α-helix.

In analyzing shapes of backbones it seems important to

match not only their global geometries but also the local

features (such as α-helices) that appear along these curves.

We suggest the use of elastic shape analysis of curves as

a framework for studying shapes of protein backbones and

present some results involving both synthetic and real data.

Shown in Fig. 7 are two examples of geodesics between

some cylindrical helices. In each case, the panels (a) and (b)

show two helices, and (c) is the optimal matching between

them obtained using the estimated γ function shown in

panel (d). The resulting geodesic paths in So between these

curves are shown in the bottom row. It is easy to see the

combination of bending and stretching/compression that

goes into deforming one shape into another. In the left

example, where the turns are quite similar and the curves

differ only in the placements of these turns along the curve,

a simple stretching/compression is sufficient to deform one

into another. However, in the right example, where the

number of turns is different, the algorithm requires both

bending and stretching.

Figure 8 shows an example of using the elastic distances
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Fig. 9. Two proteins: 1CTF (left) and 2JVD (right) and

the elastic geodesic between their shapes.

between curves for clustering and classification. In this

example, we study 12 cylindrical helices that contain differ-

ent number, radii, and placements of turns. The first three

helices have only one turn, the next three have two turns,

and so on. Using the elastic geodesic distances between

them in So, and the dendrogram clustering program in

Matlab, we obtain the clustering shown in the right panel.

This clustering demonstrates the success of the proposed

elastic metric in that helices with similar numbers of turns

are clustered together.

Finally, in Fig. 9, we present an example of comparing

real protein backbones. In this experiment we use two

simple proteins – 1CTF and 2JVD – that contain three

and two α-helices respectively. The top row of this figure

shows depictions of the two backbones, while the bottom

row shows the geodesic path between them in So. These

results suggest a role for elastic shape analysis in protein

structure analysis. Additional details and experiments are

presented in [16].

5.2 3D Face Recognition

Human face recognition is a problem of great interest in

homeland security, client access systems, and several other

areas. Since recognition performance using 2D images has

been limited, there has been a push towards using shapes

of facial surfaces, obtained using weak laser scanners, to

recognize people. The challenge is to develop methods and

metrics that succeed in classifying people despite changes

in shapes due to facial expressions and measurement errors.

Samir et al. [23], [31] have proposed an approach that: (1)

computes a function on a facial surface as the shortest-

path distance from the tip of the nose (similar to [3], [21]),

(2) defines facial curves to be the level curves of that

function, and (3) represents the shapes of facial surfaces

using indexed collections of their facial curves. Figure

10 (top) shows two facial surfaces overlaid with facial

curves. These facial curves are closed curves in R
3 and

their shapes are invariant to rigid motions of the original

surface. We compare shapes of facial surfaces by comparing

shapes of the corresponding facial curves, using geodesics

between them in Sc. As an example, Fig. 10 (bottom) shows

geodesics in Sc between the two sets of facial curves. For

display, these intermediate curves have been rescaled and

translated to the original values and, through reconstruction,
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Fig. 10. Top: Two facial surfaces represented by in-
dexed collections of facial curves. Bottom: Geodesics

between shapes of corresponding curves.
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Fig. 11. Elastic geodesics between facial profiles.

they result in a geodesic path such that points along that

path approximate full facial surfaces. These geodesic paths

can be used to compute average faces or facial parts, or to

define metrics for human recognition [5].

Another example of elastic shape analysis of faces, this

time using facial profiles is shown in Fig. 11.

5.3 Elastic Models for Planar Shapes

An important application of this elastic shape framework

is in developing probability models for capturing the vari-

ability present in the observed shapes. For example, the

left panel of Fig. 12 shows examples of 20 observed two-

dimensional shapes of a “runner” taken from the Kimia

database. Our goal is derive a probability model on the

shape space Sc, so that we can use this model in future

inferences. Using ideas presented in earlier papers [6], [30],

we demonstrate a simple model where we: (i) first compute

the sample Karcher mean [10] of the given shapes, (ii) learn

a probability model on the tangent space (at the mean) by

mapping the observations to that tangent space, and (iii)

wrap the probability model back to Sc using the exponential

map. In this paper, we demonstrate the model using random

sampling: random samples are generated in the tangent

space and mapped back to Sc.
Let µ = argmin[q]∈Sc

∑n
i=1 ds([q], [qi])

2 be the Karcher

mean of the given shapes q1, q2, . . . , qn, where ds is the

geodesic distance on Sc. The Karcher mean of the 20

observed shapes is shown in the middle panel of Fig. 12.

Once we have µ, we can map [qi] into Tµ(Sc) using the

inverse exponential map: [qi] 7→ vi ≡ exp−1
µ ([qi]). Since

the tangent space is a vector space, we can perform more

standard statistical analysis. The infinite-dimensionality of

Tµ(Sc) is not a problem since we usually have only

a finite number of observations. For instance, one can

perform PCA on the set {vi} to find dominant directions

Observed Shapes Mean Shape Random Samples

First

Second

Third

Fig. 12. The left panel shows a set of 20 observed
shapes of a “runner” from the Kimia dataset. The

middle panel shows their Karcher mean, and the right

panel shows a random sample of 20 shapes from the
learned wrapped nonparameteric model on Sc. The

bottom three rows show eigen variations of shapes

in three dominant directions around the mean, drawn
from negative to positive direction and scaled by the

corresponding eigen values.

and associated observed variances. One can study these

dominant directions of variability as shapes by projecting

vectors along these directions to the shape space. Let

(σi, Ui)’s be the singular values and singular directions in

the tangent space, then the mapping τσiUi 7→ expµ(τσiUi)
helps visualize these principal modes as shapes. The three

principal components of the 20 given shapes are given in

the lower three rows of Fig. 12, each row displaying some

shapes from τ = −1 to τ = 1.

In terms of probability models, there are many choices

available. For the coefficients {zi} defined with respect

to the basis {Ui}, one can use any appropriate model

from multivariate statistics. In this experiment, we try a

non-parametric approach where a kernel density estimator,

with a Gaussian kernel, is used for each coefficient zi
independently. One of the ways to evaluate this model

is to generate random samples from it. Using the inverse

transform method to sample zis from their estimated kernel

densities, we can form a random vector
∑

i ziUi and then

the random shape expµ(
∑

i ziUi). The right panel of Fig.

12 shows 20 such random shapes. It is easy to see the

success of this wrapped model in capturing the shape

variability exhibited in the original 20 shapes.

5.4 Transportation of Shape Deformations

One difficulty in using shapes for recognizing three-

dimensional objects is that their two-dimensional appear-

ance changes with viewing angles. Since a large majority

of imaging technology is oriented towards two-dimensional

images, there is a striking focus on planar shapes, their anal-

ysis and modeling, despite the viewing variability. Within

this focus area, there is an interesting problem of predicting
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Case 1

Case 2

Fig. 13. In each case: a geodesic from the template

shape (hexagon) to the training shape (top) and defor-

mation of the test shape (circle) with the transported
deformation (bottom).

shapes of three-dimensional objects from novel viewing

angles. (The problem of predicting full appearances, using

pixels, has been studied by [25] and others.) Our solution

to the problem of shape prediction is the following. If

we know how a known object deforms under a viewpoint

change, perhaps we can apply the “same” deformation to

a similar (yet novel) object and predict its deformation

under the same viewpoint change. The basic technical issue

is to be able to transport the required deformation from

the first object to the second object, before applying that

deformation. Since shape spaces are nonlinear manifolds,

the deformations of one shape cannot simply be applied to

another.

The mathematical statement of this problem is as follows:

Let [qa1 ] and [qb1] be the shapes of an object O1 when

viewed from two viewing angles θa and θb, respectively.

The deformation in contours, in going from [qa1 ] to [qb1]
depends on some physical factors: the geometry of O1

and the viewing angles involved. Consider another object

O2 which is similar but not identical to O1 in geometry.

Given its shape [qa2 ] from the viewing angle θa, our goal

is to predict its shape [qb2] from the viewing angle θb. Our

solution is based on taking the deformation that deforms

[qa1 ] to [qb1] and applying it to [qa2 ] after some adjustments.

1) Let α1(τ) be a geodesic between [qa1 ] and [qb1] in Sc
and v1 ≡ α̇1(0) ∈ T[qa

1
](Sc) be its initial velocity.

2) We need to transport v1 to [qa2 ]; this is done using

forward parallel translation. Let α12(τ) be a geodesic

from [qa1 ] to [qa2 ] in Sc. Construct a vector field w(t)
such that w(0) = v1 and Dw

dτ = 0 for all points along

α12. This is accomplished in practice using Algo-

rithm 2 in Section 4.2. Then, v2 ≡ w(1) ∈ T[qa

2
](Sc)

is a parallel translation of v1.

3) Construct a geodesic starting from [qa2 ] in the direc-

tion of v2.

Figure 13 shows two examples of this idea. In the top case,

a hexagon ([qa1 ]) is deformed into a square ([qb1]) using an

elastic geodesic; this deformation is then transported to a

circle ([qa2 ]) and applied to it to result in the prediction [qb2].
A similar transport is carried out in the bottom example.

Next, we consider an experiment involving the M60 tank

as O1 and the T72 as O2. Given shapes for different

azimuthal pose (fixed elevation) of M60 and one azimuth

for the T72, we would like to predict shapes for the T72

θb 24° 48° 72° 96° 120° 168° 216° 336°

[qa1 ]

[qb1]

[qa2 ]

[qb2]
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Fig. 14. Shape predictions for novel pose. In each

column, the first two are given shapes of the M60

from θa = 0 and θb. The deformation between these
two is used to deform the T72 shape in the third row

and obtain a predicted shape in the fourth row. The

accompanying pictures show the true shapes of the
T72 at those views.

from the other azimuthal angles. Since both the objects are

tanks, they have similar but not identical geometries. For

instance, both have mounted guns but the T72 has a longer

gun than the M60. In this experiment, we select θa = 0
and predict the shape of the T72 for several θb The results

are shown in Fig. 14. The first and the third rows show

the shapes for [qa1 ] and [qa2 ], respectively, the shapes for the

M60 and the T72 looking from head on. The second row

shows [qb1] for different θb given in the last column, while

the fourth row shows the predicted shapes for the T72 from

those θb.

How can we evaluate the quality of these predictions?

We perform a simply binary classification with and without

the predicted shapes and compare results. Here is the

experimental setup. We have 62 and 59 total azimuthal

views of the M60 and the T72, respectively. Of these, we

randomly select 31 views of M60 and one view of the

T72 as the training data; the remaining 31 (58) views of

the M60 (the T72) are used for testing. The classification

results, using the nearest neighbor classifier and the elastic

distance ds (Eqn. 2), are shown in the table below. While

the classification for the M60 is perfect, as expected, the

classification for the T72 is 46.55%. (Actually, this number

is somewhat higher than expected – we would expect a

smaller performance with only one training shape.) Now

we generate additional 31 shapes for the T72 using the

prediction method described earlier. Using the 31 training

shapes of the M60, we generate 31 corresponding shapes of

the T72 using parallel transport. The θa used here was 90◦.

The classification result after including the 31 predicted

shapes is found to be 60.34%, a 15% increase in the

performance when using shape predictions. We performed

the same experiment for another azimuth, θa = 0◦, and the

results are listed under experiment 2 in the table. In this

case we improve the classification performance from 6.8%

to 17.2%, an increase of almost 11%, using the predicted

shapes of the T72. While this experiment was performed

with only one training shape, one can repeat this idea using

multiple given shapes for the novel object and then perform

prediction for a novel view using joint information from



13

Experiment 1 (θa
= 90

◦) Experiment 2 (θa
= 0

◦)

Est. /True M60 T72 M60 T72

M60 100% (100 %)53.45% (39.66%) 100%(100 %)93.2% (82.8%)

T72 0% (0 %) 46.55% (60.34%) 0% (0 %) 6.8% (17.2%)

TABLE 2

Classification rate with (bold fonts) and without
(normal fonts) use of predicted shapes for the T72.

these views.

6 SUMMARY

We have presented a new representation of curves that facil-

itates an efficient elastic analysis of their shapes and is ap-

plicable to R
n for all n. Its most important advantage is that

the elastic metric reduces to a simple L
2 metric. Geodesics

between shapes of closed curves are computed using a path-

straightening approach. This framework is illustrated using

several applications: shape analysis of helical curves in R
3

with applications in protein backbone structure analysis;

shapes of 3D facial curves with applications in biometrics;

wrapped probability models for capturing shape variability;

and parallel transport of deformation models to predict

shapes of 3D objects from novel viewpoints.
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APPENDIX

Proof that Cc is a submanifold of Co: This proof is based

on pages 25-27 of [15]. Let G : Co → R
n be a map defined

as G(q) =
∫

S1 q(t)‖q(t)‖dt. First, we need to check that

its differential, dGq : Tq(Co) → R
n, is surjective at every

q ∈ G−1(0); 0 ∈ R
n is the origin. For the ith component

Gi(q) =
∫

S1 qi(t)‖q(t)‖dt, i = 1, 2, . . . , n, its directional

derivative in a direction w ∈ L
2(S1,Rn) is given by:

dGi(w) =

∫

S1

〈w(t),
qi(t)

‖q(t)‖q(t) + ‖q(t)‖ei〉dt ,

where e
i is a unit vector in R

n along the ith coordinate axis.

To show that G is surjective, we need to show the func-

tions { qi(t)
‖q(t)‖q(t) + ‖q(t)‖ei; i = 1, 2, . . . , n} are linearly

independent. Suppose not. This implies that there exists

a constant vector b = (b1, b2, . . . , bn) such that, for all t,
∑

i bi(
qi(t)
‖q(t)‖q(t)+‖q(t)‖ei) = 0. This, in turn, implies that

for all t, q(t) is in the same direction as a constant vector
∑n

i=1 biei. This proves that for any q function that does not

lie in a single one-dimensional subspace, the mapping G
is surjective. So the space Cc is a manifold except at those

points. These exceptional functions correspond to curves

that lie entirely in a straight line in R
n. This collection of

curves is a “very small” subset of Co, and we conclude

that G is a submersion at the remaining points of G−1(0).

Therefore, using [15], Cc is a codimension-n submanifold

of Co, for all points except those in this measure zero

subset. We will ignore this subset since there is essentially

a zero probability of encountering it in real problems. We

conclude that Cc, with the earlier proviso, is a submanifold

of the Hilbert space Co and, thus, L
2(S1,Rn). �

Proof of Theorem 1: Define a variation of α to be a smooth

function, h(τ, s) with h : [0, 1] × (−ǫ, ǫ) → H such that

h(τ, 0) = α(τ) for all τ ∈ [0, 1]. The variational vector

field corresponding to h is given by v(τ) = hs(τ, 0) where

s denotes the second argument in h. Thinking of h as a path

of curves in H, indexed by s, we define E(s) as the energy

of the curve obtained by restricting h to [0, 1]× {s}. That

is, E(s) = 1
2

∫ 1

0
〈hτ (τ, s), hτ (τ, s)〉dτ . We now compute,

Ė(0) =

∫ 1

0

〈Dhτ
ds

(τ, 0), hτ (τ, 0)〉dτ

=

∫ 1

0

〈Dhs
dτ

(τ, 0), hτ (τ, 0)〉dτ =

∫ 1

0

〈Dv
dτ

(τ),
dα

dτ
(τ)〉dτ,

since hτ (τ, 0) is simply dα
dτ (τ). Now, the gradient of E

should be a vector field u along α such that Ė(0) =

〈〈v, u〉〉. That is, Ė(0) = 〈v(0), u(0)〉 +
∫ 1

0
〈Dvdτ , Dudτ 〉dτ .

From this expression it is clear that u must satisfy the

initial condition u(0) = 0 and the ordinary (covariant)

differential equation Du
dτ = dα

dτ . �

Proof of Lemma 3: Suppose v ∈ Tα(H0) (i.e. v(0) =
v(1) = 0), and w ∈ Tα(H) is covariantly linear. Then,

using (covariant) integration by parts:

〈〈v, w〉〉 =

∫ 1

0

〈Dv(τ)
dτ

,
Dw(τ)

dτ
〉dτ

= 〈v, Dw(τ)

dτ
〉10 −

∫ 1

0

〈v(τ), D
dτ

(

Dw(τ)

dτ

)

〉dτ = 0 .

Hence, Tα(H0) is orthogonal to the space of covariantly

linear vector fields along α in Tα(H). This proves that

the space of covariantly linear vector fields is contained

in the orthogonal complement of Tα(H0). To prove that

these two spaces are equal, observe first that given any

choice of tangent vectors at α(0) and α(1), there is a unique

covariantly linear vector field interpolating them. It follows

that every vector field along α can be uniquely expressed

as the sum of a covariantly linear vector field and a vector

field in Tα(H0). The lemma follows. �.
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