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Abstract

Scalar functions defined on manifold triangle meshes is a starting point for many geometry processing algorithms

such as mesh parametrization, skeletonization, and segmentation. In this paper, we propose the Auto Diffusion

Function (ADF) which is a linear combination of the eigenfunctions of the Laplace-Beltrami operator in a way that

has a simple physical interpretation. The ADF of a given 3D object has a number of further desirable properties:

Its extrema are generally at the tips of features of a given object, its gradients and level sets follow or encircle

features, respectively, it is controlled by a single parameter which can be interpreted as feature scale, and, finally,

the ADF is invariant to rigid and isometric deformations.

We describe the ADF and its properties in detail and compare it to other choices of scalar functions on manifolds.

As an example of an application, we present a pose invariant, hierarchical skeletonization and segmentation

algorithm which makes direct use of the ADF.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Many algorithms for processing or analysis of manifold
shapes are aided by scalar functions defined on the surface.
It turns out that functions which are smooth and aligned
with the shape are excellent tools for parametrization and ex-
traction of topological information. In particular, harmonic
functions, piecewise harmonic functions or eigenfunctions
of the Laplace Beltrami operator have been used a great deal.
However, in order to define a harmonic function on a mesh,
its boundary conditions need to be specified (sources and
sinks), and while the eigenfunctions of the Laplace Beltrami
operator carry a great deal of shape information, it is often
hard to find out precisely what each eigenfunction repre-
sents. In particular, the picture gets more complicated when
eigenfunctions corresponding to eigenvectors larger than the
first non-zero eigenvalue are used.

Our goal is to find a smooth scalar function which attains
its maxima on the tips of features (tips of fingers, noses, ten-
tacles, hoofs, tails, tops of heads, etc.). Since the notion of
a feature is scale dependent, we observe that the function
must be parameterized by a scale parameter, but it would de-
feat the purpose if the user had to specify other information
(e.g. feature points). Furthermore, we desire that the func-
tion be invariant to any rigid transformation, scaling and to

isometric deformations of the shape. We believe such a func-
tion would be highly useful for a number of tasks such as
feature point detection, skeletonization, segmentation, and
parametrization. However, in this paper, we focus on show-
ing the usefulness in relation to skeletonization and segmen-
tation.

1.1. Contributions

Our main contributions are to describe the auto diffusion

function (ADF) which is a tool for shape analysis and to in-
vestigate its applications to geometry processing.

Assume we assign some quantity, like for example heat
or dye, subject to diffusion to a single point on a manifold
shape. For a point on this shape, x, and a scale (or time)
parameter t, the ADFt(x) is the fraction of the quantity that
remains at x after time t. Intuitively, it is fairly clear that the
quantity that remains will be bigger on or near features since
for a family of metric disks centered at x, the ratio of area of
metric disk to its perimeter will be bigger for a feature point
than for a point on a flat part of the shape. Thus, more of the
initial quantity escapes in the flat case. Detailed description
of ADF comes in Sections 3 and 4, see also [Ros97,CRD84,
Ber03].
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Figure 1: ADF and Fielder functions for the tentacles shape. The rings are iso-curves and positive values map to intensity of

blue while negative values map to intensity of red. Notice how the level sets of the ADF encircle the tentacles of the shape much

more consistently than the Fiedler vector.

In Figure 1 we show a complex shape with the ADF com-
pared to the Fiedler vector (first eigenfunction correspond-
ing to a non-zero eigenvalue). It is clear that all the tentacles
of the shape are encircled by iso-curves of the ADF while
that is not true of the Fiedler vector. We could have used a
harmonic function, but compared to harmonic functions, the
main advantage of the ADF is that it does not require the set-
ting of any boundary conditions on feature points. Instead,
its extrema prove to be the natural feature points.

We also propose an algorithm for skeletonization and seg-
mentation based on the well known method of Reeb graphs
applied to our ADF. Our contribution pertains to the fact that
a single branch point often turns into multiple bifurcations
on a Reeb graph, and each bifurcation tends to lie on or near
the surface. We address this issue by averaging points on the
Reeb graph within some small tolerance of a critical value.
The final skeleton is combined from several Reeb Skeletons,
which are extracted using the ADF function evaluated at dif-
ferent t-values.

2. Related work

2.1. Functions on surfaces

Ni et al. [NGH04] find a harmonic function by solving the
Laplace equation with selected vertices as the constraints.
This yields a smooth function that has maxima only at the

given points, however it is necessary to provide the extrema
in advance. Moreover, the values of the extrema need to be
carefully assigned depending on the lengths of the protru-
sions. Otherwise, the saddle points will be misplaced from
the natural branching area. The fast computation of har-
monic functions in [XZCOX09] allows for an interactive
approach where the user defines all of the constraint points
and obtains a new harmonic function immediately. Dong et
al. [DKG05] propose to use curve constraints as the bound-
ary conditions. These constraints are imposed by requiring
that all vertices which belong to the curve need to have the
same value of the function. There exist some heuristic algo-
rithms aimed at finding good constraints for harmonic func-
tions [SF01, JWYG04, DKG05].

Given a single user provided source point, Aujay et al.
[AHLD07] find the sinks as the clustered maxima of the
function of shortest distance to the source. They create har-
monic functions which have boundary conditions defined at
the sources and sinks. Tierny [Tie08] finds feature points au-
tomatically as the intersection of two sets of points which,
in turn, are the extrema of the geodesic distance to one of
a pair of diametrically opposite points. The scalar function
is then the geodesic distance to the nearest feature point. In
[TVD07] the geodesic distance is modified by making areas
separated by concavities, more distant. For more details see
Section 4.1. In general, methods based on geodesic distance
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are not always the best choice because they are very sensitive
to the small topology changes as mentioned in [Rus07].

When using the ADF or eigenvectors of the LBO it is
not necessary to provide extrema because they are defined
by the function itself. The existing approaches based on
eigensolutions of Laplace Beltrami operator usually involve
choosing one of the eigenfunctions. Some of the papers
[RBG∗09, PSF08] suggest exactly that but without speci-
fying which one to choose. [SLK∗08] takes the first non-
trivial eigenfunction and creates the skeleton based on that.
However, this approach may overlook many shape details
especially when the nontrivial eigenvalues are almost the
same. [DBG∗06] picks one of the Laplacian eigenfunctions
according to a given number of critical points that the func-
tion produces. But in this way one imposes the complexity.
For two shapes of very different complexity (say the tenta-
cles shape in Figure 1) this would lead to very different levels
of detail which is not likely to be desirable.

2.2. Skeletonization and segmentation

Many methods for producing a skeletonization require ei-
ther a volumetric representation or a Voronoi diagram. Many
of these are discussed in [ATC∗08]. Most of them create a
lot of tiny branches and are sensitive to noise, others have
a big computational cost. Below, we restrict the discussion
to those that directly work on the surface mesh since that is
most pertinent to this paper. [PSF08,SLK∗08] create a Reeb
graph directly from the choosen LBO eigenfunctions and
make a segmentation and shape skeleton from this graph.
Au et al. [ATC∗08] get the skeleton by shrinking the mesh
using Laplacian smoothing. However it does not work for
coarse meshes, and it does not seem possible to specify the
desired level of detail.

Many segmentation algorithms are based on geometric
properties of the parts, for example their convexity or the lo-
cal curvatures. As we require pose invariance, we refer only
to methods which meet this requirement. Katz et al [KT03]
use geodesic distance and angular distance as a metric for the
k-means clustering method. The number of clusters is ob-
tained by taking the k that has the biggest derivative of mini-
mal distance of the k-th added representative from other rep-
resentatives. In a later paper [KLT05], Katz et al. obtain the
pose invariance by using multi-dimensional scaling (MDS)
to make the geodesic distances similar to the Euclidean dis-
tances in 3D space. The points that reside on the convex hull
of this representation are chosen as the feature points, then
spherical mirroring is used to extract the core component
and the feature components. In the end, the boundaries of the
segments are refined by finding the optimal cut. This method
seems to work only with shapes that have a distinguishable
core part.

Tierny et al [TVD07] use an approach based on Reeb
graphs evaluated on geodesic and curvature based functions.

The segmentation process is not only aided by the topolog-
ical information but it is also enhanced by the placement
of the constrictions – the curves at the bottlenecks of the
shape which are good candidates for the boundaries of the
segments. Some heuristic methods like the identification of
the core part of the object is conducted in order to remove
some of the constrictions and produce the final shape.

Spectral methods [ZvKD07], especially based on eigen-
decomposition of the Laplace Beltrami operator have pose
invariance induced by the properties of the operator. Rus-
tamov [Rus07] proposes k-means clustering based on inner
products of points in GPS coordinates. The GPS coordinates
of a vertex is the vector of values of the LBO eigenfunctions
at that vertex where each value is divided by the square root
of the corresponding eigenvalue. Reuter et al. [RBG∗09]
mention segmentation based on the nodal domains of some
of the eigenfunctions. In both of those methods, the user
needs to provide information. Liu et al. [LZ07] perform 2D
contour analysis of the shape in the space of the first two
eigenfunctions. The problem is that these may fail to cap-
ture even basic shape properties. In [HWAG09] modal anal-
ysis of the Hessian of the deformation energy is used to find
the typical low energy deformations. Decomposition of the
shape into parts is done by finding the optimal approxima-
tion of those deformations by deformations which are rigid
for each segment.

[dGGV08] proposed to use the diffusion distance be-
tween points to make a shape segmentation. Like the ADF,
the diffusion distance is defined in terms of the Gaussian ker-
nel on the mesh, but the functions are otherwise very differ-
ent: The diffusion distance only makes sense for two points
since the diffusion distance from a point to itself is identi-
cally zero.

3. Theoretical background

3.1. The Laplace-Beltrami eigensolutions

The Laplace-Beltrami operator (LBO) is defined on a Rie-
mannian manifold Ω as the divergence of the gradient of a
scalar function f : Ω→ R.

∆ f =∇·(∇ f )

The LBO can be found in equations describing physical
phenomena such as wave propagation and heat distribution.
This operator has also been used extensively by the com-
puter graphics community in the last few years for many
purposes such as: mesh smoothing [NISA06], parameteri-
zation [PP93,MTAD08], editing [SCOL∗04], morphing and
deformation [Ale03]. The decomposition [Lev06] of the
LBO into eigenvalues (0 ≤ λ0 ≤ λ1 ≤ . . . ) and eigenfunc-
tions (φ0,φ1, . . . ), which can be expressed as the solution
of the Helmholtz equation ∆ f + λ f = 0, has also lately
been explored in a lot of applications for geometry pro-
cessing including shape identification [RWP05], classifica-
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tion [Rus07], segmentation [LZ07], registration [MHK∗08]
or identifying the shape symmetries [OSG08].

Figure 2: First four nontrivial eigenfunctions of the LBO

for three different human like shapes. Red color represent

negative and blue positive values, yellow shows area close

to the nodal set. The order of the eigenfunctions depends on

the proportions of the specific parts. Note that the nodal sets

do not always cut the object symmetrically.

The eigenfunctions corresponding to the first few eigen-
values align surprisingly well with the protrusions and fea-
tures of the object. This phenomenon can be explained by
investigating the Rayleigh Quotient method which is used
for calculating the eigensolutions to the symmetric operator,
which in the case of the Helmholtz equation is equal to −∆.
The problem is stated as a minimization problem:

φi = argmin
0 6= fi∈C2

0 (Ω)

〈φ j∈{0..i−1} , fi〉=0

〈 fi,−∆ fi〉

〈 fi, fi〉

The minimal value is equal to the corresponding eigen-
value λi. By applying the fact [CRD84] that for the com-
pact manifold the divergence and minus gradient are for-
mal adjoint operators 〈∇ f ,X〉v = −〈 f ,∇ ·X〉 to the vec-
tor field X equal to ∇ f [BN02], we transform this problem
into the mimimization of the 〈∇ fi,∇ fi〉v, which is equiv-
alent to the Dirichlet Energy minimalization problem with
the constraints 〈 fi, f j〉= δi j , where δi j is here the Kronecker
delta. Note that we use here two different inner products: the
first one 〈 f ,g〉 =

R

Ω f (x)g(x)dx is the inner product of two

scalar functions over our manifold Ω, and the second one
〈X,Y〉v =

R

Ω〈X(x),Y(x)〉Ωdx is the inner product of two
vector fields, where 〈,〉Ω is the inner product defined by the
structure of our Riemmanian manifold Ω [Ros97].

Put more loosely, the eigenfunctions are mutually orthog-
onal, have as small as possible gradients everywhere while
〈φi,φi〉 = 1. For a closed surface, a constant function will
suffice as φ0. However, φ1, the Fiedler vector, must be or-
thogonal to φ0 and consequently it is positive on half the
shape and negative on the other half. The requirement that
the gradients should be as small as possible translates into
the well known fact that the direction of change of the
Fiedler vector naturally follows the shape [Lev06] as illus-
trated in Figure 2 left column.

There is an analogy between the eigenfunctions of the
LBO and harmonic functions mentioned in Section 2.1. Both
minimize the Dirichlet energy, but the eigenfunctions are
constrained by the orthogonality requirement rather than
boundary conditions.

While using the LBO eigenfunctions, there are some
important issues that need to be remembered: The signs
of eigenvectors are undefined, two eigenvectors may be
swapped, nodal sets can be unstable due to small metric
changes. All of these are addressed by the Auto Diffusion
Function presented below. In our implementation Ω is rep-
resented as a triangular mesh. We use the cotan weights
[PP93, DHLM05] to calculate the entries for the LBO and
we solve a generalized eigenproblem in a way similar to the
one used by Rustamov [Rus07]. Because we are interested
mostly in the first few hundreds of eigenvalues we use the
sparse solver ARPACK together with SuperLU.

3.2. The diffusion kernel

The diffusion kernel K(x,y, t), or heat kernel, is a fundamen-
tal solution (Green’s function) to the heat equation:

(∆x +∂t)u(x, t) = 0

where ∆x denotes the Laplace Beltrami operator acting on
the spatial variable x where t ∈ [0,∞) is the time variable. It
solves the equation with the initial condition u(0,x) = δ(y),
where δ(y) is Dirac delta function at the position y, which
means that all heat is initially concentrated in one point
at the position of y. The general solution can be obtained
by convolution of the heat kernel with the initial condition
g(x) = u(0,x). The heat kernel can be expressed [Ros97,
page 32] in the terms of LBO eigensolutions as:

K(x,y, t) =
∞

∑
i=0

e
−λitφi(x)φi(y)

4. The Auto Diffusion Function and its interpretation

If we inject a unit amount of some quantity like dye at a
point x (this corresponds to the initial Dirac delta function),

c© 2009 The Author(s)
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the Auto Diffusion Function indicates how much of the dye
that remains after time t. So the ADF describes the diffusion
from the point to itself and can be written as:

K(x,x, t) =
∞

∑
i=0

e
−λitφ2

i (x)

In this way, we obtain a function which is only dependent on
the eigenvectors and eigenvalues of LBO, which, in turn, de-
pend solely on the first fundamental form G, and is therefore
independent of isometric deformations, translations, and ro-
tations. To make the function scale invariant we can simply
divide the exponential by the second eigenvalue [Reu06]. So
we define the Auto Diffusion Function as:

ADFt(x) = K(x,x,
t

λ1
) =

∞

∑
i=0

e
−t

λi
λ1 φ2

i (x) (1)

As the equation shows, the ADF is simply a linear com-
bination of squared LBO eigenfunctions. If the parameter t

is large, the eigenfunctions corresponding to big eigenval-
ues count less, and then only the main features ’detected’ by
the smaller eigenvalues influence the ADF. As we decrease
t, more features can be seen (cf. Figure 3).

The physical interpretation of the ADF is given by the dif-
fusion process: At the tips of protrusions, less of the dye will
escape than from flat areas. But if t is big enough, and the
protrusions are small, there will be enough time for the dye
to spread evenly to neighboring areas. On the other hand,
for small t there must be a connection between local Gaus-
sian curvature and (1). This connection can be made explicit
by observing the Minakshisundaram-Pleijel expansion of the
heat kernel. For sufficiently close x and y

K(x,y, t) = (4πt)−n/2
∞

∑
k=0

uk(x,y) t
k

where n is the dimension of the Riemannian manifold and
uk(x,y) are recursively defined. If y = x then u0(x,x) = 1 and
u1(x,x) = 1

6 S(x), where S(x) is the scalar curvature which is
the Gaussian curvature in the case of a 2-manifold. There-
fore, we have

ADFtλ1
(x) = (4π)−1

(

1
t

+
S(x)

6

)

+O(t) (2)

However, (2) is not a viable alternative to (1) since the trun-
cated terms are insignificant only for small t. Conversely, (1)
is faster to compute for bigger t since fewer high frequency
eigenfunctions are needed.

In practice, we do not include the first eigenfunction since
it is constant, and we only add eigenvectors corresponding

to eigenvalues that fulfill e
−t

λi
λ1 < δ, where the threshold is

δ = 0.01.

4.1. Comparison to the existing functions

In this section, we compare the ADF to some other functions
as illustrated in Figure 4. We concentrate on those functions

Figure 3: ADF evaluated with t equal to respectively 2, 1
2 ,

and 1
32 (left to right). In the magnified images t is 1

2 (top) and
1
32 (bottom). The lines show the isocontours of the function;

brighter color indicates bigger value of the ADF.

that can be specified with no direct annotation of feature
points and are pose invariant.

From our point of view, using the geodesic distance to the
closest feature entails two problems. First, the function has
first order discontinuities since it involves taking the mini-
mum of several geodesic distances. The second issue occurs
when some feature point is located at a much smaller protru-
sion than a neighboring protrusion. Then, most of the surface
at the ’parent area’ of the protrusion is geodesically clos-
est to the feature point of the smallest protrusion. This can
lead to a situation where the function at the ’parent area’ is
mostly defined as the distance to the point corresponding to
the smallest detail. Observe what happens with the isocurves
close to the little finger on the last two hands on the image
4 that represent Tierny’s geodesic functions. Even with the
geodesic distance enhanced by the curvature information the
problem is still present.

The Fiedler vector aligns well with the overall shape, but
some parts of the mesh close to the zero level set are poorly
aligned with the protrusions. One general problem with us-
ing the Fiedler vector is that for highly symmetric objects,
the smallest eigenvalues will be nearly identical, and the first
few eigenvectors align with directions of roughly the same
significance. The advantage of the ADF is that the weights
of the eigenfunctions depend on the eigenvalues, so all of the
first few eigenvectors may contribute. As noted previously,
for small values of t, the ADF starts to resemble Gaussian
curvature.

5. Feature Based Skeletonization and Segmentation

5.1. Reeb Graphs

Calculation of the Reeb graph is a natural application of
functions defined over a manifold. Given a manifold Ω and a
function f : Ω→R, p is a critical point of f if∇( f (p)) = 0.

c© 2009 The Author(s)
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Figure 4: Different functions calculated on the human hand.

The first two top represent ADF for t=1 and t=0.1, the bot-

tom two are the Fiedler vector and highly smoothed Gaus-

sian curvature, and the last two are geodesic based (pure

geodesic and enhanced by the curvature) from [Tie08] (pic-

tures used with the author’s permission).

f is a Morse function when for each critical point p, the Hes-
sian martix H( f (p)) of the second order derivatives of f is
non-singular, which means that critical points of f are non-
degenarate.

The Reeb graph [ABS03] of a Morse function f on a man-
ifold Ω traces the evolution of the level sets of the function
on the manifold and is the quotient space of Ω×R defined
by the equivalence relation (p, f (p))∼ (q, f (q))⇔ f (p) =
f (q) and p and q are in the same connected component of
f−1( f (p)).

The nodes of the Reeb graph correspond to the critical
points of the function f and the arcs, which we call the Reeb
edges, represent the connections between them. The Reeb
graph itself is a topological construct. However, if the mani-
fold Ω is embeded in Euclidean space, the point correspond-
ing to each connected component of the level set function
can be positioned at the center of mass of the corresponding
component of the level set curve. This we denote the Reeb
skeleton.

In the discrete case where the manifold is a triangular
mesh, the function f is defined over the vertices. The points
can be classified as regular or critical according only to the
function values of the vertices that belong to the one ring of
the vertex. The critical points are sinks if they are at the max-
ima, sources if there are at minima and saddles otherwise.

The full description of the point classification according to
the one-ring of the vertex can be found in [CMEH∗03]. Our
Reeb graph computation is done using a sweep algorithm
that allows us to position the skeleton points in space. The
algorithm is similar to the one described in [CMEH∗03].
If the positioning of the vertices is not needed, a faster al-
gorithm, that analyses the iso-contours only at the critical
points [PSF08], can be used.

5.2. Algorithm Outline

Reeb skeletons tend to look nicest at points which are not
close to branch points. Branch points have a tendency to be
either on or very close to the surface rather than inside the
shape where one would normally place a branch point. Also,
where a designer would typically have placed a single branch
point, Reeb skeletons tend to have multiple bifurcations. We
address both problems by defining a small interval around
the critical function value corresponding to a branch point.
All points on the Reeb graph corresponding to values within
this interval are averaged into a single point which we denote
a joint. The remainders of the edges of the Reeb graph are
denoted bones.

The method is somewhat similar to the extended Reeb
graph method [ABS03, BFS00] which slices the shape into
parts that have function values between probing points ac-
cording to a given frequency. Both methods work on critical
areas instead of the critical points which helps avoid degen-
erate situations. Critical areas for saddle points correspond to
our joint areas, but in our case the critical points are placed
in the middle of the sliced interval, and neighboring critical
areas that have small differences in function values (for a
given t parameter of the ADF function) are merged together
in order to avoid topological noise.

The skeleton is combined from several Reeb skeletons
which are extracted with ADFt evaluated with different t-
values. Usually, we refine a skeleton by computing a new one
at t ← t

2 and then grafting details from the new fine skele-
ton onto the coarse skeleton. We could also just compute
a familiy of skeletons using different t values for the ADF
function, but this would make it hard to absolutely guaran-
tee that we obtain a hierarchy, i.e. that there are no details in
the coarse skeletons which later disappear in a fine skeleton.

5.3. Extracting joints and bones from the Reeb skeleton

We denote as the Reeb edge area E all the points that are
transfered into the same arc of the Reeb graph. Each Reeb
edge has two critical points at the endpoints, the smaller one
pE

s and the bigger one pE
e . So for each point q that belongs

to the given edge area ADFt(pE
s ) ≤ ADFt(q) ≤ ADFt(pE

e ).
From each edge area, two joint areas are extracted at both
ends and they are defined as:

Js = {q ∈ E : ADFt(p
E
s )+ ε≥ ADFt(q)}

Je = {q ∈ E : ADFt(p
E
e )− ε≤ ADFt(q)}
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The threshold epsilon used in those equation is:

ε = κµ =
κ

N

∞

∑
i=0

e
−t

λi
λ1

where N is the number of vertices in the mesh and κ is a
user defined threshold, we use κ = 0.05, which works fine,
but can be changed according to the user preferences. µ is
the hypothetical value of the ADFt if all of the eigenfunc-
tions were constant. Such an objective formulation helps in
an intuitive threshold manipulation as κ can be the same for
ADFs with different t values and different shapes.

Neighbouring joint areas are glued together into one joint

area. If the edge is small |ADFt(pE
s )−ADFt(pE

e )|< 2ε then
the whole edge area is added into the joint area and the two
critical points that are the endpoints of this edge are merged
together. If a joint contains sinks, this means that some ge-
ometric details, such as fingers, are not fully captured, be-
cause of the threshold. Such joints are indicated as improve-

ment. Edge areas from the edge not contained in the joint

areas are called bones.

An edge area E which has a sink at the end pE
e is treated in

a special way since only the pE
s is a joint endpoint. However,

if the |ADFt(pE
s )−ADFt(pE

e )|< 3ε the whole edge is added
to the edge area.

All the sink edges are integrated into the joint. This kind
of edge is defined recursively as an edge that has no brother
edges and its parent is a sink edge or it has no parent. For the
parent P and the brother B the critical points are shared in a
way that: pP

e = pE
s and pB

s = pE
s .

In this way we get a graph structure with the bones being
the edges of the graph and the joints being vertices. An edge
is incident with a vertex if its Reeb edge area have joint areas
belonging to the joint areas corresponding to this vertex.

5.4. Integrating joints and bones from different Reeb

graphs

As described, the algorithm produces a skeletal structure at
a single LOD, but it is possible to go to a finer level of detail
by refining the improvement joints: The structures from two
Reeb graphs G1, G2 corresponding to different parameters
t1 > t2 are merged together in the following way. If there is
a new bone from G2 that has both endpoints at the same im-

provement joint area from G1 then this edge is grafted onto
that improvement joint. The bone area is taken off from the
joint. If the bone disconnects the joint then new joints are
created and the edges are carefully connected to their inci-
dent joints. Refinement is illustrated in Figure 5.

The operation of merging new Reeb graphs with the exist-
ing structure can be repeated with gradually smaller values
of t, until we have no improvement joints or up to the desired
level of detail.

Figure 5: Ilustration of the process of merging two differ-

ent graphs. Joint areas on the mesh are marked black. Im-

provement joints are red, regular joints blue, and bones yel-

low. The top left coarse mesh is connected with the bottom

left one. From the detailed mesh only those edges are taken

which belong to the improvement joints area (middle and

bottom right).

5.5. Defining the final skeleton and segmentation

The geometry of the skeleton is computed as follows: For
each joint we calculate the center of mass of the joint area,
which we call the joint center, and then we connect to it the
incident bones. If we are at a one-parent-many-children joint

then it looks more pleasant if the joint center is moved to-
wards the parent, so in that case we calculate the joint center
as the center of parent joint area. The parts of the skele-
ton corresponding to the bones are the centers of the level
sets. However, the bones need to be connected to the joint:
The parts corresponding to the joint areas of the edges are
a weighted average of the centers of level sets and the joint

center. The closer we are to the critical point the more posi-
tion of the joint center counts so finally for the critical point
the position is equal to the position of the joint center.

When doing segmentation, we integrate some of the joint

areas with the bone areas. If the joint connects only two
bones then there is no branching at this level of detail. In that
case those two bone areas and the joint area are connected
together into one segment. The joint area is also integrated
into a bone area if it has only one bone connection. In the
one-parent-many-children case we connect the joint node to
the parent bone area. In other cases we leave the joint area
as a separate segment.

5.6. Parameters

The level of detail can be controlled by choosing the t and κ

values. Especially setting the t for the basic skeleton is im-
portant as new edges can only be inserted into a joint that
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Figure 6: Segmented poses of the Armadillo. On the top,

the segmentations have been created from a coarse skeleton

(t = 1,κ = 0.04) and below we see the result after refining

the improvement joints (t = 0.25). Note that there is some

noise added to the last pose of the Armadillo to demonstrate

insensitivity to noise.

is marked as an improvement area. Those areas are detected
if there are maxima inside. For bigger t, the ADF tends to
have less maxima than for smaller values of t. κ controls
whether features that are not very thin, like humps, can be
transformed into bones. Such a feature would usually pro-
duce an edge of the Reeb graph with a small difference be-
tween minimal and maximal function values, compared to
thin features.

The other measure of level of detail - the feature length -
is controlled by the t for the smallest added skeleton.

The described parameters are not shape specific but rather
general. For a defined set of parameters, all of the shapes can
be processed by the skeletonization algorithm. Then the re-
sults can be the base for other geometric tasks - for example
as a good similarity measure between the shapes.

6. Discussion and Future Work

We have proposed the ADF as an effective tool for shape
analysis. It is governed by only one parameter, feature scale,
which is arguably indispensable, and its construction re-
quires nearly nothing more than a framework for comput-
ing eigenfunctions of the Laplace Beltrami Operator. Thus,
it is also simple. We have also explored the application of the
ADF to the related tasks of skeletonization which is shown in
Figure 7 and segmentation which is shown in Figure 6. The

Figure 7: Skeletons produced for different meshes with t =
0.5 and κ = 0.04 drawn on top of the ADF for the mesh.

Improvement joints are red, regular joints blue, and bones

yellow.

result is an algorithm which has a controllable level of detail,
insensitivity to noise and invariance to scale, rigid transfor-
mation and pose invariance. The last properties being inher-
ited from the ADF.

In the future, we would like to explore other applications
of the ADF. For instance matching features extracted as ADF
maxima between shapes, and parameterization of shapes.
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