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Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, Rua do Matão 1010,
CEP 05508–090, São Paulo SP, Brazil
E-mail address: popov@ime.usp.br

URL: http://www.ime.usp.br/~popov

Abstract. We study branching random walks in random environment on the d-
dimensional square lattice, d ≥ 1. In this model, the environment has finite range
dependence, and the population size cannot decrease. We prove limit theorems
(laws of large numbers) for the set of lattice sites which are visited up to a large
time as well as for the local size of the population. The limiting shape of this set
is compact and convex, and the local size is given by a concave growth exponent.
Also, we obtain the law of large numbers for the logarithm of the total number of
particles in the process.

1. Introduction and results

We start with an informal description of the model we study in this paper.
Particles live in Zd and evolve in discrete time. At each time, every particle is
substituted by (possibly more than one) offspring which are placed in neighboring
sites, independently of the other particles. The rules of offspring generation depend
only on the location of the particle. The collection of those rules (so-called the
environment) is itself random, it is chosen randomly before starting the process,
and then it is kept fixed during all the subsequent evolution of the particle system.
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This model considered in this paper was introduced in Comets and Popov (2007).
The random environment here affects both branching and transition mechanisms,
and (as opposed to the models of Comets et al. (1998); Gantert and Müller (2006);
Machado and Popov (2000, 2003)) the immediate descendants of a particle are not
supposed to be independent. In Comets and Popov (2007) we proved a dichotomy
for recurrence/transience, depending only on the support of the environmental law,
and we gave sufficient conditions for recurrence and transience. In the recurrent
case, the tails of the hitting times are studied and a shape theorem is obtained in
a preliminary form. The recurrence/transience classification was later completed
in Müller (2007b,a). We refer also to Baillon et al. (1993); Engländer (2005); den
Hollander et al. (1999); Volkov (2001) for other work related to branching random
walks in random environment.

Now, let us look at the subject of this paper from a different angle. For x ∈ Zd,
let p(x, ·) be the transition probabilities from x to its nearest neighbors, and r(x) ≥
1. Consistently with the notation introduced later in this section, we denote by
ω = (ωx;x ∈ Zd) the collection of coefficients ωx = (p(x, x+ ·), r(x)) (as explained
below, r(x) stands for the mean offspring in x), and by ∆ω the corresponding
discrete Markov operator,

∆ωf(x) =
∑

y∼x

p(x, y)[f(y) − f(x)].

In this paper we will study for z ∈ Zd the solution un(x) = uz
n(x) of the equation

{

un+1 − un = r∆ωun + (r − 1)un, x ∈ Zd, n = 0, 1, . . . ,

u0(x) = 1{x = z}.
(1.1)

It is easily checked, for instance by the discrete Feynman-Kac formula, that the
solution uz

n is given by the expectation uz
n(x) = Eωη

x
n(z) of the number ηx

n(z) of
particles in z at time n in a discrete-time branching random walk starting from a
single individual located at site x at time 0. The evolution rule of this branching
random walk is that particles at x branch with an average of r(x) children which
then move independently to a neighboring site randomly chosen from p(x, ·). We
will be interested in the case where the coefficients ω are given by a stationary
and finitely dependent random field. The model has other possible formulations.
In the case of continuous time, the above equation becomes the parabolic partial
differential equation

∂

∂t
ut(x) = ∆ωut(x) + V ω(x)ut(x)

with V ω(x) the branching rate. In our case the mean number of offspring is greater
than or equal to 1 and bounded from above, or, equivalently, V ω(x) is nonnegative
and bounded.

In the case where p(x, ·) are the simple random walk transition probabilities
(1/2d, . . . , 1/2d), so that ∆ is the standard Laplace operator, this equation is
known as the parabolic Anderson problem, and has also continuous-space ver-
sions, see Sznitman (1998) and Sznitman (1994). These models have motivated
a huge scientific activity, with particular interest on localization and intermittency
(e.g. Gärtner et al. (2007); van der Hofstad et al. (2006)) and survival analy-
sis (Antal (1995)), leading to fine pictures in the different cases of bounded or
unbounded V ’s. We stress that the Markov operator ∆ω is random in the present
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paper, a case that seems not to have been studied so far. Moreover, ∆ω is non
symmetric, this makes the model non-reversible with a possibly large drift, and
prevents the use of a spectral theory as in the above references.

The present paper represents a step towards the understanding of the equa-
tion (1.1). We will prove that the solution uz

n behaves like uz
n(x) = exp{nβ((z −

x)/n) + o(n)} as n→ +∞ (see Remark 1.8 where we comment on the function β).
We will even get into the finer study of the population size ηx

n(z) itself, and we prove
the same asymptotics under the assumption that particles cannot die. Hence, the
growth of the population is rather smooth at the coarse scale z − x = O(n). The
occurrence of shape theorems and local growth rate goes back at least to Biggins
(1978) and Laredo and Rouault (1983) for branching random walks, and to Greven
and den Hollander (1992) in random environment. In fact, our model is slightly
more general than described above. As mentioned in the beginning of this section,
the branching and the displacement may be dependent. Also, the environment
that we consider is not necessarily independent, but we allow for a finite range
dependence. We believe that the results extend to more general dependence, but
considering this case would require an important additional technical work.

The model. We now describe the model, keeping the notations of Comets and
Popov (2007) whenever possible. Let Z+ = {0, 1, 2, . . .} and ei-s be the coordinate
vectors of Zd. We use the notation ‖x‖ = |x(1)|+· · ·+|x(d)| for x = (x(1), . . . , x(d)) ∈
Rd (or x ∈ Zd). Define the distance between two sets A,B ⊂ Rd (or A,B ⊂ Zd) by

dist(A,B) = inf
a∈A,b∈B

‖a− b‖.

Fix a finite set A ⊂ Zd such that ±ei ∈ A for all i = 1, . . . , d. Define

V =
{

v = (vx, x ∈ A) : vx ∈ Z+,
∑

x∈A

vx ≥ 1
}

,

and for v ∈ V put |v| =
∑

x∈A
vx; note that |v| ≥ 1 for all v ∈ V . Furthermore,

let M be the set of all probability measures ω on V :

M =
{

ω = (ω(v), v ∈ V) : ω(v) ≥ 0 for all v ∈ V ,
∑

v∈V

ω(v) = 1
}

.

Then, suppose that ω := (ωx ∈ M, x ∈ Zd) is a stationary ergodic random field,
and denote by P,E the probability and expectation with respect to ω. Throughout
this paper we suppose that this field is also finitely dependent, that is, the following
condition holds:

Condition I. There exists a positive number ̺ such that for any two sets A,B ⊂ Zd

with dist(A,B) ≥ ̺ the following holds: the sigma-algebra generated by (ωx, x ∈ A)
is independent under P from the sigma-algebra generated by (ωx, x ∈ B). Note that
̺ = 1 corresponds to the case of independent identically distributed environment.

The collection ω = (ωx, x ∈ Zd) is called the environment. Given the environ-
ment ω, the evolution of the process is described in the following way: start with
one particle at some fixed site of Zd. At each integer time the particles branch in-
dependently using the following mechanism: for a particle at site x ∈ Zd, a random
element v = (vy , y ∈ A) is chosen with probability ωx(v), and then the particle is
substituted by vy particles in x + y for all y ∈ A. Note that the population never
gets extinct, since every individual has at least one direct descendant.
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For the process starting from one particle at x, let us denote by ηx
n(y) the number

of particles in y at time n. Define the random variable

Zx
n =

∑

y∈Zd

ηx
n(y),

i.e., Zx
n is the total number of particles at moment n for the process starting from x.

We denote by P
x
ω, E

x
ω the (so-called “quenched”) probability and expectation

for the process starting from x in the fixed environment ω. We use the notation
Px[ · ] = E P

x
ω[ · ] for the annealed law of the branching random walk in random

environment, and Ex for the corresponding expectation. Also, sometimes we use
the symbols Pω, Eω,P,E without the corresponding superscripts when it can create
no confusion (e.g. when the starting point of the process is indicated elsewhere).

Throughout this paper, and often without recalling it explicitly, we suppose that
the two conditions below are fulfilled:

Condition B.

P[there exists v ∈ V such that ω0(v) > 0 and |v| ≥ 2] > 0.

Condition UE. For some ε0 > 0,

P

[

∑

v:ve≥1

ω0(v) ≥ ε0 for any e ∈ {±e1, . . . ,±ed}
]

= 1.

Condition B ensures that the model cannot be reduced to random walk without
branching, and Condition UE is a natural uniform ellipticity condition which en-
sures that the walk is really d-dimensional. In this paper, the weaker ellipticity
Condition E of Comets and Popov (2007) will usually not be enough for our pur-
poses. In fact, we believe that most of our results do not generally hold if one only
assumes Condition E.

For technical reasons we need also the following two conditions:

Condition D. There exists a positive constant D0 such that the expectation of
the total number of the immediate descendants of any particle is at most D0, i.e.,
P
[
∑

v∈V |v|ω0(v) ≤ D0

]

= 1.

Condition A. There exist x ∈ A, v ∈ V with ‖x‖ even and vx ≥ 1 such that
P[ω0(v) > 0] > 0.

We refer to Condition A as the “aperiodicity condition” because, without it, the
process starting from the origin would live on even sites at even times, and on odd
sites at odd times. If (with x, v of Condition A) a site y is such that ωy(v) > 0,
we say that this site is an aperiodic site, and when ωy(v) > δ, we say that this site
is δ-aperiodic. We briefly mention that suitably adjusted versions of all our results
are also true without Condition A; the proofs are either the same or even simpler,
since we do not have to care about searching for the aperiodic sites, e.g. the proofs
of Theorems 1.4 and 1.7.

Remark 1.1. A particular case of the model considered here is the usual construc-
tion of the branching random walk, that was already mentioned in the beginning
of this paper: for each x, specify the transition probabilities p(x, y), y ∈ A, and
branching probabilities ri(x), i = 1, 2, 3, . . .. A particle in x is first substituted by i
particles with probability ri(x), then each of the offspring jumps independently
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to x+ y with probability p(x, y). The pairs ((ri(x))i≥1, (p(x, y))y∈A) are chosen ac-
cording to some i.i.d. field on Zd. In our notations, ωx is a mixture of multinomial
distributions on A:

ωx(·) =
∑

i≥1

ri(x)Mult(i; p(x, y), y ∈ A)(·).

Statement of the results. All through the paper, we will assume the above five
conditions. Following Comets and Popov (2007), we define the notions of transience
and recurrence:

Definition 1.2. For the particular realization of the random environment ω, the
branching random walk is called recurrent if

P
0
ω[the origin is visited infinitely often] = 1.

Otherwise, the branching random walk is called transient.

The following result is a consequence of Propositions 1.2, 1.3, and Theorem 1.6
of Comets and Popov (2007), and also Theorem 3.2 of Müller (2007a); in Section 2.1,
we comment about the validity of (i) and (ii) below in the non-i.i.d. case ̺ > 1.

Proposition 1.3. We have either:

(i) For P-almost all ω, the branching random walk is recurrent, in which case
P

x
ω[the origin is visited infinitely often] = 1 for all x ∈ Zd, or:

(ii) For P-almost all ω, the branching random walk is transient, in which case
P

x
ω[the origin is visited infinitely often] = 0 for all x ∈ Zd.

The classification criterion: In the case of an i.i.d. environment, i.e., ̺ = 1, the
branching random walk in random environment is transient if and only if there exist
s ∈ Rd \ {0} and λ > 0 such that P-almost surely we have

∑

y∈A

µω
yλ

y·s ≤ 1, (1.2)

where µω
y = Eωη

0
1(y) is the mean number of particles sent to y ∈ A by one particle

at the origin.

It is interesting to observe that, in the case of an i.i.d. environment, one has
a simple explicit criterion of transience/recurrence for the branching random walk
in random environment; however, for the many-dimensional random walk without
branching in random environment the problem of finding such a criterion is still far
from being solved. In Comets and Popov (2007) one can find more evidence that
branching makes random walks in random environment “simpler”; see, for instance,
the results about the tails of first hitting times.

Now, we are ready to formulate the main results of this paper. In what follows,
for any A ⊂ Rd, A is the closure of A, and Ao is the interior of A.

First, we obtain a shape result about the sites that can contain a particle at
time n.

Theorem 1.4. There exists a compact convex set F ⊂ Rd such that for any ε > 0,
for almost all ω there exists n(ω, ε) such that

Pω[η0
m(x) = 0 for all x ∈ Zd \ (1 + ε)mF ] = 1 (1.3)
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and

Pω[η0
m(x) = 0] < 1 for all x ∈ Zd ∩ (1 − ε)mF (1.4)

for all m ≥ n(ω, ε).

Next, we characterize the (quenched) mean local number of particles.

Theorem 1.5. There exists a convex downwards, continuous function β : F o → R

such that for any closed G ⊂ F o

max
x∈nG∩Zd

|n−1 ln Eωη
0
n(x) − β(x/n)| → 0 P-a.s., (1.5)

as n→ ∞.

The function β is called the local growth exponent for the branching random
walk. Denote B = {x ∈ Rd : β(x) ≥ 0}; by the convexity of β, the set B is compact
and convex. All through, convex functions will mean convex downwards.

Theorem 1.6. The branching random walk in random environment is recurrent if
and only if β(0) > 0.

Note that the border case β(0) = 0 is transient. Note also that, from the
property (1.7) below, one obtains that β(0) > 0 if and only if 0 ∈ Bo. Thus,
given B, one can determine whether the branching random walk is recurrent or
transient.

The next result does not only tell us, similarly to Theorem 1.10 of Comets
and Popov (2007), where the particles are located at time n, but it also gives an
important information about the local size of the population.

Theorem 1.7. For any closed G ⊂ Bo,

max
x∈nG∩Zd

|n−1 ln η0
n(x) − β(x/n)| → 0 (1.6)

as n→ ∞, a.s.

Remark 1.8. (Equivalence of models.) The local growth exponent β is defined by
(1.5). By definition it only depends on the quenched expectation of the number of
particles, and further, only on the mean number µω

y of particles sent in one step
to y by one particle at the origin. Indeed,

Eωη
0
n(x) =

∑

n
∏

i=1

µω(i)

xi−xi−1

where ω(i) is the environment shifted by xi−1, and where the sum ranges over all
sequences (xi; 0 ≤ i ≤ n) with x0 = 0, xn = x, xi − xi−1 ∈ A. In particular, for any
mapping ω 7→ ω̃ from M to itself such that µω

y = µω̃
y for all y ∈ A, ω ∈ M, the

two branching random walks in the environments ω and ω̃ are equivalent, in the
sense that they have the same local behavior at the logarithmic scale. Fine details
of the branching and displacement do not matter, under the above five conditions.
Moreover, for results that only concern the expected number of particles (such as
Theorem 1.5) we really do not need the assumption that any particle produces at
least one offspring; this can be substituted by a weaker assumption EωZ0

1 ≥ 1 P-a.s.

Finally, we formulate a result about the total size of the population:
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Theorem 1.9. The function β has the property

sup
x∈F o

β(x) > 0. (1.7)

For the total size of the population Z0
n, it holds that

lnZ0
n

n
→ sup

x∈F o

β(x) (1.8)

a.s., as n→ ∞.

Note that, by (1.7), B 6= ∅, and Bo 6= ∅ by convexity. From Theorems 1.5 and 1.7
it follows that for P-almost all ω, for any ε > 0

Pω[for all m large enough η0
m(x) = 0 ∀x ∈ (1 + ε)mB,

η0
m(x) ≥ 1 ∀x ∈ (1 − ε)mB] = 1.

As opposed to Theorem 1.10 of Comets and Popov (2007), here we prove this result
both in transient and recurrent cases.

Example 1.10. (Constant branching) More information can be obtained in the
particular case when there exists a constant µ > 1 such that

∑

y∈A

µω
y = µ P-a.s.

In this case, the expected size of the population is EωZ
0
n = µn. This is the case for

instance when µω
y does not depend on ω, and then the branching random walk is

equivalent to a tree-indexed Markov chain (since in this case we can suppose also
that the immediate descendants jump independently, and the offspring distribution
does not depend on the site, cf. Remark 1.8). In the general case, we can define
the transitions

pω0(y) =
µω

y

µ
, y ∈ A

(recall that µω
y only depends on ω0), and consider the random walk in random

environment χn with transition probabilities Pω[χn+1 = x+y | χn = x] = pωx(y) for
y ∈ A. We see here that Eωη

0
n(x) = µn

Pω(χn = x), and therefore, by Theorem 1.5,

β(a) = lnµ+ lim
n→∞

n−1 ln Pω

[

χn = [na]
]

with [na] the integer part of na (coordinatewise). The limit can be expressed in
terms of the quenched large deviation rate function Iq, which have been studied in
the nestling case in Zerner (1998) and in complete generality in Varadhan (2004):
it holds that

β(a) = lnµ− Iq(a).

These references are for i.i.d. environment and estimate the probability of sets in the
scale n instead of the probability of points, but one can see that they apply to our
discussion here. This example shows that the convex function β is not necessarily
strictly convex. Indeed, it is known that the rate function has a flat horizontal part
if the random walk in random environment is nestling with a non-zero speed v, in
which case Iq(a) = 0 for a in the whole interval with endpoints 0 and v. Finally,
it is straightforward to see from the nearest neighbor jumps case, that the shapes
F and B may have “facets”, i.e., flat parts on their boundaries (cf. e.g. Example 7
of Comets and Popov (2007)).
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2. Proofs

The rest of this paper is organised as follows. First, in Section 2.1 we recall
some concepts from Comets and Popov (2007), such as recurrent seeds and induced
random walks. In Section 2.2 we study the set of sites which can be reached up to
time n (this amounts, basically, to applying the Subadditive Ergodic Theorem). In
Section 2.3 we prove the results related to the expected local population size, and
in Section 2.4 we study the local population size itself. Finally, in Section 2.5 we
prove the equation (1.7), i.e., that the expectation of the total number of particles
grows exponentially (somewhat surprisingly, this is one of the most difficult results
of this paper), and then we prove Theorem 1.9.

2.1. Induced random walks. To begin, we introduce some more basic notations. We
denote by Q the set of rational numbers, and define N := {1, 2, 3, . . .}. Let L0 to
be the maximal jump length, i.e.,

L0 = max
x∈A

‖x‖,

and let Kn be the d-dimensional discrete ball with respect to the ℓ1-norm:

Kn = {x ∈ Zd : ‖x‖ ≤ n}. (2.1)

As in Section 2.1 of Comets and Popov (2007), we define now the notion of
induced random walk in random environment associated with the branching random
walk in random environment. Defining

Ṽ =
{

(v, κ) : v ∈ V , κ probability measure on {y : v(y) ≥ 1}
}

,

we consider some probability measure P̃ on ṼZ
d

with marginal P on VZ
d

. A sta-
tionary random field ω̃ = ((ωx, κx), x ∈ Zd) with the law P̃ defines our branching
random walk as above, coupled with a random walk in random environment with
transition probability

px(y) =
∑

v∈V

ωx(v)κx(y) (2.2)

from x to x+ y. In words, we pick randomly one of the children in the branching
random walk. To keep things simple, we will drop the tilde from the notations P̃.
In this paper, we need only the so-called uniform induced random walk, for which
the measure κ is defined as follows: κ is uniform on the locations {x ∈ A : vx ≥ 1}.

An important idea that will be repeatedly employed in this paper is to use the
uniform ellipticity of the walk in order to reveal some independence in the envi-
ronment: because of Condition UE, the uniform induced random walk is uniformly
elliptic as well, and so sometimes it makes its steps “without looking at the en-
vironment”. A similar construction can be found in Comets and Zeitouni (2004);
Zeitouni (2004). Specifically, let us consider the uniform induced random walk ξz

(z stands for the starting location of this random walk). According to (2.2), the
transition probabilities for ξz are:

σ(x, x + y) = Pω[ξz
n+1 = x+ y | ξz

n = x] =
∑

v:vy≥1

ωx(v)

|{u : vu ≥ 1}|
,

which means that, in the case when a particle has more than one offspring in the
branching random walk (i.e., it produces a configuration v with |v| > 1), the next
(relative) location for the uniform induced random walk is chosen uniformly among
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the locations {x ∈ A : vx ≥ 1}. By Condition UE, this induced random walk is
uniformly elliptic in the sense that

Pω[ξz
n+1 = x+ e | ξz

n = x] ≥ ε̂0 for all e ∈ {±ei, i = 1, . . . , d}

where ε̂0 = ε0/|A|. Let Ẑ1, Ẑ2, Ẑ3, . . . be a sequence of i.i.d. random variables

with values in {0, 1, . . . , 2d}, such that Pω[Ẑi = j] = ε̂0 for j 6= 0 and of course

Pω[Ẑi = 0] = 1−2dε̂0. We still keep the symbol Pω to denote the probability on the
enlarged probability space where both the branching random walk and the sequence
(Ẑi)i are defined. Set Zi = 1{Ẑi 6= 0}. Let us enumerate the elements of the set
{±ei, i = 1, . . . , d} in some order, so that {±ei, i = 1, . . . , d} = {êi, i = 1, . . . , 2d}.
We can now construct the induced random walk as follows:

• if Ẑi = j for some j 6= 0, then ξz
i = ξz

i−1 + êj;

• if Ẑi = 0, then ξz
i = ξz

i−1 + êj with probability
σ(ξz

i−1,ξz
i−1+êj)−ε̂0

1−2dε̂0
, and

ξz
i = ξz

i−1 + y with probability
σ(ξz

i−1,ξz
i−1+y)

1−2dε̂0
for y /∈ {êi, i = 1, . . . , 2d}.

In words, this means that when the value of Z-variable is 1, the random walk moves
without looking at the random environment.

In the next definition we recall the notion of (U,H)-seed (suitably adapted for
the case of finitely dependent environment), that was introduced in Comets and
Popov (2007).

Definition 2.1. Fix a finite set U ⊂ Zd containing 0, and Hx ⊂ M with P[ωx ∈
Hx for all x ∈ U ] > 0. With H = (Hx, x ∈ U), the pair (U,H) is called a seed. We
say that ω has a (U,H)-seed at z ∈ Zd (or that a (U,H)-seed occurs in z) if

ωz+x ∈ Hx for all x ∈ U,

and that ω has a (U,H)-seed in the case z = 0. We call z the center of the seed.

As in Comets and Popov (2007), it is easy to see that with probability 1 the
branching random walk visits infinitely many distinct (U,H)-seeds (this can be
done by showing that the uniform induced random walk does so). We now give
the argument. With r = ̺+ diameter(U), at any time a.s. there exist subsequent
times n, t = n+ r such that at time t the uniform induced random walk is situated
in a location x which is at distance r away from its range up to time n, without
looking at the environment (that is, Zn+1 = . . . = Zt = 1). Then, by Condition I,
the environment can be constructed inside the translate x+U independently from
all what done before, and so the probability to generate a (U,H)-seed at site x is
a positive constant. By the Borel-Cantelli lemma, with probability 1 an infinite
number of (U,H)-seeds will be visited.

Then, still following Comets and Popov (2007), we define the branching random
walk restricted to setM ⊂ Zd simply by discarding all particles that step outsideM ,
and write Pω|M , Eω|M for corresponding probability and expectation. Next, we
consider a shortened version of Definition 2.5 from Comets and Popov (2007):

Definition 2.2. Let U be a finite subset of Zd with 0 ∈ U . Let p be a probability
distribution on Z+ with mean larger than 1, i.e., p = (p0, p1, p2, . . .) with pi ≥ 0,
∑

pi = 1,
∑

ipi > 1. An (U,H)-seed is called p-recurrent if for any ω such that
ωx ∈ Hx, x ∈ U , we have

P
0
ω|U [0 will be visited by at least i “free” particles] ≥

∞
∑

j=i

pj
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for all i ≥ 1. By “free” particles we mean that none is the descendant of another
one.

It is important to note that, by definition of the restricted branching ran-
dom walk, the above probability only depends on the environment inside the ̺-
neighborhood of U .

Then, it is straightforward to see that all the discussion of Section 2.2 of Comets
and Popov (2007) readily extends to the case of finitely dependent environment as
well. In particular, the recurrence is equivalent to the existence of recurrent seeds;
this fact will be used several times in this paper.

2.2. Proof of Theorem 1.4. For arbitrary x, y ∈ Zd, δ ∈ [0, ε0] (ε0 is from Condi-
tion UE), define

T δ
ω(x, y) = min{n : there exist z0, z1, . . . , zn ∈ Zd with z0 = x, zn = y

such that ωzi
(v : vzi+1−zi

≥ 1) > δ, i = 0, . . . , n− 1},

so that T δ
ω(x, y) is the minimal number of steps necessary for a particle in x to send

an offspring to y, with the condition also that this should happen with big enough
probability on each step. By Condition UE, it is immediate that

T δ
ω(x, y) ≤ ‖x− y‖. (2.3)

Clearly, this family of random variables has the subadditive property: for any
x, y, z ∈ Zd, δ ∈ [0, ε0], and any ω

T δ
ω(x, y) ≤ T δ

ω(x, z) + T δ
ω(z, y). (2.4)

Consider any a ∈ Qd and define

µδ(a) = lim
n→∞

T δ
ω(0, k0an)

k0n
, (2.5)

where k0 is the smallest positive integer such that k0a ∈ Zd. With (2.3) and (2.4),
the Subadditive Ergodic Theorem (see e.g. Theorem 2.6 of Chapter VI of Liggett
(1985)) shows that the (nonrandom) limit in (2.5) exists a.s. and in L1; by (2.4), this
limit verifies µδ(a) + µδ(b) ≥ µδ(a+ b), µδ(ra) = rµδ(a), for any a, b ∈ Qd, r ∈ Q+.
Moreover, since the jumps are bounded, we have T δ

ω(x, y) ≥ L−1
0 ‖x− y‖ and finally

L−1
0 ‖a‖ ≤ µδ(a) ≤ ‖a‖. Then, by continuity one can define µδ(a) for any a ∈ Rd

in such a way that µδ is a norm on Rd.
Let

Fδ = {a ∈ Rd : µδ(a) ≤ 1}.

Clearly, for any δ ∈ [0, ε0], the set Fδ is compact and convex, and 0 ∈ F o
δ . By

definition, for any x, y and ω it holds that

T δ1
ω (x, y) ≤ T δ2

ω (x, y) (2.6)

when δ1 ≤ δ2. So, we have that Fδ1 ⊂ Fδ2 for δ1 ≥ δ2. For the rest of this
paper, denote F := F0 (and this is the compact convex set we are looking for in
Theorem 1.4). The following lemma shows that the family Fδ is continuous in δ:

Lemma 2.3. For any ε > 0 there exists δ > 0 such that (1 − ε)F ⊂ Fδ ⊂ F .
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Proof: By covering F with finitely many small disks, we see it is enough to prove
that, for any a ∈ Qd,

lim
δ→0

[

lim
n→∞

T δ
ω(0, k0an)

k0n
− lim

n→∞

T 0
ω(0, k0an)

k0n

]

= 0, (2.7)

where k0 is the smallest positive integer such that k0a ∈ Zd. Observe that, by the
Subadditive Ergodic Theorem, the left-hand side of (2.7) is equal to

lim
δ→0

[

inf
n≥1

ET δ
ω(0, k0an)

k0n
− inf

n≥1

ET 0
ω(0, k0an)

k0n

]

.

Note that, by (2.3), T δ
ω(x, y) depends only on a finite piece of the environment, so

ET δ
ω(x, y) → ET 0

ω(x, y) (2.8)

as δ → 0. Now, fix an arbitrary ε > 0 and choose n1 in such a way that

ET 0
ω(0, k0an1)

k0n1
− inf

n≥1

ET 0
ω(0, k0an)

k0n
< ε.

By (2.6) and (2.8), there exists δ1 > 0 such that

ET δ
ω(0, k0an1) − ET 0

ω(0, k0an1) < k0n1ε

for all δ ≤ δ1. So, we obtain that

lim sup
δ→0

[

inf
n≥1

ET δ
ω(0, k0an)

k0n
− inf

n≥1

ET 0
ω(0, k0an)

k0n

]

≤ 2ε,

which implies (2.7). �

Now, we are ready to prove the first part of Theorem 1.4. Denote

W δ
ω(n) = {x ∈ Zd : T δ

ω(0, x) ≤ n},

and let Ŵ δ
ω(n) = W δ

ω(n) + (−1/2, 1/2]d.
By a standard argument (see e.g. Alves et al. (2002); Bramson and Griffeath

(1980); Durrett and Griffeath (1982)) one can show that, for any ε > 0,

(1 − ε)Fδ ⊂
Ŵ δ

ω(n)

n
⊂ (1 + ε)Fδ (2.9)

for all n large enough. In particular, since n−1Ŵ δ
ω(n) ⊂ (1 + ε)F for all n large

enough, the first claim of Theorem 1.4 follows.
In order to prove the second claim, let us define by

Rx,δ
ω (n) = {y ∈ Zd : there exist z0, z1, . . . , zn ∈ Zd with z0 = x, zn = y

such that ωzi
(v : vzi+1−zi

≥ 1) > δ, i = 0, . . . , n− 1}, (2.10)

the set of sites that can be reached in exactly n steps (with our usual restriction on
the probabilities of the steps). Clearly, if y ∈ Rx,δ

ω (n), then Eωη
x
n(y) ≥ δn. Denoting

also R̂x,δ
ω (n) = Rx,δ

ω (n) + (−1/2, 1/2]d, we intend to prove that, for any ε > 0 and
almost all ω

(1 − ε)Fδ ⊂
R̂0,δ

ω (n)

n
⊂ (1 + ε)Fδ (2.11)

for all n large enough.



284 Francis Comets and Serguei Popov

Let (recall the definition of K from (2.1))

M δ
n = {ω : for any x ∈ KL0n there exists a δ-aperiodic site y

such that ‖x− y‖ ≤ n1/2}.

Since the random environment is finitely dependent, one obtains that there are
some positive constants δ0, C1, C2 such that for all δ ≤ δ0

P[M δ
n] ≥ 1 − C1n

d exp(−C2n
−d/2). (2.12)

By Borel-Cantelli lemma,

P[there exists n(ω) such that M δ
n occurs for all n ≥ n(ω)] = 1. (2.13)

Fix any ε > 0 and consider a site x ∈ (1 − ε)nFδ. As we know from (2.9), if n
is large enough, then T δ

ω(0, x) ≤ (1 − ε
2 )n and the event M δ

n occurs. Now, consider
two cases:

(1) n − T δ
ω(0, x) is even. Then it is trivial to obtain that x ∈ R0,δ

ω (n) (one
can complete the path of length T δ

ω(0, x) which ends in x by x+ e1, x, x +
e1, x, . . .).

(2) n−T δ
ω(0, x) is odd. Suppose also that n is so large that max{L0, n

1/2} < εn
6 .

Since M δ
n occurs, there exists an aperiodic site y such that ‖x − y‖ < εn

6 .

Then, to complete the path of length T δ
ω(0, x) which ends in x, essentially

one goes from x to y in exactly ‖x−y‖ steps, then jumps from y to some y1

with ‖y − y1‖ even, then goes back to x (and then, if necessary, one puts
x+ e1, x, x+ e1, x, . . . to the end of the path).

In both cases we obtain that x ∈ R0,δ
ω (n), and this concludes the proof of (2.11)

and thus of Theorem 1.4. �

2.3. Proof of Theorems 1.5 and 1.6. We begin by showing that the function β can
be defined in the following way:

Lemma 2.4. For any a ∈ F o∩Qd, a 6= 0, the following quantity β(a) is well-defined
and is a.s. constant:

β(a) = lim
n→∞

ln Eωη
0
k0n(k0na)

k0n
a.s., (2.14)

where k0 is the smallest positive even integer number such that k0a ∈ 2Zd.

Proof: The expected number of particles Eωη has a supermultiplicative property:
for any x, y, z ∈ Zd, n1, n2 ≥ 0

Eωη
x
n1

(y)Eωη
y
n2

(z) ≤ Eωη
x
n1+n2

(z), (2.15)

so the family of random variables

Sm,n = k−1
0 ln Eωη

k0ma
k0(n−m)(k0na)

is superadditive. Note, however, that the random variables of the latter family may
assume the value −∞.

Suppose first that ‖a‖ ≤ 1. Then, from Condition UE we obtain that

Eωη
0
k0

(k0a) ≥ εk0
0 ,

and so, taking Condition D into account, the existence of the limit in (2.14) imme-
diately follows from the Subadditive Ergodic Theorem.
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However, if one wants to apply the Subadditive Ergodic Theorem to the family
Sm,n in the case ‖a‖ > 1, there is the following difficulty: there may be some a ∈
F∩Qd, such that with positive probability it happens that T 0

ω(0, k0na) > k0n, which
means that E(− ln Eωη

0
k0n(k0na))

+ = ∞ (even P[(− lnEωη
0
k0n(k0na))

+ = ∞] > 0).
So, for the case ‖a‖ > 1 we need a different approach.

For the rest of the proof of Lemma 2.4 we suppose that ‖a‖ > 1 and let δ be
such that a ∈ F o

δ . Define

β(a) = lim sup
n→∞

ln Eωη
0
k0n(k0an)

k0n
(2.16)

(in principle, β(a) could depend also on ω, but in the next few lines we will show
that it is a.s. constant). By (2.11), P-a.s. there exists n(ω) such that (recall (2.10))
k0an ∈ R0,δ

ω (k0n) for all n ≥ n(ω). Using (2.15), we obtain that for all n ≥ n(ω)

ln Eωη
0
k0(n+m)(k0a(n+m)) ≥ ln Eωη

0
k0n(k0an) + ln Eωη

k0an
k0m (k0a(n+m))

for all m such that k0a(n+m) ∈ Rk0an,δ
ω (k0m), which means that

lim sup
m→∞

ln Eωη
0
k0m(k0am)

k0m
≥ lim sup

m→∞

ln Eωη
k0an
k0m (k0a(n+m))

k0m

for all n ≥ n(ω). Since the sequence

(

lim sup
m→∞

ln Eωη
k0an
k0m (k0a(n+m))

k0m

)

n=0,1,2,...

is stationary ergodic, this shows that the upper limit in (2.16) is a.s. constant.
Now, our goal is to prove that

lim inf
n→∞

ln Eωη
0
k0n(k0an)

k0n
≥ β(a). (2.17)

Choose r ∈ Q∩ (1,+∞) in such a way that ra ∈ F o
δ ; let k1 be the smallest positive

integer such that k1r ∈ Z. Fix a small α > 0. By (2.11), for all n large enough we
have k0k1ra⌊αn⌋ ∈ R0,δ

ω (k0k1⌊αn⌋). Recall that, if y ∈ Rx,δ
ω (n), then Eωη

x
y (n) ≥ δn,

so

Eωη
0
k0k1⌊αn⌋(k0k1ra⌊αn⌋) ≥ δk0k1⌊αn⌋. (2.18)

To proceed, we use the approach of Steele (1989). Fix any ε > 0 and define the
events

Hm(N) = {Sm,m+k < k(β(a) − ε) for all k = 1, . . . , N},

Gm(N) = (Hm(N))c.

By definition, we have that

P[Hm(N)] → 0 as N → ∞. (2.19)

Now, we divide the integer interval [k1r⌊αn⌋, n) into some subintervals and some
singletons using the following algorithm. Begin with k = k1r⌊αn⌋; inductively, let k
be the smallest integer not yet assigned. If the eventGk(N) occurs, then there exists
ℓ ≤ N such that Sk,k+ℓ ≥ ℓ(β(a) − ε). In this case we add the interval [k, k + ℓ) to
our collection (and then pass to k′ = k+ℓ). On the other hand, if the event Hk(N)
occurs, then we declare k to be a singleton (and then pass to k′ = k+1). As a result
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of this procedure, we obtain u intervals [τi, τi + ℓi), i = 1, . . . , u, and w singletons
σ1, . . . , σw. For each of the above intervals, we have Sτi,τi+ℓi

≥ ℓi(β(a)−ε), so that

Eωη
k0aτi

k0ℓi
(k0a(τi + ℓi)) ≥ exp

(

k0ℓi(β(a) − ε)
)

, (2.20)

i = 1, . . . , u.
Then, Condition UE implies that

Eωη
k0am
k0‖a‖(k0a(m+ 1)) ≥ ε

k0‖a‖
0 (2.21)

for any m. So, abbreviating ϕ1(n) =
∑u

i=1 ℓi, ϕ2(n) = w = n− k1ra⌊αn⌋ − ϕ1(n),
tn = k0ϕ1(n) + k0‖a‖ϕ2(n), we obtain from (2.15), (2.18), (2.20), and (2.21) that

Eωη
0
tn+k0k1⌊αn⌋(k0an) ≥ Eωη

0
k0k1⌊αn⌋(k0k1ra⌊αn⌋)

u
∏

i=1

Eωη
k0aτi

k0ℓi
(k0a(τi + ℓi))

×
w

∏

j=1

Eωη
k0aσi

k0‖a‖(k0a(σi + 1))

≥ δk0k1⌊αn⌋ exp
(

k0ϕ1(n)(β(a) − ε)
)

ε
k0‖a‖ϕ2(n)
0 . (2.22)

By construction of the intervals, we have

u
∑

i=1

ℓi ≥ n− k1r⌊αn⌋ −N −
n

∑

j=k1r⌊αn⌋

1Hj(N),

so, by Birkhoff’s theorem

lim inf
n→∞

ϕ1(n)

n
≥ (1 − P[H0(N)])(1 − k1rα); (2.23)

then,

lim sup
n→∞

ϕ2(n)

n
≤ P[H0(N)](1 − k1rα). (2.24)

Take α small so that k1rα < 1. Note that tn = k0

(

n− k1r⌊αn⌋ + (‖a‖ − 1)ϕ2(n)
)

,
so, by (2.24) and (2.19),

lim sup
n→∞

tn
k0n

≤ (1 − k1rα)
(

1 + (‖a‖ − 1)P[H0(N)]
)

< 1 − k1α (2.25)

if N is so large that P[H0(N)] ≤ k1(r − 1)α(1 − k1rα)−1(‖a‖ − 1)−1. Thus, us-
ing (2.22), we obtain

Eωη
0
k0n(k0an) ≥ Eωη

0
tn+k0k1⌊αn⌋(k0an)Eωη

k0an
k0n−tn−k0k1⌊αn⌋(k0an)

≥ δk0k1⌊αn⌋ exp
(

k0ϕ1(n)(β(a) − ε)
)

ε
k0(‖a‖ϕ2(n)+n− tn

k0
−k1⌊αn⌋)

0 .

The inequality (2.17) now follows from (2.19), (2.23) (note also that, trivially,
lim supn→∞ n−1ϕ1(n) ≤ 1), and (2.24). Letting αց 0, this concludes the proof of
Lemma 2.4. �

Lemma 2.5. The function β(a) is convex downwards on F o ∩ Qd (and so it can
be defined for all a ∈ F o by continuity, preserving the convexity).
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Proof: Consider a, b ∈ F o such that ‖a− b‖ ≤ 1, and note that there exists δ > 0
such that a, b ∈ F o

δ . Now, we have to prove that for any s ∈ (0, 1) ∩ Q,

β(sa+ (1 − s)b) ≤ sβ(a) + (1 − s)β(b). (2.26)

Let k0 = min{k ∈ 2N : ka ∈ 2Zd}, k1 = min{k ∈ 2N : kb ∈ 2Zd}, and ℓ = min{k ∈
N : ks ∈ N}. Use the abbreviation

Am
n (x) = 1{k0k1ℓxn ∈ Rk0k1ℓxm,δ

ω (k0k1ℓ(n−m))}.

Note that, by (2.11), Lemma 2.4, and the bounded convergence theorem, for any x ∈
F o

δ it holds that (with k′ = min{k ∈ 2N : kx ∈ 2Zd}; we use the convention
0 ×∞ = 0)

E
(

1{k′xn ∈ R0,δ
ω } ln Eωη

0
k′n(k′xn)

)

k′n
→ β(x) as n→ ∞. (2.27)

From the supermultiplicative property (2.15) we obtain

ln Eωη
0
k0k1ℓn(k0k1ℓ(sa+ (1 − s)b)n)

k0k1ℓn
1A0

sn(sa)1Asn
n (sa+(1−s)b)

≥ s
ln Eωη

0
k0k1ℓsn(k0k1ℓsan)

k0k1ℓsn
1A0

sn(sa)1Asn
n (sa+(1−s)b) (2.28)

+ (1 − s)
ln Eωη

k0k1ℓsan
k0k1ℓ(1−s)n(k0k1ℓ(sa+ (1 − s)b)n)

k0k1ℓ(1 − s)n
1A0

sn(sa)1Asn
n (sa+(1−s)b).

Since

1Asn
n (sa+(1−s)b)Eωη

k0k1ℓsan
k0k1ℓ(1−s)n(k0k1ℓ(sa+ (1 − s)b)n)

law
= 1A0

(1−s)n
((1−s)b)Eωη

0
k0k1ℓ(1−s)n(k0k1ℓ(1 − s)bn),

taking expectations in (2.28) and applying (2.27), we obtain (2.26) (note also the
following elementary fact: if ξ ≤ b a.s., then Eξ1A ≥ Eξ − bP[A]). �

Now, we are able to prove Theorem 1.5.

Proof of Theorem 1.5: Consider a closed set G ⊂ F o and fix any ε > 0. There
exists δ > 0 such that G ⊂ F o

δ . Clearly, for any small enough ε′ > 0 there exist
a1, . . . , aℓ ∈ (Qd ∩ F o

δ ) \ {0} such that

sup
b∈G

min
i=1,...,ℓ

‖b− (1 − ε′)ai‖ < ε′/2. (2.29)

Let ki = min{k ∈ 2N : kai ∈ 2Zd}, and let mi = max{m : kim ≤ (1 − ε′)n},
i = 1, . . . , ℓ. Then, by Lemma 2.4,

ln Eωη
0
kimi

(kiaimi)

kimi
≥ β(ai) − ε (2.30)

for all n large enough, i = 1, . . . , ℓ. Using (2.29), we obtain that for any y ∈ nG
there exists i such that ‖y − (1 − ε′)ain‖ ≤ ε′n/2. Then, analogously to the proof
of the second claim of Theorem 1.4, we can show that on the event M δ0

n

Eωη
kiaimi

n−kimi
(y) ≥ δ0ε

n−kimi

0 (2.31)
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for all n large enough (note that n − kimi ≥ ε′n). Now, from (2.15), (2.30),
and (2.31) we obtain that

Eωη
0
n(y) ≥ Eωη

0
kimi

(kiaimi)Eωη
kiaimi

n−kimi
(y)

≥ exp
(

kimi(β(ai) − ε)
)

δ0ε
n−kimi

0

≥ δ0 exp
(

n((1 − 2ε′)(β(ai) − ε) − 2ε′ ln ε−1
0 )

)

.

So, from the uniform continuity of β in G (cf. Lemma 2.5) we obtain that

lim inf
n→∞

min
x∈nG∩Zd

(n−1 ln Eωη
0
n(x) − β(x/n)) ≥ 0.

To complete the proof of Theorem 1.5, we have to show that

lim sup
n→∞

max
x∈nG∩Zd

(n−1 ln Eωη
0
n(x) − β(x/n)) ≤ 0. (2.32)

Again, for any small enough ε′ > 0 there exist a1, . . . , aℓ ∈ (Qd ∩ F o
δ ) \ {0} such

that

sup
b∈G

min
i=1,...,ℓ

‖b− (1 + ε′)ai‖ < ε′/2. (2.33)

Recall ki = min{k ∈ 2N : kai ∈ 2Zd}, and let m′
i = min{m : kim ≥ (1 + ε′)n},

i = 1, . . . , ℓ.
Suppose that there exists y ∈ nG such that

ln Eωη
0
n(y)

n
≥ β(y/n) + 2ε.

By (2.33), there exists i such that ‖y − (1 + ε′)ain‖ ≤ ε′n/2. Then, on the one
hand, Lemma 2.4 implies that

Eωη
0
kim′

i
(kiaim

′
i) < exp

(

kim
′
i(β(ai) + ε)

)

for all n large enough, and, on the other hand,

Eωη
0
kim′

i
(kiaim

′
i) ≥ Eωη

0
n(y)Eωη

y
kim′

i
−n(kiaim

′
i − y)

≥ exp
(

n(β(y/n) + 2ε)
)

δ0ε
kim

′
i−n

0 .

This leads to a contradiction when ε′ is small enough, and thus we obtain (2.32).
The proof of Theorem 1.5 is completed. �

Proof of Theorem 1.6: First, note that recurrence implies the existence of p-
recurrent seeds (cf. Lemma 3.1 of Comets and Popov (2007) and Definition 2.2
above). Such seeds give rise to a supercritical Galton-Watson process that survives
with positive probability (see Comets and Popov (2007) for details) and so the
expected number of the particles at the origin grows exponentially, thus showing
that β(0) > 0.

On the other hand, if β(0) > 0, then Theorem 1.5 implies that, with positive
P-probability, there exists n ≥ 1 (possibly depending on ω) such that Eωη

0
n(0) > 1.

This implies the existence of a recurrent seed. Indeed, denote

Bε(ω) = {ω̃ ∈ M : ω̃(v) > 0 if and only if ω(v) > 0, |ω̃(v) − ω(v)| < ε},

and take U = KnL0 . Choose a small ε in such a way that Eω̃η
0
n(0) > 1 for any ω̃

such that ω̃x ∈ Bε(ωx) for all x ∈ KnL0 . Then, (KnL0 , (Bε(ωx), x ∈ KnL0)) is a
recurrent seed, and so the branching random walk is recurrent. �
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2.4. Proof of Theorem 1.7. Fix ε > 0 and consider any y ∈ nG. By Theo-
rem 1.5, there exists n(ω, G) (which does not depend on y) such that Eωη

0
n(y) ≤

exp((β(y/n) + ε)n) for all n ≥ n(ω, G). We write

Pω[η0
n(y) ≥ exp((β(y/n) + 2ε)n)] ≤

Eωη
0
n(y)

exp((β(y/n) + 2ε)n)
≤ e−εn,

so, by Borel-Cantelli lemma,

lim inf
n→∞

max
x∈nG∩Zd

(n−1 ln η0
n(x) − β(x/n)) ≤ 0 Pω-a.s. (2.34)

Now, we have to show that

lim sup
n→∞

min
x∈nG∩Zd

(n−1 ln η0
n(x) − β(x/n)) ≥ 0 Pω-a.s. (2.35)

In order to prove (2.35), let us first prove that, for any a ∈ Qd ∩ F o

lim inf
n→∞

ln η0
k0n(k0an)

k0n
≥ β(a) Pω-a.s., (2.36)

where k0 = min{k ∈ 2N : ka ∈ 2Zd}.

Step 1: First of all, we establish that, for any ε > 0

Pω

[

lim inf
n→∞

ln η0
k0n(k0an)

k0n
≥ β(a) − ε

]

> 0 for P-almost all ω. (2.37)

Choose δ > 0 such that a ∈ F o
δ , then choose a positive h ∈ Q in such a way that

a(1 − h)−1 ∈ F o
δ , then let k1 = min{k ∈ 2N : ka ∈ 2Zd, kh ∈ 2Z}. Abbreviate

gn = P[k1an ∈ R0,δ
ω (k1(1 − h)n)];

recall that, by (2.11), gn → 1 as n→ ∞. By virtue of (2.27),

E
(

1{k1an ∈ R0,δ
ω (k1(1 − h)n)} ln Eωη

0
k1(1−h)n(k1an)

)

k1(1 − h)n
→ β((1 − h)−1a),

so one can choose n1 such that

E
(

1{k1an1 ∈ R0,δ
ω (k1(1 − h)n1)} ln Eωη

0
k1(1−h)n1

(k1an1)
)

k1(1 − h)n1
≥ β((1 − h)−1a) − ε,

(2.38)
and also

1 − 2h < (1 − h)gn1 + ‖a‖(1 − gn1) < 1, (2.39)

(β((1 − h)−1a) − 2ε)(1 − h) < (β((1 − h)−1a) − ε)(1 − h)gn1

− ‖a‖ ln ε−1
0 (1 − gn1). (2.40)

Now, we construct a branching process in random environment (Υℓ, ℓ=0, 1, 2, . . .)
in the following way. Here, Υℓ stands for the size of ℓth generation of this process.
With respect to the original process, the particles of ℓth generation are in k1aℓn1 at
time tℓ defined below (note that it means that Υℓ ≤ η0

tℓ
(k1aℓn1), but the equality

should not necessarily hold true, there may be also some particles in k1aℓn1 at
time tℓ which do not belong to this branching process in random environment).
Specifically, the initial particle is considered the particle of 0th generation, and we
set Υ0 = 1, t0 = 0. Inductively, consider the Υℓ−1 particles of (ℓ− 1)th generation,
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situated in k1a(ℓ− 1)n1 at the moment tℓ−1. Then, the particles of ℓth generation
are their descendants which are in k1aℓn1 at time tℓ, where

tℓ =

{

tℓ−1 + k1(1 − h)n1, on {k1aℓn1 ∈ R
k1a(ℓ−1)n1,δ
ω (k1(1 − h)n1)}

tℓ−1 + k1‖a‖n1, on {k1aℓn1 /∈ R
k1a(ℓ−1)n1,δ
ω (k1(1 − h)n1)}.

By Birkhoff’s theorem,

lim
m→∞

tm
m

= k1n1

(

(1 − h)gn1 + ‖a‖(1 − gn1)
)

,

and, by Condition UE and (2.40),

E ln EωΥ1 ≥ (β((1 − h)−1a) − ε)k1(1 − h)n1gn1 − k1‖a‖n1 ln ε−1
0 (1 − gn1)

≥ (β((1 − h)−1a) − 2ε)k1(1 − h)n1. (2.41)

Assume that ε is so small that β((1 − h)−1a) > 2ε. Since (by Condition UE and
using the fact that a(1 − h)−1 ∈ F o

δ )

Pω[Υ1 ≥ 1] ≥ min{ε
k1‖a‖n1

0 , δk1(1−h)n1},

one can use e.g. Theorem 1 of Athreya and Karlin (1971), or Theorem 5.5 and
Proposition 6.2 of Tanny (1977) to obtain that

Pω[the process Υ survives] > 0 P-a.s., (2.42)

and

Pω[lim inf
m→∞

m−1 ln Υm ≥ (β((1−h)−1a) − 2ε)k1(1−h)n1 | Υ survives] = 1. (2.43)

On the event {lim infm→∞m−1 ln Υm ≥ (β((1 − h)−1a) − 2ε)k1(1 − h)n1} one
can choose m0 (depending on ω) such that

ln Υm

m
≥ (β((1 − h)−1a) − 3ε)k1(1 − h)n1

and

(1 − 2h)k1n1 ≤
tm
m

≤ k1n1

for all m ≥ m0. Then, at the moment tm we have at least

Υm ≥ exp
(

mk1n1(1 − h)(β((1 − h)−1a) − 3ε)
)

particles in k1an1m. By Condition UE, each of those particles has a descendant
in k1an1m at time k1n1m with probability at least ε2hk1n1m

0 . So, using the large
deviation bound for the binomial distribution (cf. e.g. formula (34) of Comets and
Popov (2007)), we obtain that for some positive C1, C2

Pω[η0
k1n1m(k1an1m) ≥ exp

(

mk1n1((1 − h)(β((1 − h)−1a) − 3ε) − 2h ln ε−1
0 )

)

]

≥ 1 − exp(−C1e
C2m).

Using Condition UE again, we obtain (2.37).

Step 2: Now, let us show that (2.37) implies (2.36). This is easy in the case when
the branching random walk is recurrent. Indeed, in this case it can be shown that
a.s. the origin will be visited by infinitely many “free” particles (i.e., none of them
is a descendant of another; see Comets and Popov (2007) for more details). Each
of those particles gives rise to a copy of the branching process in random envi-
ronment constructed above (they use the same environment, but are conditionally
independent); so, with probability 1 at least one of them survives, and from this
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we obtain (2.36) in the recurrent case. However, this argument does not work in
the case when the branching random walk is transient, so we present a general
argument that works in both cases.

Abbreviate û = max{1 − h, ‖a‖}. Let

Sx = {y ∈ Zd : there is ℓ ∈ Z+ such that ‖x+ ℓk1an1 − y‖ ≤ L0k1ûn1 + ̺}.

The key observation is that the branching process Υ constructed above depends
only on the environment inside S0. In particular the probability in (2.42) only
depends on ωx, x ∈ S0. Suppose that Υm = 0 for some m; this means that up
to (“real”) time k1ûn1m the branching process in random environment became
extinct.

Then, the idea is the following: with positive probability it happens that a
particle goes outside the already explored part of ω “without revealing more envi-
ronment”, and we can construct a new branching process in random environment,
independent of the previous one.

At the moment k1ûn1m (when we know that the “initial” branching process Υ
in random environment became extinct), let us remove all particles except one from
the process η (for definiteness, choose the remaining particle uniformly among the
particles that are present at time k1ûn1m). Let z be the “initial” (i.e., at time
k1ûn1m) position of this particle, note that ‖z‖ ≤ L0k1ûn1m. We let this particle
perform the uniform induced random walk ξz (i.e., immediately removing from the
process other particles that may eventually appear) until some random moment τ
defined below. Let

Γ(ℓ) =
{

x ∈ Zd : there exists y ∈ Zd such that y ∈ Sx and

either ‖y‖ ≤ L0k1ûn1m or y ∈ {ξz
0 , . . . , ξ

z
ℓ }

}

be the set of sites from where the construction analogous to the construction of the
above branching process Υ may depend on already revealed pieces of the environ-
ment.

Recall the notation Zt from Section 2.1. We define

τ = min{s ∈ N : there exists s′ < s

such that Zs′+1 = . . . = Zs = 1 and ξz
s /∈ Γ(s′)},

and also (see Figure 2.1)

Γ̃(ℓ) =
{

y ∈ Γ(ℓ) : dist({y},Zd \ Γ(ℓ)) > L0(k1ûn1 + 2) + ̺
}

.

Clearly, if ξz
ℓ ∈ Γ̃(ℓ), then Γ(ℓ+ 1) = Γ(ℓ). From Condition UE it follows that a.s.

there exists an infinite sequence (τ ′k, k = 1, 2, 3, . . .) such that ξz
τ ′

k
∈ Γ(τ ′k)\ Γ̃(τ ′k) for

all k. Indeed, if â ∈ Rd \ {0} is such that â · a = 0, then the fact that |(ξz
t1 − ξz

t2) · â|
is large enough guarantees that there is k such that τ ′k ∈ [t1, t2]. Since from any

u ∈ Γ(ℓ)\ Γ̃(ℓ) the particle can perform any given L0(k1ûn1 +2)+̺ unit steps with
Z-value 1 with uniformly positive probability (and so it can go out of Γ(ℓ) with at
least that probability without revealing more environment), this shows that τ <∞
a.s.

Now, at time k1ûn1m+ τ we can start an independent copy Υ′ of the branching
process in random environment Υ constructed above. If it happens that Υ′ dies
out as well, repeating this construction one can start another independent copy Υ′′,
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â

a

Γ̃(ℓ)

Γ(ℓ) \ Γ̃(ℓ)

0

z

ξz

ℓ

L0k1ûn1m

L0(k1ûn1 + 2) + ̺

L0(k1ûn1 + 2) + ̺

L0k1ûn1 + ̺

L0k1ûn1 + ̺

Figure 2.1. On the definition of the sets Γ(ℓ) and Γ̃(ℓ) (recall
that ‖ · ‖ is the L1-norm)

and so on. Eventually, one of those branching processes in random environment
will survive, and so (2.36) follows from (2.43).

Now, let us prove (2.35). We use the same method as in the proof of the first
part of Theorem 1.5. Namely, suppose that δ > 0 is such that G ⊂ F o

δ . For any
small enough ε′ > 0 there exist a1, . . . , aℓ ∈ (Qd ∩ F o

δ ) \ {0} such that (2.29) holds.
Let ki = min{k ∈ 2N : kai ∈ 2Zd}, and let mi = max{m : kim ≤ (1 − ε′n)},
i = 1, . . . , ℓ. By (2.36), provided that ε, n1, h are chosen in such a way that

(1 − h)(β((1 − h)−1ai) − 3ε) − 2h ln ε−1
0 ≥ β(ai) − ε′′

we have
ln η0

kimi
(kiaimi)

kimi
≥ β(ai) − ε′′ (2.44)

for all n large enough, i = 1, . . . , ℓ. Using (2.29), we obtain that for any y ∈ nG
there exists i such that ‖y − (1 − ε′)ain‖ ≤ ε′n/2. Then, we can show that on the
event M δ0

n

Pω[ηkiaimi

n−kimi
(y) ≥ 1] ≥ δ0ε

n−kimi

0 . (2.45)

So, since the particles that are in kiaimi at time kimi act independently, again
using a large deviation bound for the binomial distribution together with (2.44)
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and (2.45), we obtain that for some positive constants C3, C4

Pω[η0
n(y) ≥ exp

(

kimi(β(ai) − 2ε)
)

] ≥ 1 − exp(−C3e
C4n),

and this proves (2.35). Theorem 1.7 now follows from (2.34) and (2.35). �

2.5. Exponential growth of the total number of particles and proof of Theorem 1.9.
First, we prove the property (1.7). For the case of recurrent branching random
walk, (1.7) immediately follows from Theorem 1.6, so we only need to consider the
case of transient branching random walk. Without restriction of generality, one can
assume that any particle can generate at most two particles at the next moment,
and that there is h > 0 such that the probability of generating two offspring is
(depending on the location) 0 or h, i.e.,

P[ω0(|v| ≤ 2) = 1] = 1, P[ω0(|v| = 2) ∈ {0, h}] = 1. (2.46)

This is no restriction since it can be easily shown that any branching random
walk in random environment (satisfying Condition B) dominates some branching
random walk in random environment satisfying (2.46). Also, it is clear that the
latter branching random walk in random environment can be defined in such a way
that Condition UE still holds (possibly with another constant; however, to keep the
notations simple, we will assume in our argument that Condition UE holds with
ε0).

In the situation (2.46), if ωx(|v| = 2) = h, we say that x is a branching site, in
the case when ωx(|v| = 2) = 0, we say that x is a non-branching site.

Then, we can make a further simplifying assumption: we suppose that immedi-
ate descendants of a particle jump independently (so that we are in the situation
considered e.g. in Comets et al. (1998); Machado and Popov (2000, 2003)), which
means that, for a particle in x, we first decide if the particles generate 1 or 2
offspring, and then each of these offspring jump independently with probabilities
(Pω[ξx

1 = y], y ∈ x + A). Here, ξx is the uniform induced random walk starting
from x. The reason why we can make this assumption without loss of generality is
that the two branching random walks are in some sense equivalent, as mentioned
in Remark 1.8.

Denote by
ψω(x) = Pω[ηx

n(x) = 0 for all n ≥ 1]

the probability that none of the descendants of a particle in x ever comes back. In
the next lemma we prove that ψω(x) is uniformly positive.

Lemma 2.6. There exists θ > 0, depending only on h and ε0, such that, for any
transient branching random walk satisfying (2.46) and with independent immediate
descendants, we have ψω(x) > θ, for all x ∈ Zd and for P-almost all ω.

Proof of Lemma 2.6: By stationarity, it is enough to prove that P[ψω(0) > θ] = 1.
We argue by contradiction. The idea is that, when ψω(0) is small enough, the
branching random walk should be recurrent. We split the space of environments in
three parts, and consider three cases accordingly.

Case 1. Suppose that ω0(|v| = 2) = h, i.e., 0 is a branching site. Abbreviating
b := Pω[η0

n(0) = 0 for all n ≥ 1 | Z0
1 = 1], we have ψω(0) = (1 − h)b+ hb2, so

Pω[η0
n(0) = 0 for all n≥1 | Z0

1 =1] =
−(1−h) +

√

(1−h)2 + 4hψω(0)

2h
.
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Thus, Pω[η0
n(0) = 0 for all n ≥ 1 | Z0

1 = 1] can be made arbitrarily close to 0 by
making ψω(0) small. Now, if

Pω[η0
n(0) = 0 for all n ≥ 1 | Z0

1 = 1] <
h

1 + h
,

then, as in the proof of Theorem 1.6, it is straightforward to show that there exists
a recurrent seed and so the branching random walk is recurrent.

Case 2. We suppose that ω0(|v| = 2) = 0, but there is a branching site in K̺−1\{0}.
In this case we can choose a branching site there which is closest to the origin,
so that it is accessible from the origin by a path of non-branching sites. This
means that there exist k ≤ ̺ − 1, 0 = x0, x1, . . . , xk such that ‖xi+1 − xi‖ = 1,
i = 0, . . . , k, x1, . . . , xk−1 are non-branching, and xk is a branching site (and we
have also ‖xk‖ = k).

Then, again we obtain that if ψω(0) is too small, then the branching random
walk should be recurrent. For this, proceed as follows. First, define

τ1 = min{n ≥ 1 : η0
n(0) ≥ 1} ,

so that Pω[τ1 < ∞] = 1 − ψω(0). At the moment τ1 (provided τ1 < ∞), consider
one of the particles which are in 0 and let

τ2 = min{n ≥ τ1 + 1 : at least one of the descendants

of that particle is in 0 at time n},

then, repeat this procedure to define τ3 on {τ2 < ∞}, τ4 on {τ3 < ∞}, and so on.
Clearly, Pω[τm <∞] = (1 − ψω(0))m.

Being ξ0 the uniform induced random walk starting from 0, define the event

A = {ξ0i = xi, i = 1, . . . , k, ξ0i = x2k−i, i = k + 1, . . . , 2k,Z0
k+1 = 2},

i.e., the initial particle goes straight to xk, branches there, and then the “first”
descendant goes straight back to the origin (note that we do not assume anything
about the second descendant). Clearly, we have

Pω[A | τ1 <∞] ≥
hε2k

0

1 − ψω(0)
≥ hε

2(̺−1)
0 .

On the event A, the second particle (generated in xk) goes to 0 with probability

at least ε̺−1
0 . Take m such that mhε

3(̺−1)
0 > 1: if ψω(0) is small enough, then

(1 − ψω(0))mmhε
3(̺−1)
0 > 1. Then we obtain that there exists large enough T

(which actually depends on ω) such that up to time T the mean number of “free”
particles that visit the origin is greater than 1. (Recall that, by “free” particles we
mean that none of them is the descendant of another one, see Definition 2.2.) As
above, this implies the existence of recurrent seeds and so the branching random
walk is recurrent.

Case 3. Suppose that ωx(|v| = 2) = 0 for all x ∈ K̺−1, so that there are no
branching sites in K̺−1. Let

∂eK̺−1 =
{

x ∈ Kc
̺−1 : dist({x},K̺−1) ≤ L0

}

be the annulus (or extended external boundary) of K̺−1. Denote by

gω(x,B) = Pω

[

there exists n ≥ 0 such that
∑

y∈B

ηx
n(y) ≥ 1

]
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the probability of ever having particles in B ⊂ Zd for the process starting from x.

For any x ∈ ∂eK̺−1, we see from Condition UE that ψω(0) > ε̺+L0

0 (1 − h)L0(1 −
gω(x, ∂eK̺−1)), so

inf
x∈∂eK̺−1

gω(x, ∂eK̺−1) > 1 − ε
−(̺+L0)
0 (1 − h)−L0ψω(0). (2.47)

At this point, the important observation is that, for any x ∈ ∂eK̺−1, the quantity
gω(x, ∂eK̺−1) is a function of the environment outside K̺−1, and so it is inde-
pendent of ω0 by Condition I. So, supposing that ψω(0) is small enough, one can
construct a recurrent seed as follows. Define

g(k)
ω (x,B) = Pω

[

there exists 0 ≤ n ≤ k such that
∑

y∈B

ηx
n(y) ≥ 1

]

,

and note that g
(k)
ω (x,B) → gω(x,B) as k → ∞. Then, suppose that ψω(0) < δ̃,

where (a small number) δ̃ is such that

ε̺−1
0

ε̺−1
0 + ε

−(̺+L0)
0 (1 − h)−L0 δ̃

> (1 + h)−1. (2.48)

Choose first large enough k0 and then small enough ε in such a way that

inf
x∈∂eK̺−1

g
(k0)
ω̃ (x, ∂eK̺−1) > 1 − ε

−(̺+L0)
0 (1 − h)−L0 δ̃ (2.49)

for all ω̃ such that ω̃x ∈ Bε(ωx) for all x ∈ K̺+k0L0 \ K̺−1 (here, Bε(·) denotes
the ball of radius ε in M with respect to any fixed metrics). By the contradiction
assumption and by (2.47), the set of such ω̃’s has positive P-probability.

Then, the idea is the following: put a branching site at the origin and suppose
that in a sufficiently large region around 0 (excluding K̺−1) the environment is
“close” to the environment above. More precisely, we consider the (U,H)-seed with
U = K̺+k0L0 and

Hx =







{ω ∈ M : ω(|v| = 2) = h}, for x = 0,
M, for x ∈ K̺−1 \ {0},
Bε(ωx), for x ∈ K̺+k0L0 \ K̺−1.

Condition I implies that P[ω̃ : ω̃x ∈ Hx for all x ∈ U ] > 0.
Now, from each site in K̺−1, the uniform induced random walk goes to 0 without

leaving K̺−1 with probability at least ε̺−1
0 , and any particle in ∂eK̺−1 sends at

least one descendant to ∂eK̺−1 at least with probability given by (2.49). Suppose
without restriction of generality that ̺ − 1 ≥ L0. Then, the probability that any
particle starting from A sends at least one descendant to 0 is at least1

ε̺−1
0

ε̺−1
0 + ε

−(̺+L0)
0 (1 − h)−L0 δ̃

,

which is greater than (1 + h)−1 by (2.48). So, we obtain a recurrent seed.
This concludes the proof of Lemma 2.6. �

1Compare with the following situation. There are two coins, for the coin 1 the probability of
head is p, for the coin 2 the probability of head is q. We flip the coins in an alternate fashion,
i.e., 1,2,1,2,1,2,. . . Then, the probability that the first head comes from the coin 1 is equal to

p

p+q−pq
>

p

p+q
.
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We continue the proof of Theorem 1.9. Let Un = {ξ00 , ξ
0
1 , . . . , ξ

0
n} be the range

of the uniform induced random walk up to time n. We now prove that, due to
Lemma 2.6, |Un| is of order n with at least constant probability. Let

N(x, y) =

∞
∑

i=1

1{ξx
i = y}

be the number of times that the uniform induced random walk starting from x
visits y. Using Lemma 2.6, we obtain that EωN(x, x) ≤ θ−1 for all x ∈ Zd and for
P-almost all ω. On the other hand

n ≤
∑

x∈Un

N(0, x),

so, taking expectation,

n ≤
∑

x∈Zd

Eω(1{x ∈ Un}N(0, x))

=
∑

x∈Zd

Eω(1{x ∈ Un}N(0, x) | x ∈ Un)Pω[x ∈ Un]

≤ (1 + θ−1)Eω|Un|.

Since trivially |Un| ≤ n, using the fact that for any random variable X with 0 ≤
X ≤ a a.s. and EωX ≥ b it is true that Pω[X ≥ b/2] ≥ b/(2a), we obtain that, for
P-almost all ω,

Pω[|Un| ≥ (1 + θ−1)−1n/2] ≥ (1 + θ−1)−1/2. (2.50)

Consider the evolution of the branching random walk up to time n, and let
us enumerate the Z0

n particles that are present at time n in random order (i.e.,
select one particle at random and attach the label “1” to it, then select one of the
unlabelled particles and put the label “2” to it, and so on). We define br(i, n) to
be the number of bifurcations on the path from the root to the particle (of the
nth generation) labelled i on the genealogical tree of the branching random walk
(see Figure 2.2). Let ζn be the label assigned to the particle corresponding to
the uniform induced random walk at time n; clearly, given the realisation of the
genealogical tree,

{ζn = i} has probability 2−br(i,n). (2.51)

Let us prove now that, on the event that the range of the uniform induced
random walk is linear in n, with large probability br(ζn, n) will be linear as well.
To this end, we construct a set Φ ⊂ Z+ in the following way: first, we have 0 ∈ Φ.
Inductively, suppose that the set Φ∩{0, . . . , k−1} was already constructed. Then,
k ∈ Φ if and only if the following holds:

• there exists y ∈ Zd such that ‖ξ0k − y‖ = ̺, and
• ‖ξ0m − y‖ ≥ ̺ for all m ≤ k.

Define the cubes

K̂m = {x ∈ Zd : max(|x(1)|, . . . , |x(d)|) ≤ m},

note that

Zd =
⋃

z∈Zd

((2̺+ 2L0 + 1)z + K̺̂+L0).
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0

ξ0
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15 23 467
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Figure 2.2. A realisation of the branching random walk (together
with the uniform induced random walk) up to time n = 5, and the
corresponding genealogical tree. We have ζ5 = 3, br(i, 5) = 3 for
i = 1, . . . , 6, br(7, 5) = 2.

Let t0 = 0, z0 = 0. Inductively, define for i ≥ 1

ti = min
{

t : ξ0t /∈
i−1
⋃

j=0

((2̺+ 2L0 + 1)zj + K̺̂+L0)
}

,

and zi is such that ξ0ti
∈ (2̺ + 2L0 + 1)zi + K̺̂+L0 . Observe that, for any y ∈ Zd

such that dist({y},Zd \ ((2̺+ 2L0 + 1)zi + K̺̂+L0)) ≤ L0 we have
(

y + (K̺ \ K̺−1)
)

\
(

⋃

x/∈(2̺+2L0+1)zi+K̺̂+L0

(x+ K̺−1)
)

6= ∅,

so ti ∈ Φ for all i ≥ 0. Since |K̺̂+L0 | = (2̺+ 2L0 + 1)d, we have

|Φ ∩ {0, . . . , n}| ≥ (2̺+ 2L0 + 1)−d|Un|. (2.52)

Let Fm be the sigma-algebra generated by (ξ0k, br(ζk, k), k ≤ m). By definition
of the set Φ,

P[br(ζm+̺,m+ ̺) ≥ br(ζm,m) + 1 | Fm] ≥ hε̺
0P[ω0(|v| = 2) = h]. (2.53)

Write Φ = {0 = ϕ0, ϕ1, ϕ2, . . .}, where ϕi+1 ≥ ϕi for all i ≥ 0. Abbreviate

α1 = (1+θ−1)−1

2 , α2 = (2̺ + 2L0 + 1)−d, α3 = hε̺
0P[ω0(|v| = 2) = h], and α4 =

1
2α1α2α3̺

−1. The property (2.53) implies that, for some C1 > 0,

P[br(ζϕ⌊α1α2n⌋
, ϕ⌊α1α2n⌋) ≥ α4n] ≥ 1 − e−C1n.

So, using (2.50) and (2.52) together with the elementary inequality P[A | B] ≥

1 − P[Ac]
P[B] , we obtain for some C2 > 0 that

P[br(ζn, n) ≥ α4n] ≥ P[br(ζn, n) ≥ α4n | |Un| ≥ α1n]P[|Un| ≥ α1n]

≥ P[br(ζϕ⌊α1α2n⌋
, ϕ⌊α1α2n⌋) ≥ α4n | |Un| ≥ α1n]

× P[|Un| ≥ α1n]

≥ C2.
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Therefore, with P-probability at least C3 = C2/2,

Pω[br(ζn, n) ≥ α4n] ≥ C3 .

Let F̂n be the sigma-algebra generated by the branching random walk up to
time n. Applying (2.51), we obtain that, for such ω’s,

Pω[br(ζn, n) ≥ α4n | F̂n] =
∑

i:br(i,n)≥α4n

2−br(i,n) ≤ 2−α4nZ0
n ,

so, taking expectations, EωZ0
n ≥ C32

α4n. As observed in the beginning of this
section, this proves (1.7).

Now, it remains only to prove (1.8). Since

ln max
y∈KL0n

η0
n(y) ≤ lnZ0

n ≤ d ln(2L0n+ 1) + ln max
y∈KL0n

η0
n(y)

(note that |KL0n| < (2L0n+ 1)d), the property (1.8) follows from Theorem 1.7. �
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C. Laredo and A. Rouault. Grandes déviations, dynamique de populations et
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