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Abstract In this paper, we report experimental results on the 
shape and motion of a mercury droplet, placed in a horizontally 
rotating cylinder in the rpm range 8-93, so that the Reynolds 
number of the drop 2500<Re<26000 and its capillary number 
0.0002<Ca<0.0023. When contact angle variations can be 
neglected at low speeds (Re<8150), the velocity of the drop is 
much lower than that predicted by the Ho. Young Kim’s [6] 
relation. This observed discrepancy is overcome by modifying 
Kim’s relation by substituting the dissipation estimated from a 
boundary layer near the solid surface instead of bulk dissipation. 
Based on the changes at the rear side of the mercury droplet, 
there are three distinct regimes identified with varying speeds of 
rotation (i) oval or rounded regime (ii) corner regime and (iii) 
cusping regime. The oval to corner transition happens at a finite 
receding contact angle of 950. The ratio of critical contact angle 
(θc) at which the transition occurs to the static receding contact 
angle (θs) was found to be 0.657. The de Gennes model [4], 
extended to high contact angle by substituting the dissipation for 
wedge flow, predicts a critical contact angle ratio (θc/θs) that is in 
close agreement with the experimental value. At higher Re, the 
dynamic contact angle variation with velocity was compared with 
Cox-Voinov model [3]. Though the trend of the variation of data 
is approximately represented by the model, the fit coefficient 
according to experimental data is very high when compared to 
theoretical value. 
Keywords dynamic wetting, dynamic contact angle, wetting 
transition. 

1. Introduction  
The steady motion of a drop on an inclined surface occurs 
at a velocity that balances the gravitational driving forces 
with viscous resistance and resistance at the contact line 
[6]. However, a complete understanding of the phenomena 
and regimes of drop motion is still elusive due to 
incomplete knowledge of the motion of the three phase 
contact line. In this paper, we investigate a hitherto 
unexplored regime drop motion at large Re and contact 
angles, but at very small capillary numbers by using 
mercury over glass surface. Here, Re (Re=Ud/ν, where U 
is the drop velocity, d is the diameter of the droplet and ν 
is the kinematic viscosity) is 2500-26000 and Ca (Ca = 
µU/σ, where µ is the dynamic viscosity and σ is the 
surface tension of the fluid) is 0.00022-0.0023. An 
understanding of such a regime of motion of drops on 
surfaces is of key importance in micro fluidics, surface 
coatings, oil recovery from bed rocks, efficient deposition 
of pesticides on plant leaves, ink jet printing, industrial 

condensers employing drop wise condensation etc., 
Dussan and Davis [5], by visualising the motion of a 
surface marker on a drop of honey, were the first to clarify 
that the kinematics of drop motion on inclined surfaces is 
predominantly rolling. At low velocities of the drops by 
neglecting the contact angle variation with velocity, a 
global energy balance between the gravitational potential 
energy Φg = ρVgsinα and total dissipation inside the drop  
Φt could be written down to obtain various expressions for 
the velocity of the drop U for various predominant 
dissipation mechanisms [6]. Here, ρ is the density of the 
fluid, V is the volume of the drop and α is the inclination 
angle and g is the acceleration due to gravity. The 
expression for the large drops when Φt = Φw+Φb+Φcl, 
where Φw is the wedge dissipation along the circumference 
of the droplet, Φb is the bulk dissipation and Φcl is the 
contact line dissipation, was given by [6] as, 

                                      
            (1) 
                         

Here, σ is the surface tension, Rb is the radius of the base 
of the droplet h is the height of the droplet and θa and θr are 
the static advancing and receding contact angles 
respectively. Vb is the volume of the base of the droplet 
which is given by πRbh, L is the circumference of the 
droplet which is approximately equal to 2πRb, w is the 
width of the droplet and λ is the microscopic cut-off length 
scale where the continuum approximation fails, typically 
of the order of 10-9 m. c (θs) is a function of contact angle. 
They verified their expressions for the case of small drops 

(h< ) with experiments using viscous fluids. Further 

studies by Podgorski et al. [9] on the shape transition of 
silicon oil drops showed that the drops develop a corner 
and then a cusp at the rear at two critical speeds. Le Grand 
et al. [7] improved upon the results of [9] by studying 
silicon oil drops over a wide range of viscosities (10cP-
1000cP) and found that, none of the existing contact angle 
models were universally consistent with their results; the 

Cox-Voinov law, 
                    

(2) 
 
where θd and θs,r are the dynamic and static receding 
contact angles and R is the macroscopic length scale, was 
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found to be the most consistent with their experimental 
data. One important result of their work is that the corner 
transition happened at a non-zero receding contact angle of 
23o contrary to the assumptions of Blake and Ruschak [1] 
and Podgorski et al. [9]. However, the Cox-Voinov law did 
not predict the corner transition at a nonzero receding 
contact angle while the de Gennes [4] model, 

                                 
                              (3) 
 

did so. All of these studies are conducted with viscous 
liquids that partially wet the solid surface so that the drops 
move slowly (<1cm/s) with a Re ~ 1. Very little is known 
quantitatively about the motion of partially non-wetting of 
drops at high Reynolds number. This regime in addition to 
being of great applicational value in the fields like high 
throughput micro fluidics and high speed coatings is of 
interest in understanding the inertial effects in drop 
motion. High contact angles on smooth surfaces occur due 
to high surface tension, resulting in low Ca. So motion of 
partially non-wetting drops exhibit a regime of low Ca and 
high Re, implying a predominance of inertial effects. We 
achieve such a regime by using mercury drop (static 
contact angle, θs ~140o) on a glass surface. The Reynolds 
number range achieved is 2500<Re<26000 while capillary 
numbers are in the range of 0.0002<Ca<0.0023. Since the 
drops move at speeds of order 1m/s we freeze the drops 
relative to the observer by placing the drop inside a sealed 
glass cylinder rotating about a horizontal axis.  The paper 
is organised as follows. The experimental setup is 
discussed in section 2. Velocity of the droplet and shape 
transition is discussed in section 3 and section 4 
respectively. The dynamic contact angle variation with 
velocity is discussed in section 5 and conclusion drawn 
from the discussion is given in section 6. 

2. Experimental setup 

 
Figure 1: Schematic of the experimental setup 

 
The setup consists of a horizontally rotating glass cylinder 
of radius 7.5 centimetres which is connected to the shaft of 
a variable speed electric motor as shown in the figure 1. 
The mercury drop is placed inside the cylinder and sealed. 
Pure mercury droplets of diameter 4 millimetres having a 
mass of 0.22 g and a smooth quartz glass cylinder were 

used in the experiment. The properties and dimensions of 
the mercury droplet are listed in table 1.  For each rotation 
speed and volume, the drop moves along the cylinder and 
becomes stationary when a balance among viscous, 
gravitational and interfacial forces is achieved.  
µ (Pa.s) σ (Nm) ρ  

kgm-3 
Rb 
mm 

w 
mm 

Θa 
deg 

Θr 
deg 

0.001526 0.48545 13526 1.75 4 150 144.5 
Table 1: Properties and dimensions of mercury droplet 

The cylinder speed at which the drop comes to the final 
position of rest gives us the relative velocity of the drop U 
with respect to the moving surface. The contact angle is 
easily measured as the drop would be stationary with 
respect to the observer. When the drop size is small 
compared to the radius of cylinder, this setup is equivalent 
to inclined plate setup. Two CCD cameras connected with 
programmable timing unit (La Vision) were used for 
visualization of the top and side view of the drop. Two 
LED lights were used as a source of back lighting one at 
the back of the cylinder and another below the cylinder 
opposite to the CCD cameras. The rotational speed of the 
cylinder was measured using a digital tachometer. The 
cameras were operated at 25 frames per second and the 
resolution is of the order of 10-4m per pixel. The static 
receding (θr) and advancing (θa) contact angle of the drop 
was measured as 144.5 and 150.6 degrees respectively. 
The contact angles are measured from the side views of the 
image of the drop by fitting two tangent lines at the contact 
line. The error in contact angle for mercury drop is found 
to be 3 degrees from repeated measurements. 

                 
3. Velocity of the droplet with negligible 

contact angle variation 

 
Figure 2: Comparison between experimental values and theoretical 

relations 
Figure 2 shows the measured velocities of the mercury 
drop as a function of the corresponding inclination angle α 
for the case of an inclined flat plate. These analogous 
inclination angles were calculated from the side views of 
the image captured by CCD camera by fitting a tangent at 
the drop’s base and measuring the angle between the 
horizontal line and the tangent. The errors in the calculated 
inclination angles are estimated by repeated measurements 
of inclination angle for single rpm of the rotation which is 
shown as horizontal error bars in figure 2. The theoretical 
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prediction by equation (1) is also shown in the figure 2. 
Here we have used the values listed in the table 1. The 
velocity of the droplet is lower than that predicted by 
equation (1) by one order of magnitude. We expect this 
discrepancy to be due to the estimate of bulk viscous 
dissipation used in equation,  which is valid only at low 
Re. Inertial effects cannot be neglected in the case of high 
dense mercury droplets whose motion in the present study 
result in a Re range of 2500<Re<26000. In this inertial 
regime, we expect the viscous dissipation to be 
concentrated in a thin boundary layer near the solid 
surface. The boundary layer thickness inside the droplet 
scales as [8],  

                                            (4) 
 

Using Vbl = πRb δ, instead of Vbl in equation (1) with δ 
given by equation (4), the modified equation for the sliding 
velocity would be, 

 
                                        

(5) 
 

Equation (5) is solved numerically to obtain the velocity of 
the drop shown in figure 2. The theoretical prediction of 
the equation (5) with a prefactor of 0.4 represents the 
experimental values better than that by equation (1). 

 
4.   Shape & wetting transition 

 
The mercury drop undergoes shape transition as the capillary 
number is increased as shown in the figure 3.  
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Drop shape at various Ca (a) Oval or rounded at the top at Ca 
0.0013 (b) corner at Ca 0.0016 and (c) (d) cusping at 0.0025 and .003 
respectively. 
Based on the shape changes at the receding side, three 
distinct regimes can be observed at varying speeds of 
rotation of the cylinder, (i) oval or rounded regime (ii) 
corner regime (figure 3b) and (iii) cusping regime (figure 
3c). Beyond cusping regime, droplets start emitting from 
the rear due to instabilities similar to Plateau-Rayleigh 
instability of a jet. The transition from a rounded receding 
contact line to a corner   happens at a capillary number of 
0.0015, and cusping starts at a capillary number of 0.0021. 
The corner does not have an exact conical structure, but 
resembles a cone with a rounded tip as shown in the figure 
3(b). This formation of corner at the rear of the droplet, 
inferred as the wetting transition, happens at a finite 
receding contact angle θc as can be seen from figure 4(a). 

The ratio θc/θs is 0.657 for mercury drop on glass, higher 
than 0.577 predicted by the de Gennes model [4]. The idea 
behind the de Gennes model is to equate the viscous 
dissipation Φvis near the contact line to the dissipation due 
to the non equilibrium force acting on the contact line Φcl, 
which is moving with a velocity Uc.  It is known that  the 
 

 
 
 
 
 
 
 
 
 

Figure 4: Corner formation at the finite receding contact angle of 95o. (a) 
side view (b) top view 

contact angle hysteresis increases the critical value at 
which the corner appears [10]. However this cannot be the 
case here as mercury on glass has low hysteresis (6o).  We 
hence, expect this discrepancy to be because the de Gennes 
model is limited to a wedge angle less than one radian, 
which is clearly not the case with mercury droplets. The de 
Gennes model can be extended to high contact angle 
liquids by substituting the viscous dissipation Φvis from a 
wedge with a contact angle θd instead of that from a 
Poiseuilles’s flow in the original model [4]. The resulting 
relation between contact line velocity Uc and dynamic 
contact angle is given as,                                                                           

                   

(6)
 

 
The above equation predicts a maximum velocity at a 
finite critical contact angle θc, between θs and zero, as 
shown in figure 5. This critical contact angle can be found 
by differentiating the above equation and equating it to 
zero.  The critical contact angle ratio (θc/θs) obtained in 
such a way from this relation for mercury is 0.6354 which 
is close to 0.657 observed from experiments.  

 
Figure 5: Dynamic contact angle vs velocity according to equation 6. 

 
5.  Dynamic contact angle variation 

 
The advancing contact angle increases and the receding 
contact angle decreases with increase in velocity 
respectively as shown in figure 6. The algebraic capillary 
number  in figure 6 is defined as µU/σ, where U is 
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positive for advancing contact angle and negative for 
receding case. The receding contact angle becomes almost 
constant in the corner and the cusping regime as can be 
seen from figure 6. The Cox-Voinov[3] relation between 
the contact angle and the capillary number for contact 
angle of values less than 135o is given by equation 2. 
 

 
Figure 6: Dynamic contact angle Vs Algebraic Capillary number 

 . 

 
Figure 7: Comparison of experimental data with Cox-Voinov relation 

 
Figure 7 shows the comparison between the experimental 
receding contact angles and the theoretical Cox-Voinov 
relation.  Though the trend is cubic up to the corner 
transition point, the experimental value of constant 
9ln(R/λ) is 710 as against the expected theoretical value of 
13 [4]. According to Cox-Voinov relation, the contact 
angle change should be very minimum for the range of 
capillary numbers of the experiment. Beyond corner 
transition, the theoretical curve does not clearly represent 
the experiment well. Cox-Voinov is a slip model for 
contact line dynamics valid only when the local Re near 
the contact line is less than 1. The model assumes that the 
actual contact angle at the contact line is θs, the measured 
dynamic contact angle being considered as apparent due to 
the finite resolution of all measurements. This assumption 

 
Figure 8: Schematic of a wedge flow over a solid surface 

necessitates the presence of stagnant fluid zone of length λ 
(figure 8) near the contact line across which the fluid 
velocity changes from that of the solid to that of the liquid-
gas interface [11]. The present results show that, even if 

we consider a very small length scale near the contact line 
so that the local Re<1 to apply the Cox-Voinov model, the 
slip length λ will go beyond the continuum length scales. 
The present study hence brings out the limitation of the 
slip models of contact line dynamics. 
 

6. Conclusions 
 
In this study, we measured the velocities and contact angle 
variation of mercury drops for a range of Re and Ca by 
using a rotating cylinder arrangement. It was found that for 
negligible contact angle variation from static values 
(Re<8150), the velocity of the drop does not obey 
Ho.Young Kim’s [6] relation based on Stokes flow 
analysis. We proposed a new relation by including the 
boundary layer dissipation in the energy balance, which 
predicted the velocities reasonably. At larger Re and Ca, 
the dynamic contact angle varies appreciably from the 
static contact angle with increase in velocity; this variation 
is not captured by the Cox-Voinov [3] relation (equation 
2). This implies the unavoidable need for the inclusion of 
contact line physics in the analysis of problems involving 
moving contact line. The drop exhibits shape transition 
with increasing velocities. The oval to corner transition at 
the rear of the droplet happens at a finite receding contact 
angle θc of 95o. The critical contact ratio θc/θs for the 
mercury drop is 0.657. We extend the de Gennes model to 
high contact angle cases to show that θc/θs predicted by the 
new model is close to the experimental ratio. This 
observed first order wetting transition at high contact angle 
cases implies the dominant nature of viscous dissipation 
near the contact line, contradicting previous conclusion 
made in [2]. 
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