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Abstract

This paper presents an algorithm for computing optical flow,

shape, motion, lighting, and albedo from an image sequence

of a rigidly-moving Lambertian object under distant illumi-

nation. The problem is formulated in a manner that sub-

sumes structure from motion, multi-view stereo, and photo-

metric stereo as special cases. The algorithm utilizes both

spatial and temporal intensity variation as cues: the for-

mer constrains flow and the latter constrains surface orien-

tation; combining both cues enables dense reconstruction of

both textured and texture-less surfaces. The algorithm works

by iteratively estimating affine camera parameters, illumina-

tion, shape, and albedo in an alternating fashion. Results are

demonstrated on videos of hand-held objects moving in front

of a fixed light and camera.

1. Introduction

When an object moves in front of a camera, its appearance

changes in two fundamental ways: geometrically and pho-

tometrically. The former describes how points move in the

image, i.e., optical flow. The latter reveals shading varia-

tion due to object rotation relative to the viewer and the light

source. This paper combines both sources of information to

estimate the optical flow, shape, motion, light, and diffuse

albedo from a sequence of images.

Traditional shape reconstruction methods recover only a

subset of scene properties and assume that either pose or

shading is constant over all views. Although allowing both

pose and shading to vary appears to complicate the recon-

struction problem, we show that in fact it enables estimat-

ing flow and shape even in regions with little or no texture,

thereby resolving a key ambiguity in prior methods.

This paper generalizes optical flow, photometric stereo,

multi-view stereo, and structure from motion techniques un-

der certain assumptions. We assume that objects move

rigidly and are observed under orthographic projection; we

also assume that surfaces have Lambertian reflectance and
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are illuminated by fixed distant lighting; furthermore, we as-

sume no shadows, occlusions, or inter-reflections. Despite

the fixed lighting, these assumptions imply that the illumina-

tion still changes relative to the moving object. We present an

iterative algorithm that estimates camera motion, illumina-

tion, shape, and albedo in an alternating fashion, using both

spatial and temporal shading variations. Our contributions

can be interpreted in several different ways:

� Optical flow with lighting variation. Optical flow tech-

niques traditionally assume the brightness constancy con-

straint. We employ a more general constraint allowing

brightness to vary along optical flow.

� Stereo matching with changes in lighting. Stereo match-

ing usually requires static lighting across all views. We lift

this restriction in a principled way.

� Photometric stereo for moving scenes. Photometric

stereo recovers shape from temporal shading variations,

but requires a fixed object and camera. By computing flow

under changing illumination, we generalize photometric

stereo to moving objects.

� Dense structure from motion. Structure from motion re-

covers 3D positions for a sparse set of feature points. We

show that texture-less regions can also be reconstructed,

leading to dense surface reconstruction.

In the rest of the paper, we first review previous work

and formulate optical flow under varying illumination as

a subspace-constrained minimization. We then show how

our formulation resolves ambiguities present in previous ap-

proaches. Finally, we present a reconstruction algorithm and

demonstrate its performance on videos of real objects.

2. Previous work

In this section, we review previous work on motion analysis

under temporal brightness variation.

Pentland [15] coined the term photometric motion to de-

fine the intensity change of a scene point due to object rota-

tion, and proposed an algorithm to recover shape using this

cue. Although the algorithm can handle non-Lambertian sur-

faces, it requires that optical flow be known a priori.

Woodham [22] described a technique for recovering opti-

cal flow under controlled illumination. He assumed that the
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object can be imaged two or more times for each pose, each

time with different illuminations. Despite the restrictive as-

sumptions, combining constraints from each image resolves

the aperture problem, but still fails on uniform regions.

Several tracking techniques have been proposed to model

lighting changes using predefined basis images [3, 7]. Other

optical flow algorithms [8, 10, 13, 14] modeled lighting

changes by introducing more parameters into the standard

optical flow equation. Although these methods out-perform

standard motion estimation, they require either large win-

dows or global smoothness to regularize flow in low-contrast

regions, often over-smoothing the results.

Stereo matching techniques have been extended to han-

dle changes in shading or illumination due to object rotation,

e.g., [11, 17, 19]. All of these methods use Lambertian re-

flectance to constrain matching in multiple images. However,

these techniques do not directly compute surface normals or

light source directions and therefore ambiguities arise in pla-

nar untextured regions.

All known optical flow and stereo algorithms fail to guar-

antee accurate matches in uniform intensity regions. This pa-

per shows that even though flow is under-constrained in these

areas, shape can still be accurately reconstructed by comput-

ing surface normals from shading variation over time. Our

approach does not assume the lighting or spatial albedo dis-

tribution to be known a priori, a key difference from previous

work on combining stereo and shape from shading [4, 6, 16].

3. Multi-frame optical flow under varying illu-

mination

In this section, we formulate the optical flow problem un-

der varying illumination using a subspace framework. This

framework relates optical flow and intensity changes to sur-

face positions, normals, motion, lighting, and albedo. We

begin by describing a general form of optical flow that al-

lows brightness variations.

Optical flow under intensity variation. Optical flow is

the trajectory of a scene point in an image sequence. Let

�� � ���� ��℄
�

be the trajectory of a scene point � � �� in an

image sequence ����� ��. Traditionally, optical flow is com-

puted assuming the brightness constancy constraint:

������ � ������� (1)

If the motion vector �� � �� � �� � ���� ��℄
�

is small, lin-

earizing Eq. (1) results in the optical flow equation

���
��� � �� � �� (2)

where ��� � ����
��

� ���
��

℄
�

is the image gradient at �� and ��
and �� are shorthand notations for image intensities ������
and ������ respectively. Assuming brightness constancy lim-

its the applicability of most optical flow algorithms because

the assumption is violated under varying illumination. In

fact, the assumption is violated even when the light is static

but the object moves relative to the light [15], e.g., a Lam-

bertion object rotating under a directional light.

We now generalize Eq. (1) to describe optical flow under

varying illumination. Specifically, we use a scaling variable

�� �
������
������

to represent intensity variation as introduced in

[10, 14] and write the generalized brightness constraint as

������ � ��������� (3)

Linearizing Eq. (3) results in a generalized optical flow equa-

tion

���
��� � ���� � ���� (4)

Notice that Eq. (2) constrains ���� ��℄
�

to lie on a line in

the �� � plane and Eq. (4) constrains ���� ��� ��℄
�

to lie in a

plane in the ����� space. However, optical flow can not be

computed from either Eq. (2) or Eq. (4) because more than

one unknown variable exists in each constraint equation. To

address this, we cast the optical flow estimation into a global

framework, in which flows of multiple points over multiple

frames are estimated together.

Suppose we have � � � frames indexed by � � �� � � � ��
and � scene points indexed by 	 � �� � � � �� . We treat frame

� as a reference frame and let ���� � ������ ����℄
�

and ���� be

the position and the intensity scaling variable of scene point

�� � �� in frame �. Optical flow and intensity variation can

be estimated by minimizing the following objective function

�������� ����	� �

��
���

��
���


������ ����� (5)

where 
������ ����� � ���������� �������������
�.

Eq. (5) involves a large number of inter-related variables

������ ����	 and we constrain these variables by extending

Irani’s subspace method [9]. Specifically, we propose to im-

pose subspace constraints on both flow trajectories and inten-

sity variations to compute optical flow under lighting varia-

tion. We demonstrate that the lighting variation actually im-

proves the flow estimation in low contrast regions. To sim-

plify the problem, we assume a Lambertian object is moving

rigidly in front of an orthographic camera, illuminated by a

directional light and an ambient light.

Geometric constraints on flow. Following [9], we define

constraints on optical flow arising from 3D motion in the

scene. Assuming orthographic camera projection, we can

relate flow trajectories and surface positions through�
����
����

�
�

�
��

�
��� � ���

��
�
�
�� � ���

�
(6)

where ��� and ��� � �� are the x and y camera axes for

frame �, and ����� ���℄
�

is the projected object origin in the
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Problem Known Unknown

Structure from Motion �, � ��,��,��,��,�

Photometric Stereo 	, constant� and � 	,


Multi-view Stereo ��,��,��,��,	 � � �

Table 1. Structure from Motion, Photometric Stereo, and Multi-view Stereo are special cases of Eq. (11).

image plane. Let ��℄��� � ���� and ��℄��� � ����
1. Tomasi

and Kanade [20] showed that � and � lie in a three dimen-

sional affine subspace because�
�

�

�
�

�
��

��

�
��

�
��

��

�
(7)

where � � ���� ��� � � � � �� ℄�

�� � ����� ���� � � � � ��� ℄
���� � ����� ���� � � � � ��� ℄

��

�� � ����� ���� � � � � ��� ℄
�
��� � ����� ���� � � � � ��� ℄

�
�

�� � ������� � � � ���� �� �
�
�����	

℄��� � ������� � � � ���� �� �
�
�����	

℄�

�
��

��

�
and

�
��
��

�
form an affine basis for

�
�

�

�
.

Photometric constraint on point intensity. We now de-

scribe constraints on the intensity variation of scene points.

The intensity of scene point �� in frame � is given by

�������� � �� � �

� � 
��
�
��� (8)

where �� and �� are the surface albedo and normal vector

at ��, and 

� and 
�� are the ambient light and directional

light for frame � respectively.2 We express 

�, 
��, and �� in

the object’s coordinate system; since we assume the object is

rigid, �� is constant over time. From Eq. (8), we have

���� �
��������

��������
�



� � 
��
���



� � 
��
���

(9)

which is dependent on light variation and surface normal but

independent of surface albedo.

By stacking all �����	 into an � by � matrix 	 with

�	℄��� � ����, we can factorize 	 as follows

	 � 	
 (10)

where 	 �

�


�� � � � � 

�

��� � � � � 
��

��
�
 �

� �
��

� � � � � �
��

��

��
� � � � � ��

��

�
� and

�� � 

� � 
��
�
�� is the irradiance at �� in the reference

frame. Therefore, 	 is spanned by a 4 dimensional linear

space and 	 is the basis of the subspace.

1��℄��� � ���� means “the element of matrix � at the �’th row and �’th

column is ����”
2Basri and Jacobs [1] prove that the right hand size of Eq. (8) is the

first-order approximation of the radiance from any Lambertian object under

general distant light distribution, where ��� and ��� are interpreted as the

mean and the dominant direction of the light distribution respectively.

Subspace-constrained optical flow. We can now formu-

late multi-point multi-frame optical flow estimation un-

der rigid motion with lighting variation as a subspace-

constrained minimization problem:


��������	�
��
� ����

� � �������� � �������	 � 	
�
(11)

The key observation is that surface positions, normals, mo-

tion, and illumination are all coupled together into the same

minimization problem. In particular, surface positions and

normals are two complementary shape descriptions; the for-

mer is constrained by optical flow trajectories and the latter

is constrained by intensity variation along these trajectories.

By applying subspace constraints to both variables, we are

able to densely reconstruct rigidly moving shapes.

As shown in Table 1, our formulation of Eq. (11) sub-

sumes as special cases several traditional vision problems:

structure from motion (SFM), photometric stereo (PhS), and

multi-view stereo (MVS), which all correspond to assuming

some parameters are known and allowing others to vary. In

Section 4, we analyze the benefit of solving for all of the pa-

rameters together by deriving their estimation uncertainties

within our subspace-constrained minimization framework.

We begin by introducing a more robust form of the local ob-

jective function in Eq. (5) using windows of pixels.

3.1 Window-based flow

The pixel-based local objective function 
 in Eq. (5) is not

robust in practice due to sensor noise, sampling, and quanti-

zation. We can define a more robust objective over a small

window�� around ���� in the reference frame, over which

both flow and surface normal are assumed to be constant. Re-

call in Eq. (9) that ���� depends only on lighting and normal,

both of which are constant over the window; therefore, ����
is also constant over the window. The window-based local

objective function is then defined as


� ������ ����� �
�
	���

�������� � ��� ����������� � �����

(12)

Linearizing the intensity functions in Eq. (12) and mini-

mizing it yields a generalized Lucas-Kanade equation:

����

�
����
����

�
� ���� (13)
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where ���� �
�

	���

�
������

� ������
������ ���

�

and ���� �
�

	���

�
������
����

�
.

The solution for ���� �℄
�

is obtained when � is non-

singular. However, � will be close to singular for any

pixel that is not a corner, i.e., for most pixels. Consequently,

Eq. (13) must be solved with global flow and intensity con-

straints.

In practice, we achieve better results by defining the local

objective function based on an affine motion model within

windows around each pixel [18] and generalizing the sub-

space constraints accordingly. To simplify notation, we use

the translational model in the body of this paper, and de-

rive the affine model, used in our implementation, in the ap-

pendix.

4. Uncertainties for shape, motion, and light

The subspace-constrained minimization formulation of

Eq. (11) involves several sets of unknowns: surface posi-

tions, normals, lighting, and motion. In this section, we

analyze the uncertainties of these unknowns, revealing the

benefits of estimating all the unknowns together instead of

treating them in isolation as in previous work.

In particular, we analyze the uncertainties for two sub-

problems. In the first, we assume known poses and illumina-

tions and estimate surface positions and normals. This case

corresponds to the stereo matching problem when the illumi-

nation changes from frame to frame. For the second subprob-

lem, we assume known surface positions and normals and es-

timate poses and illuminations, which corresponds to a cam-

era and lighting calibration problem. In each subproblem,

we analyze the uncertainties by deriving the Gauss-Newton

approximation of its Hessian matrix with respect to the un-

knowns.

4.1 Stereo matching with changes in lighting

Traditional stereo matching techniques assume static light-

ing across views; we now generalize stereo matching to in-

corporate lighting changes. Formally, given the affine basis�
��

��

�
and

�
��
��

�
for

�
�

�

�
and the linear basis 	 for 	,

we wish to compute� and
 such that Eq. (11) is minimized.

We first rewrite the generalized Lucas-Kanade equation,

Eq. (13), in terms of unknown flow positions ���� and bright-

ness scales ����:

����

�
����
����

�
� ����� (14)

where ����� � ���� ����������
�� �℄

�
.

We then substitute into Eq. (14) the camera pose con-

straint, Eq. (6), and lighting constraint, Eq. (9),

����

�
	 ��

�
��� � ���

��
�
�
�� � ���

�

� � 
�
�
�������



� � ������ (15)

Let 
� �

�


�

��

�
, 
�� �

�
�
��
��

��



, and �� �

�
	 ��

�
� �

��
�
�

�

� 
�
�



�;

Eq. (15) then becomes

������

�
��

��

�
� ������ (16)

where ������ � ����� ���������� ���� �℄
�
.

We finally multiply ��� on both sides of Eq. (16), sum the

resulting equations for all frames, and obtain

��

�
��

��

�
� �� (17)

where �� �
��
���

��
������� and �� �

��
���

��
�������.

Eq. (17) allows us to compute the flow trajectory ���� and

intensity variation ���� of point 	 over multiple frames within

the lighting and pose subspaces. �� is the approximated

Hessian matrix; inverting�� gives �� and ��.

Analysis. Because�� determines the uncertainty of shape

and normal estimation, we now analyze its structure more

carefully. We first decompose���� into sub-matrices:

���� �

�
���� ����

����
� 
�

�
(18)

where we assume ���� �

�
����� �
� �����

�
is diagonal

without loss of generality,3 and let ���� � ������� �����℄
�
.

Then �� can be shown to have the following structure

�� �

�
��

������ ���
������ ���

���� ���
�
����	

	�����
��� ����

���� 
�	
�	

�
(19)

where ��� � ����������	� is an � by � diagonal matrix

with ����℄��� � �����, and similarly ��� � ����������	�,
��� � ����������	�, ��� � ����������	�.

Notice that the top left submatrix �	� � ��
������ �

��
������ determines the uncertainty of �� if �� is

given [12]. The bottom right submatrix ��� � 
�	
�	 de-

termines the uncertainty of �� if �� is given. On one hand,

if the object has enough motion relative to camera, i.e., ��

3In general, ���� � ���� � ����������� ������ � ����
� . Defining

����

�� ��
�

�
℄ � ����� ���℄����� makes Eq. (19) still valid.
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or �� is rank 3, �� can be recovered if ��� or ��� is non-

zero. As a result, imposing the subspace constraint on optical

flow alleviates the aperture problem when only one of ���

and ��� is non-zero. However, low-contrast regions where

both ��� and ��� are nearly zero are still problematic. On

the other hand, if the object has enough motion relative to

the light, i.e., 	 is full rank4, �� can be recovered if 
� � �.

Recall that 
� is simply the sum of squared intensity in the

window around ���� at reference frame �. Therefore, the sur-

face normal can always be estimated as long as the surface

albedo is non-zero. In summary, assuming the scene motion

is non-degenerate, we have the following:

� in regions with significant texture, �� is computable

� even in texture-less regions, �� is computable

These two sources of shape information are thus complemen-

tary and can be used together to reconstruct surfaces in both

textured and textureless regions.

We should emphasize that in low contrast regions, the sur-

face normals can be accurately estimated in the presence of

optical flow errors because small offsets in flow trajectories

do not cause large changes in intensity variations along these

trajectories. Traditional shape-from-flow methods, e.g., [13],

regularize flow and thus often over-smooth the reconstructed

shape. Here we argue that optical flow does not have to

be strongly regularized in low contrast regions; they can be

computed through reconstructed shape integrated from sur-

face normals. We will present an algorithm in Section 5 to

combine both flow trajectories and shading variation along

these trajectories for shape reconstruction.

4.2 Camera and light calibration

We now consider the subproblem of estimating camera mo-

tion��,��, ��, �� and light 	 given the surface positions �

and normals 
. Similarly to Section 4.1, we can derive the

approximated Hessian matrix �� for computing the camera

motion and light as:

��

�
����	
���
���
���
���

�



����� � �� (20)

where �� �
��

���
��

�
������ , �� �

��
���

��
�
�����,

�� �

�
	 
��� � �

� 
��� �

� � 
���



� � 
�� �

�
��
�

�
�

4Actually, the normal can also be estimated when the ambient term in �

is zero, in which case the rank of � is only 3.

Under the same assumption that ���� is diagonal, �� can

be shown to have the following structure

�� �

�
	 
����
�

� � 
����

�

� 
����
�
� 
����


�


���
�
�� 
���

�
�� 
�
�



� (21)

where ��� � ����������	� is a � by � diagonal matrix

with ����℄��� � �����, and similarly ��� � ����������	�,

��� � ����������	�,��� � ����������	�, � � �����
�	,

and 
� � �
���
��� � � � �
�� ℄.

The top left sub-matrix ��� �

�

����
�

� �

� 
����
�
�

�
determines the uncertainty of camera motion estimation for

frame � and is dominated by feature points that have large ��
and ��.

The bottom right sub-matrix ��� � 
�
� determines

the uncertainty of light for � and is determined by non-black

regions in the images. As more points are used to estimate

the light, 
 tends to contain more normal variation, and the

lighting estimation becomes more certain.

5. Reconstruction algorithm

In this section, we present an iterative algorithm to solve

Eq. (11). We begin by computing camera motion and initial-

izing lighting with structure from motion on sparse features.

Then, we iterate between solving for the shape and solving

for the lighting while fixing other unknowns.

5.1 Solve for ��, ��, ��, ��, and initialize 	

To estimate camera motion, we track feature points using

our translation-based generalized Lucas-Kanade equation,

Eq. (13), and then apply Tomasi-Kanade factorization to re-

cover ��, ��, ��, ��. Currently, we select a small number

(
) of feature points manually, though automatic methods

could also be used [18]. To estimate lighting, we upgrade

motion model from translation to affine in feature tracking.

In the appendix, we show that the affine motion parameters

are also subject to the subspace constraints of camera mo-

tion.5 Affine tracking under these constraints amounts to es-

timating surface tangents ��
��

and ��
��

at the feature points. Fi-

nally, we compute feature normals from the surface tangents,

and estimate the lighting 	 using the method to be described

in Section 5.3.

5.2 Solve for � and ���	

Next, we compute the position and normal at each pixel in

the reference frame. We begin by solving for ���	 and �
��	
using Eq. (17) subject to the following linear constraint�

���
��� � ���

���
��� � ���

�
�

�
����
����

�
(22)

5We could have used unconstrained affine tracking from the start, but we

found that the added degrees of freedom made the tracking less robust.
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which forces �� to lie along the line of sight through ����.6

As discussed in Section 4, we can expect the normal infor-

mation to be reasonably good over most pixels, but recon-

structed positions will generally be unreliable in textureless

regions. Thus, our shape reconstruction relies primarily on

normals. Given �
��	 for every point, we integrate a depth

map ����� �� by minimizing

����� �
�
���

�
������ ��

��
�

��
�


��
�

�
������ ��

��
�

��
�


��
(23)

using the conjugate gradient method. In our iterative frame-

work, we improve convergence by initializing the conjugate

gradient solver with the depth map from the last iteration.

The depth map ����� �� obtained from normal integration

will not in general correspond to the “true” depth map if

the lighting is not accurate. In particular, erroneous light-

ing gives rise to global distortion of the estimated surface

normals and thus global distortion of the reconstructed depth

map. This distortion is evident when the surface does not

pass through the 3D positions of tracked feature points. To

bring the surface closer to these points, we apply a global

affine transformation to the depth map:

���� �� � ��� �� � ������ �� � �� (24)

For each of the 
 feature points ��, we have both a depth

�� directly computed from Eq. (17), as well as a depth ���
from normal integration in Eq. (23). Thus, using Eq. (24), we

can set up a system of 
 linear equations and solve for the

affine parameters. We then use these parameters to correct

the depth map of the reconstructed surface. As shown by

Belhumeur et al. [2], we can also use the same parameters to

correct normals.

5.3 Solve for 	 and ���	

After surface positions and normals are computed, we esti-

mate lighting 	 and irradiance parameters ���	. The index

	 in this section refers to either sparse feature points or dense

flow points. Recall that ���� � �

�� 
��
�������, which may

be rewritten as



� � ��
�
�� � ������ � �� (25)

For dense flow, we have � � � equations and �� unknowns

for lighting �
�	 and � unknowns for ���	
7. Recalling the

definition of ��, we have a set of constraints for Eq. (25) in

the reference frame:



� � ��
�
�� � �� � �� (26)

6We do not enforce the quadratic constraint that the �� norm of the last

three elements of ��� should equal the square of the first element.
7Replace � with� for the sparse feature case.

A least squares solution to Eq. (25) constrained by Eq. (26)

is computed using a variant of constrained least squares [5]

for homogeneous equations.

In the case that there is no relative motion between the

camera and light, the relations 
�� � ����� ���� ���℄ � 
�� and



� � 

� further constrain the problem and make the solution

more robust.

5.4 Implementation

After estimating camera motion and initializing lighting, we

solve for shape and lighting in a coarse-to-fine manner using

an image pyramid. At each resolution, we iterate twice be-

tween the steps described in Section 5.2 and 5.3. In principle,

we could also update camera motion in this iterative frame-

work. However, our analysis of Eq. (21) indicates that low

contrast points do not improve pose estimation much, and

the Tomasi-Kanade factorization already initializes camera

motion using a good set of features.

6. Results

Our experimental configuration consists of a single light

source and a Basler A301f video camera. We recorded im-

age sequences of handheld objects rotating in front of a fixed

camera under static lighting. Figure 1 shows the sample in-

puts and reconstruction result. If we just solve Eq. (17) for

the surface position ���	, we get a noisy reconstruction (Fig-

ure 1e) due to ambiguities in textureless regions. When in-

tegrating normals derived from that same equation, we are

able to reconstruct a good facsimile of the original shape, as

shown by the coarse-to-fine progression (Figure 1f-g). Fig-

ure 1c and d show side view renderings, the latter with es-

timated surface albedo. Figure 2 is an example of a shape

containing large planar untextured regions, which confound

optical flow and stereo reconstruction algorithms, even those

designed to handle brightness changes. Since our method

correctly estimates normals without texture, we obtain an ac-

curate reconstruction.

7. Conclusions and future work

We have presented a technique for computing optical flow,

shape, motion, lighting, and albedo from a monocular im-

age sequence. The approach combines both geometric (opti-

cal flow) and photometric (intensity change) cues to compute

dense shape that is accurate even in completely uniform un-

textured regions.

In order to accomplish our goals, we made a number of as-

sumptions and approximations. For example, our approach is

not robust to occlusions, shadows, inter-reflections, or spec-

ularity. Further, in Section 5.2, surface positions and normals

are computed for each point individually without enforcing

their mutual consistency. One direction of future work is to

robustly optimize with respect to all unknowns, i.e., solve for

a surface whose positions and normals simultaneously satisfy
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Reconstruction of a figurine. (a) The reference image. (b) Another sample image from a 236 frame sequence. (c)

Profile view of the reconstruction. (d) The same view with recovered albedo-map. (e) Shape obtained by solving Eq. (17) without

normal integration. (f)-(h) Coarse-to-fine reconstructions using normal integration.

(a) (b) (c)

Figure 2. (a) is an input frame from a 130 frame sequence. (b) is a surface reconstruction by solving Eq. (17) directly instead of

by normal integration, (c) is the rendering of the final surface reconstructed with normal integration.
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both flow and shading variation constraints. It may also be

possible to extend our approach to handle non-rigidly mov-

ing scenes, by incorporating recent work on morphable shape

bases, e.g., [21].

Appendix

In this appendix, we present the subspace-constrained optical

flow with a local objective function �
� based on an affine

motion model, defined as

�
� ������ ����� �

���
	

������������� ��������������������

(27)

where ���� �

�
���� ����
���� ����

�
is the first order approxima-

tion for the flow around ����. Assuming orthographic camera

projection, it follows that�
����
����

�
�

�
��

�
�

��
�
�

�
���
��

�
����
����

�
�

�
��

�
�

��
�
�

�
���
��

�

(28)

Defining ��℄��� � ����, ��℄��� � ����, ��℄��� � ����, � ℄��� �
����, we have�

�

�

�
�

�
��

��

�
��
��

�
�

 

�
�

�
��

��

�
��
��

(29)

where ��
��

� ����
��

� � � � � ���
��

℄ and ��
��

� ����
��

� � � � � ���
��

℄.
Therefore the window deformation coefficients are also sub-

ject to three dimensional subspace constraints, and the multi-

point multi-frame optical flow problem becomes


�������������� �	�
��
� ����

� � �������� � �������	 � 	

� � ��

��
��

�� � ��
��
��

�� � ��
��
��

� � ��
��
��

�

(30)
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