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Abstract. We introduce a method to jointly estimate the BRDF and geometry of

an object from a single image under known, but uncontrolled, natural illumina-

tion. We show that this previously unexplored problem becomes tractable when

one exploits the orientation clues embedded in the lighting environment. Intu-

itively, unique regions in the lighting environment act analogously to the point

light sources of traditional photometric stereo; they strongly constrain the ori-

entation of the surface patches that reflect them. The reflectance, which acts as

a bandpass filter on the lighting environment, determines the necessary scale of

such regions. Accurate reflectance estimation, however, relies on accurate surface

orientation information. Thus, these two factors must be estimated jointly. To do

so, we derive a probabilistic formulation and introduce priors to address situa-

tions where the reflectance and lighting environment do not sufficiently constrain

the geometry of the object. Through extensive experimentation we show what

this space looks like, and offer insights into what problems become solvable in

various categories of real-world natural illumination environments.

1 Introduction

Recovering the geometry of an object from its appearance is a longstanding and chal-

lenging computer vision problem. To simplify the problem, traditional shape from shad-

ing and photometric stereo methods have made extensive use of controlled lighting

environments. Limiting the illumination environment to a single, known, point light

source, for example, enables the observed appearance to give strong clues about the

surface orientation. Without strong prior knowledge, however, a single observation is

insufficient on its own.

Many methods additionally assume that the reflectance of the object is known a pri-

ori. It is well known that three illuminating light sources are sufficient to determine the

geometry of a Lambertian object [18]. This situation is equivalent to a lighting environ-

ment in which one pixel is red, one blue, and one green. Such a lighting environment

would be useless, however, in determining the shape of a purely reflective object, as

only three orientations would reflect any light at all.

In this work we show that real-world, unconstrained, natural illumination contains

within it strongly discerning information that can be used to recover not just the geom-

etry of the object, but its reflectance as well. We show that for certain lighting environ-

ments and materials, this problem is sufficiently constrained, and in other conditions

ambiguity is impossible to avoid. In between these extrema we find the illumination
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conditions that are most common in the world around us. Unique regions of real-world

lighting environments (e.g. stained glass) provide strong clues about surface orienta-

tion, while others are less descriptive (e.g. overcast sky). Our primary contribution is

a method that flexibly deals with ambiguity by leveraging the structure of the lighting

environment.

In a given lighting environment, the appearance of an object is a function of its re-

flectance and geometry. Since neither of these factors can be estimated without knowl-

edge of the other, we must estimate them jointly. To do so, we derive a probabilistic

formulation in which these two conditionally independent factors are linked by their

combined role in the image formation process.

In order to recover the underlying geometry and reflectance we adopt an expectation-

maximization framework with a maximization step that alternates between estimat-

ing one variable while holding the other fixed. Using the directional statistics BRDF

model [15, 16], we are able to quickly estimate the reflectance for a current estimate of

the surface geometry. The reflectance estimate and the lighting environment together

form a reflectance map. By comparing the appearance at a given point with the re-

flectance map we arrive at a nonparametric distribution of likely surface orientations.

On occasion, certain surface patches exhibit color values unique to a specific orienta-

tion. More often, however, the distribution contains large regions of possible orienta-

tions. By linking neighboring pixels with novel priors in this reflectance map, we are

able to propagate the information captured by highly informative observations across

less descriptive regions. Further, we introduce a notion of scale by limiting surface

normal orientations to discrete intervals on a geodesic hemisphere. By incrementally

increasing the resolution of the hemisphere, we mitigate the increased uncertainty that

comes from highly specular materials, and featureless lighting regions.

We extensively test our method under various lighting conditions with several materi-

als. In addition to conclusively demonstrating the accuracy and flexibility of our method

on both real and synthetic data, we also offer insights into the reflectance-illumination

space and show that certain subspaces result in highly discriminative reflectance maps

that facilitate longstanding problems.

2 Related Work

Shape from shading and photometric stereo have been popular areas of research for

decades. Here we will cover only those methods that relate specifically to the defining

characteristics of our work, namely joint geometry and reflectance estimation, and ge-

ometry recovery under natural illumination. We recommend surveys by Durou et al. [6]

and Zhang et al. [19] for a more thorough history of these problems.

Methods to achieve joint reflectance and geometry estimation have been found in

recent photometric stereo papers. Goldman et al. [7], and Alldrin et al. [1, 2], for ex-

ample, estimate spatially varying reflectance and geometry using many images under

controlled illumination. Although our inputs—a single image under uncontrolled, but

known illumination—are different from theirs, they note, as we do, that fixing one fac-

tor to estimate the other in an iterative scheme enables joint optimization. To further

constrain the solution space, Goldman et al. assume an isotropic Ward model of re-

flectance, and Alldrin et al. require approximately 100 images. We adopt the isotropic
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directional statistics BRDF model introduced by Nishino and Lombardi [16], which is

compact, expressive, and may be estimated in natural illumination.

Hertzmann and Setiz [8] also use point light sources, though they do not assume their

direction or number is known. A reference sphere is painted with the same material as

the target object. Because the sphere has known geometry, it serves as a measured re-

flectance map for the target object. After a sequence of images has been taken, the

surface orientation at each pixel may be estimated by finding the location on the sphere

with the most similar sequence of appearances. In our formulation it is rare that the ob-

served appearance in our single image is linked directly to a single orientation. Instead,

the reflected light captured at each pixel has a distribution of possible orientations that

may explain it. We overcome this ambiguity by probabilistically linking neighboring

pixels with novel priors. This allows pixels with tight distributions to pull neighboring

regions towards their proper orientation.

Our work is most similar to recent work on shape recovery in natural illumination

by Huang and Smith [9], and Johnson and Adelson [11]. The primary distinction is

that our work allows for objects of arbitrary isotropic BRDF whereas these authors

have assumed a Lambertian material. This assumption allows the authors leverage in-

sights from recent work on spherical harmonics [3] to assume a parametric reflectance

map. Huang and Smith estimate the parameters to a first-order approximation yield-

ing a billinear reflectance map, while Johnson and Adelson assume an a priori known

second-order approximation, which yields a quadratic reflectance map. Both authors

demonstrate that in certain lighting environments the orientation responsible for the ob-

served appearance can be well estimated with a least squares optimization. Our problem

is significantly harder. In addition to the added problem of estimating the reflectance, by

allowing for arbitrary isotropic BRDFs, we move from a parametric to a non-parametric

reflectance map in which many possible orientations may explain an observed appear-

ance. This complex problem becomes tractable through priors carefully derived to lever-

age the sparse, but essential, orientation clues reflected from the lighting environment.

3 Probabilistic Shape and Material Estimation

In this work we assume that the natural illumination environment L is known, but un-

controlled. Using this information, and a single (orthographic) image of an object I, we

estimate the other two factors in the appearance of the object—the BRDF parameters

Ψ , and the object geometry represented by the surface normals N .

3.1 The Image Formation Process in an Ideal World

The imaged appearance Ix at a given pixel x depends on the surface orientation at

that location Nx. This orientation determines the hemisphere of light that is visible at

that location; the material Ψ then determines how this light is integrated to form the

observed appearance. Taken together, the lighting environment and the material form

a reflectance map RΨ that gives the appearance (i.e. color vector) for a given surface

orientation.
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Under ideal circumstances RΨ will have maximal entropy, that is, each input normal

will yield a unique appearance. In such a case, one could recover the orientation at each

pixel by exhaustively searching the reflectance map [8],

N
⋆
x = argmin

Nx

[Ix −RΨ (Nx)] . (1)

When the reflectance map is parametric, as is the case for Lambertian materials in

typical lighting environments, such a search can be done using a gradient descent

method [9, 11]. In our case, the entropy of the reflectance map varies based on the

illumination environment and the reflectance making some regions more difficult to

estimate than others.

3.2 Probabilistic Shape and Reflectance Estimation

Knowing the appearance and the illumination environment are not enough to recover

either the reflectance, or the object geometry on their own; each requires the other to be

estimated. This tight-knit relationship requires that we estimate both factors jointly. To

do so, we derive a probabilistic formulation similar to a Factorial Markov Random Field

(FMRF) as first introduced by Kim and Zabih [12]. In our formulation, the reflectance

and the object geometry are represented as latent variables that are linked through their

joint contribution on the observed appearance layer. By adopting a probabilistic frame-

work, we enable the use of priors on both factors to incorporate basic observations, and

help reduce the search space. The posterior, which we seek to optimize, is then

p(N ,Ψ |I,L) ∝ p(I|N ,Ψ ,L)p(N)p(Ψ ) , (2)

where we have assumed a uniform prior on the appearance.

3.3 Nonparametric Image Formation Likelihood

We assume the noise inherent in the image I is normally distributed with a common

variance σ2

p(I|N ,M) =
∏

x∈Ω

N
(

d
(

Ix,RΨ (Nx,L)
)

, σ2
)

, (3)

where Ω is the set of observed pixels for the object and d(·, ·) measures the difference

between the observed and predicted appearance as

d(Ix,Rx) = ‖Ix −Rx‖
2 +

[

1−
Ix ·Rx

‖Ix‖‖Rx‖

]2

, (4)

where ‖ · ‖ where is the Euclidean norm. This term combines the intensity difference,

and color difference (computed as a normalized cosine distance), which helps mitigate

the effect of inaccurate material estimates.

To model the reflectance function, we adopt the Directional Statistics Bidirectional

Reflectance Distribution Function (DSBRF) model, introduced by Nishino [15], which
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models a wide range of isotropic BRDFs while remaining amenable to a strong prior.

Assuming a linear camera, the irradiance R(Nx,L) is computed as the reflectance

radiance by integrating the incident irradiance modulated by the reflectance over the

illumination map

RΨ (Nx,L) =

∫

̺(t(ωi, ωo);Ψ)L(ωi)max(0,Nx · ωi)dωi, (5)

where t is a function which transforms ωi and ωo into the alternate BRDF parameteri-

zation variables θd and θh.

The DSBRDF models the reflectance function as a sum of reflectance lobes

̺(λ)(θd, θh;κ
(λ), γ(λ)) =

∑

r

exp
[

κ(r,λ)(θd) cos
γ(r,λ)(θd)(θh)

]

− 1 , (6)

where the halfway vector parameterization (i.e., (θh, φh) for the halfway vector and

(θd, φd) for the difference vector) [17] is used, κ(λ) and γ(λ) are functions that encode

the magnitude and acuteness of the reflectance, respectively, of lobe r along the span of

θd for a particular color channel λ. This allows us to express reflectance functions as a

collection of κ and γ curves.

As shown by Nishino and Lombardi [15, 16], these curves can be modeled as a log-

linear combination of data-driven basis functions,

κ(r,λ)(θd) = exp
[

bµ(θd;κ, r, λ) +
∑

i

ψibi(θd;κ, r, λ)
]

, (7)

γ(r,λ)(θd) = exp
[

bµ(θd; γ, r, λ) +
∑

i

ψibi(θd; γ, r, λ)
]

, (8)

where bµ is the mean basis function, bi is the ith basis function, and ψi are the DSBRDF

coefficients. We may compute these basis functions from a set of measured reflectance

functions using functional principal component analysis (FPCA). This provides the ad-

ditional benefit of ordering the basis functions by importance so that we can truncate

the number of parameters used to achieve a compact representation.

Figure 1 illustrates how a single reflectance map RΨ (N ,L) may have various de-

grees of certainty. The hemispherical distribution in Figure 1a is the likelihood distribu-

tion for the pixel indicated with the green X. In these images, brighter values correspond

to more likely orientations. Because RΨ is also a function of the unstructured illumina-

tion environment L, this distribution is multimodal and nonparametric. In other words,

for this combination of illumination environment and reflectance, the shape recovery

problem is ill-posed.

3.4 Orientation Constraints

Figure 1c shows the likelihood distribution for the pixel just above the one denoted with

the X. As can be seen by the single bright spot in the distribution, the appearance of this

pixel, which lies in a purple highlight, can only be explained by a small range of orien-

tations. This occurrence, though rare, gives valuable context to the area surrounding the
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(a) Underdetirmined likelihood (b) Image (c) Well determined likelihood

Fig. 1. Nonparametric likelihood. In this example, there are many possible orientations that may

result in the appearance for the pixel denoted with an X. This can be seen in the hemispherical

distribution of (b) which has a large bright area corresponding to the likely orientations. The

purple pixel just above this one, however, has relatively few likely orientations (c).

(a) Boundary prior (b) Gradient prior (c) Smoothness prior

Fig. 2. Orientation prior examples. In these hemispherical distributions, brighter pixels corre-

spond to more likely orientations. The occluding boundary prior (a) strongly encourages pixels on

the boundary to be oriented orthogonally to the viewing direction. The gradient prior (b) encour-

ages the estimated appearance to have the same gradient as the observed image. The smoothness

prior (c) penalizes sharp changes in orientation.

well-determined pixel. We introduce two spatial priors to help propagate this informa-

tion. We also utilize the occluding boundary as a strong unary prior pb on pixels at the

edge of the object. The spatial priors pg and ps are formulated pairwise,

p(N) =
∏

x∈Ω

pb(Nx)
∏

y∈ne(x)

pg(Nx,Ny)ps(Nx,Ny) . (9)

Figure 2 illustrates the role of each of these priors, which we will discuss next.

Occluding Boundary Prior. As first explored by Ikeuchi and Horn [10], surface

patches on the occluding boundary of smooth objects must be oriented orthogonally to

the viewing direction. As shown in Figure 2a, since the area subtended by each bound-

ary pixel may include a range of orientations, not all of which will be orthogonal to the

viewing direction, we formulate this prior as a tight, but non-singular, distribution,

pb(Nx) =

{

N (arccos2(Nx ·Bx), 0.1) if x ∈ B

1 otherwise ,
(10)
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where B is a list of the orthogonal vectors for pixels on the occluding boundary of the

object.

Reflected Gradient Prior. Our first spatial prior ensures that the resulting gradient is

the same as the observed image gradient

pg(Nx,Ny) = exp−
(

‖RΨ (Nx)−RΨ (Ny)‖ − ‖Ix − Iy‖
)2

, (11)

where ‖ · ‖ is the Euclidean norm. An example of this prior is shown in Figure 2b.

Here we see how the well-determined purple pixel of Figure 1c influences the area

surrounding it.

Smoothness Prior. Although the gradient prior gives sufficient context to pixels in

textured areas, in many cases, the reflectance map contains many areas with a similar

appearance. Our smoothness prior is designed to allow small changes in orientation

(angles less than π/3) while strongly penalizing sharp changes in orientation. To do so,

we formulate this as a logistic function,

ps(Nx,Ny) =
(

1 + exp
(

− s(cos−1(Nx ·Ny) + t
)

)−1

, (12)

where t = π/3 is the threshold between weak and strong penalization and s = 10 is

the speed of the transition. When well-determined points are present in the scene, this

prior helps ensure that the geometry in the intermediate area varies smoothly.

3.5 Reflectance Constraints

We utilize a previously developed prior by Lombardi and Nishino [13] to model the

space of the Ψ, the coefficients which control the influence of the basis functions. By

fitting a set of DSBRDF coefficients to measured data, we can model their variation. We

adopt the same zero-mean multivariate Gaussian prior to model the space of reflectance,

p(Ψ) ∼ N (0, ΣΨ ), (13)

where ΣΨ is computed from the MERL BRDF database [14]. Note that we exclude the

BRDF we try to estimate when conducting the synthetic experimental validation.

4 Optimization and Refinement

Since neither the reflectance nor the geometry can be optimized without knowledge of

the other, we employ an iterative, expectation maximization (EM) framework in which

one is held fixed as a “pseudo-observable” while the other is estimated in the maximiza-

tion step, while the expectation step estimates the Gaussian likelihood variance.
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Fig. 3. Multi-scale geometry estimation. We partition the domain of possible surface orienta-

tions into a geodesic hemisphere. By incrementally increasing the resolution of this hemisphere

we are able to avoid local minima. Our final step is a gradient-descent based minimization to

fine-tune the result.

4.1 Initial Estimation

We begin our optimization with a naive geometry estimation. Without an estimate for

the reflectance, the likelihood of Equation 3 and the reflectance gradient prior of Equa-

tion 11 are meaningless. We may still, however, use the smoothness and occluding

boundary priors. As shown in Figure 3b, the result is a normal field that resembles a

soap-bubble. Although this is a crude estimate of the object geometry, it serves as a

reasonable starting point and allows us to bootstrap the iterative EM optimization.

4.2 Directional Statistics Material Estimation

The Directional Statistics BRDF (DSBRDF) model [16], describes an isotropic BRDF

as a mixture of exponential distributions on the unit hemisphere. By doing so, the full

range of isotropic BRDFs is well described using few parameters.

In recent work by Lombardi and Nishino [13], a straight-forward optimization

method is presented to recover the material parameters under a single point light source.

We have extended this framework by treating the illumination map as a dense set of

point light sources. This extra information allows for rapid material estimation, the

quality of which depends on the accuracy of the orientation information.

4.3 Multi-scale Geometry Estimation

As we have noted, the primary challenge in this problem stems from the non-parametric

nature of the reflectance map. Even if a pixel has a unique appearance, the reflectance

map is rarely smooth enough that a simple iterative optimization scheme will find this

optimal value. To address this, we introduce a novel global optimization algorithm.

As shown in Figure 3, we limit the space of possible surface orientations to a set of

orientations on the geodesic hemisphere.
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There are several benefits to this formulation. First, by limiting the surface orien-

tations to a finite set, we enable the use of rapid global optimization approximation

methods. And second, the effect of an inaccurate reflectance estimation is minimized.

An inaccurate reflectance estimate may cause the likelihood of Equation 3 to have a

unique minimum that is incorrect. By limiting the possible orientations, we force each

pixel to align with the region it is most similar to, while obeying the constraints of our

priors. The size of these regions is gradually decreased allowing the priors to play a

more subtle role at finer scales.

For a given material estimate, the surface orientations are estimated at each of three

scales by incrementally dividing the geodesic hemisphere. To approximate the optimal

set of orientations, we use the alpha-beta swap method of Boykov et al. [4]. To help

interpolate from one scale to the next, the orientation estimate from the previous scale

is first smoothed with a Gaussian kernel before being re-discretized at the next finer

resolution. The progression of this optimization scheme is illustrated in Figure 3.

4.4 Refinement and Integrability

At this point we have a good estimate for the object geometry. In order to ensure that

the underlying surface in integrable, and to refine the still somewhat coarse orientation

estimate, we apply a gradient descent optimization. Similar to Ikeuchi and Horn [10],

we perform this optimization in gradient space. The primary difference in our work

is due to the DSBRDF. The final shape estimation for our running example is shown

in Figure 3g. Note that this method is only possible because we already have a good

estimate through discrete global optimization.

5 Experimental Validation

5.1 Synthetic Images

As illustrated in Figure 4 we evaluated our results on 600 synthetic images. Each row

of the figure shows 5 of the 10 different shapes from the Blobby Shapes database [11].

Each of these 10 shapes is rendered under 6 different publicly-available real-world illu-

mination environments [5] with each of 10 different real-world measured BRDFs which

were chosen from the MERL database [14] to span a wide variety of reflectances. Ob-

jects rendered with the same reflectance are shown along each numbered diagonal. The

diversity of appearance across each row, and along each diagonal shows how dramati-

cally appearance varies due to changes in material and illumination.

We compute the DSBRDF prior with the ground-truth BRDF omitted. In other words,

the ground-truth BRDF is not a part of the training data for the object being analyzed. In

total we achieve a median angular error of 24◦. The relative root-mean-squared error for

the recovered BRDFs ranges from 0.54 to 3.02 though the median value is 1.1. In order

to directly compare with the work of Johnson and Adelson [11], we have also briefly

tested our method assuming the ground-truth reflectance map is known. In this case we

achieve an median angular errors consistently below 15◦. This shows the strength of

our model to overcome the inherent ambiguities of a non-parametric reflectance map.
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Fig. 4. Sampling of 600 synthetic images. The bulk of our synthetic data are formed by rendering

10 shapes (5 shown per row) [11] with 10 real-world BRDFs (numbered diagonals) [14] under 6

real-world natural illumination environments (one per row) [5].

The increased error when the reflectance is not known is due to the added challenge.

We will focus the rest of this discussion on that case.

As shown in Figure 5, some shapes are more challenging than others to estimate. In

(a) we graph the median angular error, in degrees for each of the 10 shapes averaged

over the 60 different lighting and reflectance combinations. In (c) we show the most

challenging shape. Note that this shape has several self-occlusions which violate our

assumptions of integrability and smoothness. In (b) we show a shape that is easier to

estimate. Taken together, these 10 shapes constitute a range of characteristics. For the

remainder of our evaluation we will present averages over all 10 shapes.

Figure 6 illustrates the accuracy of our geometry recovery for each of the 60 different

illumination environment and reflectance combinations averaged over the 10 different

shapes. The heat map (a) shows the median angular error with brighter colors used to

indicate increased accuracy. In this figure the rows and columns correspond to the labels

in Figure 4. Several examples are included to illustrate the results.

Some reflectances, such as GRAY PLASTIC (3) and SPECIAL-WALNUT (2) consis-

tently yield more accurate results. These reflectances, which are the most matte, are

more successful when large regions of the lighting environment differ strongly from

each other. The notable exceptions to this occur in the eucalyptus forest lighting envi-

ronment (F) and in the St. Peter’s environment (E). These two lighting environments

have high-frequency texture whose details become nearly uniform under these diffuse

reflectances. To test the limits of our method we chose an anisotropic material—WHITE

FABRIC (5). As expected, the reflectance estimates and consequently, the geometry es-

timates for this reflectance are consistently lower than the others.

The outdoor scene from the city of Pisa (B) is shown to facilitate reflectance and

geometry estimation. This is likely due to the smooth gradients present in the scene.
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Fig. 5. Shape accuracy. Shapes with self occlusions, like BLOB05 (c) and BLOB01 present chal-

lenges to our algorithm, while simple shapes like BLOB03 (b) are more reliably estimated
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Fig. 6. Geometry recovery. The rows and columns of (a) correspond to the labeled illumina-

tion maps and reflectances (respectively) in Figure 4. The brightest value corresponds to the

reflectance and lighting environment combination that yielded the most accurate geometry esti-

mation, with a median error of 14◦. The darkest value corresponds to a median error of 49◦.

The result is that, whether specular or diffuse, the reflected appearance is integrating a

unique hemisphere of light. On the other hand, environments such as St. Peter’s (E) and

the Ennis-Brown House (C) have repeated patterns that are less distinctive.

Figure 7 illustrates the accuracy of the reflectance estimation. In (b) we show an es-

timate for GRAY-PLASTIC (3). This reflectance was among the most reliably estimated,

due to the smoothly varying appearance resulting from its matte finish. In (d) we show

an estimate for BLUE-ACRYLIC (10). This material has subsurface scattering, which

our model cannot explain well, causing the global illumination effect to be absorbed in

erroneous surface normal and reflectance estimates.

5.2 Real-World Images

As shown in Figure 8, we have also acquired images, and aligned ground-truth geometry

for several objects in both out-door and in-door real-world scenes1. The ground-truth

geometry was acquired using a Canon VIVID 910 light-stripe range-finder. Illumination

environments were acquired using a reflective sphere. Although real-world data comes

1 This data set is available at http://www.cs.drexel.edu/˜kon/natgeom

http://www.cs.drexel.edu/~kon/natgeom
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Fig. 7. Reflectance accuracy. The rows and columns of (a) correspond to the labeled illumination

maps and reflectances (respectively) in Figure 4. The brightest value corresponds to the most

accurate reflectance estimation with a relative RMS error of 0.54. The darkest regions correspond

to an error of greater than 3.0.

with added sources of noise and inaccuracy, our method is able to recover the shape of

the objects quite well in each of the environments.

In each of the four sections of the figure we show the illumination environment along

with the image, recovered normal field and ground-truth normals for each of the objects

in the scene. The top left section shows a bear figure and a horse figure in a large lobby.

The dominant illumination from the overhead skylights is relatively uniform. This leads

to some inaccuracy along the top of the objects. The walls of the lobby, however, contain

many different points of illumination which contribute to the smoothly varying geome-

try recovered along the middle of the objects. In this scene the bear has a mean angular

error of 24◦ and the horse has a mean angular error of 17◦.

The garden scene in the top right is illuminated primarily by a cloudy sky. This

smoothly varying illumination gives rise to more accurate estimations in the top por-

tions of the objects. In the picnic area scene of the lower left we have a similar envi-

ronment. This one, however, contains flowers and has more texture in the grass at the

bottom of the scene. These two features give extra orientation clues that the garden

scene does not have. The effect can be seen most dramatically in the cheek of the bear.

Since the lower portion of the garden scene is essentially uniform, points oriented to the

left and right have very similar reflected appearances. The objects in the garden scene

have mean errors of 19◦ and 26◦ whereas the objects in the picnic area scene both have

mean angular errors of 17◦.

In the entrance hall scene (bottom right) we see the most accuracy along the top of

the objects. This is due to variation in the overhead lighting. On the other hand, the

pattern in the walls is relatively uniform throughout, giving rise to less accurate detail

around the middle of the objects. In this scene the mean error for the objects are 20◦ for

the shell and 16◦ for the milk bottle.
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Appearance Recovered Ground truth

Lobby (above)

Appearance Recovered Ground truth

Picnic (below)

Appearance Recovered Ground truth

Garden (above)

Appearance Recovered Ground truth

Entrance hall (below)

Fig. 8. Real-world results. We captured several objects in four different natural lighting envi-

ronments, and aligned ground-truth normal maps. As we discuss in the text, differences in the

lighting environments have a clear impact on the accuracy of the recovered geometry.

6 Conclusion

In this work we introduced a method to jointly estimate the reflectance and geometry

of an object in natural illumination. We have shown how the BRDF of the object and

the illumination environment together determine the accuracy of such scene analysis.

The accuracy of our method shows that problems previously unexplored involving arbi-

trary reflectance and unstructured natural illumination become tractable when the rich

contextual information embedded in the lighting is exploited. We believe this opens the

way to bringing the success of methods traditionally confined to the laboratory out into

the real world.
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