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Shape and Size Dependent Electronic Properties of 
GaAs/AlGaAs Quantum Dots  

Dharmendra Kumar, C.M.S. Negi, K. Saral Gupta and Jitendra Kumar  

Abstract--- We have theoretically investigated the effect of 
shape anisotropy and size on electronic structure of 
GaAs/AlGaAs quantum dots (QDs). The quantum dot is 
modeled by anisotropic parabolic confinement potential in the 
plane perpendicular to the growth direction while the 
confinement along the growth direction is modeled as 
quantum well potential. The Luttinger Hamiltonian 
formulation has been used to account for the valence subband 
mixing. The electronic structure is calculated by numerical 
diagonalization of Luttinger Hamiltonian using the harmonic 
oscillator basis functions. The calculations for hole energies 
and transition energies have been carried out over wide range 
of size and shape of QDs. The results show that transition 
energy of QDs decreases with the height of QDs. Significant 
variation in the hole energy is observed with the change in 
anisotropy. We also observe that shape anisotropy and mixing 
have significant effect on the energy states.  

Keywords--- GaAs/AlGaAs, Self-Assembled Quantum Dot, 
Luttinger Hamiltonian 

 

I. INTRODUCTION 
UANTUM dots have been the subject of increased 
research due to interesting physical properties and 

promising applications, however it is crucial to understand 
their electronic structure for optoelectronics application. 

Semiconductor nanostructures e.g. quantum wells, 
quantum wires & quantum dots (QDs) are undergoing 
extensive research in aspects of nanotechnology application. 
Wide range of application have been found such as Lasers [1-
2], LEDs [3] and single photon light sources [4]. 

Semiconductor quantum dots exhibit electronic and optical 
properties quite different from those of the bulk 
semiconductors, as the quantization of all degrees of freedom 
results in atom like discrete set of energy levels. The 
electronic structure of the QD can be manipulated by varying 
the shape, size, and number of electrons associated with it. 
Size and shape anisotropies play key role in determining the 
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transition energies in a QD and strongly influence its optical 
response. 

GaAs/AlGaAs quantum dots can be fabricated using various 
techniques like metal organic chemical vapour deposition [5], 
modified droplet epitaxy [6], etc. 

A commonly used method to produce QDs is the Stranski-
Krastanov (SK) technique. In this technique, material is 
deposited epitaxially onto a substrate to which it is not lattice 
matched. Due to the mismatch, the deposited material 
spontaneously forms nanometer scale islands. SK QDs are 
strained and significant intermixing usually occurs during 
island formation [7-10], the used technique and parameters are 
decided the shape and size of the quantum dots. 

In this paper, we have used k.p model for the calculation of 
the electronic structure of QDs. k.p model is one of the most 
widely adopted approaches due to its simplicity and accuracy 
for modeling the band structure near the first Brillion zone 
center [11-15].  

II. THEORETICAL FORMULATION 
In the present work, we have considered a 4X4 Luttinger 

Hamiltonian for describing the valance band structure of 
GaAs/AlGaAs; we choose the z-direction to be the crystal 
growth direction for GaAs/AlGaAs quantum dot with elliptical 
cross section in the (x-y) plane. We have taken in-plane (x-y) 
confinement potential. 
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where, αx and αy are the force constants that determine the 
strength of confinement along  x and y directions, respectively. 
Also we assume finite well confinement potential along z 
direction. Energies in z direction for different dot height are 
numerically obtained using transcendental equation [16].  

Without the off-diagonal elements the wave function in the 
x-y plane would be the harmonic oscillator wave functions 
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where, nx and ny are quantum numbers in x and y direction 
respectively. The form of normalized wave functions is given 
by     
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where, 
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and  i=lh, hh 
The wave functions in the envelope function 

approximation for the conduction band can be written as  
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Where  are the two spin degenerate states (s=1/2, 

ms=±1/2) bulk Bloch functions at the bottom of the conduction 
band and fc(r) are the envelope functions. In the valence band 
we have two spin degenerate hh and lh states, and the 
corresponding wave functions are given by [17]. 
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Here u are the Bloch functions at the top of the valance 

band with mj=+3/2 and -3/2 for heavy holes and mj=+1/2 and -
1/2 for the lh states. 
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The Bloch wave functions for these energy states can be 
written as [18]. 
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Luttinger Hamiltonian matrix used in our calculation is 

given by 
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In the above equations 1γ , 2γ , 3γ are the Luttinger 
parameters. We can write down the matrix elements as 
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and  is the energy of hh (lh) state due to z-
confinement. 
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Here hh and lh frequencies are given below 
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We define the anisotropy parameter A as 

0ω
ωΔ

=A                                                                             (15) 

where 0ω  is the isotropic frequency and ωΔ  is the 

difference arising due to anisotropy; ωΔ  > 0 or A > 0 means 
stronger confinement in x-direction and ωΔ  < 0 or A < 0 
means stronger confinement in y direction. 

Hence we get diagonal elements of the heavy hole and the 
light hole as. 
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The off diagonal terms are also calculated using the 
expression of b & c [19].  
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III. RESULTS AND DISCUSSIONS 
Numerical calculations have been carried out to find the 

size and shape dependence of electronic structure of 
GaAs/AlGaAS QDs. The parameters used in these calculation 
are, me=0.0665m0, Luttinger parameters and band gap energy 
for GaAs are [20-21] 85.61 =γ , 1.22 =γ , 9.23 =γ . 

Fig.(1) shows the variation of hole energy values as a 
function of shape anisotropy for the case when band mixing is 
neglected for quantum dot (QD) size equal to 5 nm. It is 
apparent from the figure that first excited state of hh and lh are 
degenerate. Hole energy varies linearly with the anisotropy 
and variations are large enough that various excited states are 
crossing each other, this crossing depends on anisotropy A and 
on confinement strength along z- direction i.e. dot size and 
band offset.  

SSN 2277-5072 | © 2012 Bonfring 

Effect of band mixing on energy states is shown in Fig. 
(2), we observe that mixing effect removes degeneracy and 
slightly red-shifts the energy levels. By comparing Fig.(1) and 
Fig.(2), we can clearly see that the separation between energy 
levels in Fig.(2) is less in comparison with the separation of 
energy levels in Fig.(1).  

We have also calculated the contribution of different lh 
and hh state to a particular mixed state as designated by G1- G4 

in Fig.(2) using detailed analysis of equivalent eigen vectors is 
given below in Table 1. 

Table 1 

Mixed state 
Major contributing 

states 
 

G1 hh[-3/2(0,0)];  
87.79% 

hh[-3/2(0,1)]; 
1.85%           

lh[-1/2(0,1)]; 4.07%     

G2 hh[-3/2(0,0)];  
6.30%,   

lh[-
1/2(0,0)];10.73% 

lh[-1/2(0,1)]; 49.81% 

G3 hh[-3/2(0,0)];  
12.76% 

lh[-
1/2(0,0)];57.2% 

lh[-1/2(0,1)];  2.58% 

G4 hh[-3/2(0,1)];  
21.02% 

lh[-
1/2(0,0)];50.96% 

lh[-1/2(0,1)]; 3.05% 

 
 
 
 
 
 
 
 

 

 
Figure 2: Variation of Hole Energy Eigenvalues as a Function 

of Anisotropy Parameter (A) in GaAs/AlGaAs QD, when 
Band Mixing Effect is Considered 

 
Figure 3: Energy verses Quantum Dot Size when Anisotropy 

A=0.4. 
Fig.(3), shows valence sub-band energies as a function of 

dot size, figure shows that decrease in size leads to a 
significant increase in hole energy, this feature clearly exhibits 
quantum confinement effect. It is also observed from figure 
that energy separation between various energy states decreases 
by increase in the dot size because energy splitting of hh and 
lh decreases with size. 

 
Figure 4: Energy of Quantum Dot as a Function of Dot Height 

(Lw) 
Fig.(4) shows the variation of transition energy (Energy 

separation between various valance sub-band states to the 
lowest conduction band) as a function of dot height. It is 
observed from the figure that as the QD height decreases 
energy increases because the carriers experience strong 
confinement along z direction with decrease in size. This 
figure also shows that the energy separation between hh and lh 
decreases with the increase in height because as height 
increases confinement decreases so energy splitting of hh and 
lh decreases 
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Figure 1: Variation of Hole Energy Eigenvalues as a 

Function of Anisotropy Parameter (A) in 
GaAs/AlGaAs QD, when the effect of Valence Sub-

band Mixing is Neglected 
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IV. CONCLUSION  
We have analyzed the effect of size and shape on 

electronic structure of QDs. The energy states without mixing 
case have a significant variation with anisotropy as compared 
to with mixing case and higher energy states show 
considerable change but ground states show slight variation 
with anisotropy. Sub-band mixing effect leads to the 
significant change in energy levels, this effect is visible in 
terms of removal of degeneracy and red-shifting of energy 
levels. Hole energies and transition energies show 
considerable quantum confinement effect, which manifest in 
blue shifting of energy levels with reduction in QD size. 
Separation between valence sub-band energy levels also 
increases with the decrease in QD size and height. We can 
conclude here that size, shape anisotropy and mixing have 
remarkable effect on electronic structure of QDs.   
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