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Abstract. In this chapter, we introduce concepts and algorithms of
shape and texture based deformable models, more specifically Active
Shape Models (ASM), Active Appearance models (AAM) and Morpahble
Models, for for facial image analysis. Such models, learned from training
examples, allow admissible deformations under statistical constraints on
the shape and/or texture of the pattern of interests. As such, the de-
formation is in accordance with the specific constraints on the pattern.
Based on analysis of problems with the standard ASM and AAM, we
further describe enhanced models and algorithms, namely Direct Ap-
pearance Models (DAM) and Texture Constrained ASM (TC-ASM), for
improved fitting of shapes and textures. A method is also described for
evaluation of goodness of fitting using ASM. Experimental results are
provided to compare different methods.

1 Introduction

Many image based systems require alignment between an object in the input
image and a target object. The alignment quality can have a great impact on
the system performance. For face analysis, in particular, both shapes and tex-
tures provide important clues useful for characterizing the faces.The task of face
alignment is to accurately locate facial features such as the eyes, nose, mouth
and outline, and normalize facial shape and texture. Accurate extraction and
alignment of these features offer advantages for many applications.

A sort of the most successful face alignment methods is the deformable model,
which can represent the variations in either shape or texture of the target ob-
jects. As two typical deformable models, the active shape models (ASM) [1] and
active appearance models (AAM) [2, 3] have been widely used as alignment al-
gorithms in medical image analysis and face analysis [4] for the past decade.
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The standard ASM consists of two statistical models: (1) global shape model,
which is derived from the landmarks in the object contour; (2) local appearance
models, which is derived from the profiles perpendicular to the object contour
around each landmark. ASM uses local models to find the candidate shape and
the global model to constrain the searched shape. AAM makes use of subspace
analysis techniques, PCA in particular, to model both shape variation and tex-
ture variation, and the correlations between them. The integrated shape and
texture is referred to appearance. In searching for a solution, it assumes linear
relationships between appearance variation and texture variation and between
position variation and texture variation; and learns the two linear regression
models from training data. The minimization in high dimensional space is re-
duced in two models facilitate. This strategy is also developed in the active blob
model[5].

ASM and AAM can be expanded in several ways. The concept, originally
proposed for the standard frontal view, can be extended to multi-view faces, ei-
ther by using piecewise linear modeling [6] or nonlinear modeling [7]. Cootes and
Taylor show that imposing constraints such as fixing eye locations can improve
AAM search result [8]. Blanz and Vetter extended morphable models and AAM
to model relationship of 3D head geometry and facial appearance [9]. Li et al. [10]
present a method for learning 3D face shape model from 2D images based on a
shape-and-pose-free texture model. In Duta et al. [11], the shapes are automati-
cally aligned using procrustes analysis, and clustered to obtain cluster prototypes
and statistical information about intra-cluster shape variation. In Ginneken et
al. [12], a K-nearest-neighbors classifier is used and a set of features are selected
for each landmark to build local models. Baker and colleagues [13] propose an
efficient method called ”inverse compositional algorithm” for alignment. Ahlberg
[14] extends AAM to a parametric method called Active Appearance algorithm
to extract positions parameterized by 3D rotation, 2D translation, scale, and
six Action Units (controlling the mouth and the eyebrows). In direct appear-
ance model (DAM) [15, 16], shape is modeled as a linear function of texture.
Using such an assumption, Yan et al. [17] propose texture-constrained ASM
(TC-ASM), which has the advantage of ASM in having good localization accu-
racy and that of AAM in having insensitivity to initialization.To construct an
effective evaluation function,a statistical learning approach was proposed for face
alignment by Huanget al. [18] using a nonlinear classification function learned
from a training set of positive and negative training examples.

The following sections first describe the classical ASM and AAM Then we
will briefly review the 3D Morphable Model as an important 3D deformable
model. After that, two of the improved face alignment algorithms— DAM and
TC-ASM will be introduced based on the analysis of the problems of classical
ASM and AAM. Then an alignment quality evaluation mechanism is addressed
before the experimental results and conclusion to end this chapter.

For all the algorithms presented here, a training set of shape-texture pairs
is assumed to be available and denoted as Ω = {(S0, T0)} where a shape S0 =
((x1, y1), . . . , (xK , yK)) ∈ R2K is a sequence of K points in the 2D image plane,



and a texture T0 is the patch of pixel intensities enclosed by S0. Let S be the
mean shape of all the training shapes, as illustrated in Fig. 1. All the shapes are
aligned or warping to the tangent space of the mean shape S. After that , the
texture T0 is warped correspondingly to T ∈ RL, where L is the number of pixels
in the mean shape S. The warping may be done by pixel value interpolation,
e.g. using a triangulation or thin plate spline method.

Fig. 1: Two face instaces labelled with 83 landmarks and the mesh of the mean shape.
(Courtesy of S.C.Yan et al. [17])

2 Classical Deformable Models

There are two classical deformable models for 2D face analysis – Active Shape
Model (ASM) and Active Appearance Model (AAM). We first look through them
and the model for 3D face analysis will be addressed later.

The ASM seeks to match a set of model points to an image, by searching along
profiles of each point under the constraint of a statistical shape model. The AAM
seeks to match both the position of the model points and a representation of
the texture to an image, by updating the model parameters using the difference
between the current synthesized image and the target image.

There are three key differences between the two models[19]:

1. The ASM only uses models of the image texture in small regions about each
landmark point, whereas the AAM uses a model of the appearance of the
whole of the region (usually inside a convex hull around the points).

2. The ASM searches around the current position, typically along profiles nor-
mal to the boundary,whereas the AAM only samples the image enclosed by
the current position.

3. The ASM essentially seeks to minimize the distance between model points
and the corresponding points found in the image, whereas the AAM seeks to
minimize the difference between the synthesized model image and the target
image.

2.1 Active Shape Model

In ASM, a shape is represented as a vector s in the low dimensional shape
eigenspace Rk, spanned by k (< 2K) principal modes (major eigenvectors)



learned from the training shapes. A shape S could be linearly obtained from
shape eigenspace:

S = S + Us, (1)

where U is the matrix consisting of k principal modes of the covariance of {S0}.
The local appearance models, which describe local image feature around each

landmark, are modeled as the first derivatives of the sampled profiles perpendic-
ular to the landmark contour [4]. For the jth landmark (j = 1, · · · ,K), we can
derive the mean profile gj and the covariance matrix Σg

j from the jth profile ex-

amples directly. At the current position (x(n−1)
j , y

(n−1)
j ) of the jth landmark, the

local appearance models find the “best” candidate (xn
j , yn

j ) in the neighborhood

N(x(n−1)
j , y

(n−1)
j ) surrounding (x(n−1)

j , y
(n−1)
j ), by minimizing the energy:

(xn
j , yn

j ) = arg min
(x,y)∈N(x

(n−1)
j ,y

(n−1)
j )

‖gj(x, y)− gj‖2Σg
j

(2)

where gj(x, y) is the profile of the jth landmark at (x, y) and ‖X‖2A =XTA−1X
is the Mahalanobis distance measure with respect to a real symmetric matrix A.

After relocating all the landmarks using the local appearance models, we
obtain a new candidate shape Sn

lm. The solution in shape eigenspace is derived
by maximizing the likelihood:

sn=arg max
s

p(Sn
lm|s)=arg min

s
Eng(Sn

lm; s), (3)

where3

Eng(Sn
lm; s)=λ‖Sn

lm − Sn
lm
′‖2 + ‖sn

lm − s‖2Λ. (4)

In above equation, sn
lm = UT (Sn

lm− S) is the projection of Sn
lm to the shape

eigenspace, Sn
lm
′=S +Usn

lm is the reconstructed shape, Λ is the diagonal matrix
of the largest eigenvalues of the training data {Si}. The first term is the squared
Euclidean distance from Sn

lm to the shape eigenspace, and the second is the
squared Mahalanobis distance between sn

lm and s. λ balances the two terms.
Using the local appearance models leads to fast converge to the local image

evidence. However, since they are modeled based on the local features, and the
“best” candidate point is only evaluated in local neighborhood, the solution of
ASM is often suboptimal, dependent on the initialization.

2.2 Active Appearance Model

In AAM, a shape is also modeled by k (< 2K) principal modes learned from the
training shapes by PCA, just as the Eq.(1) shows in ASM.

After aligning each training shape S0 to the mean shape and warping the
corresponding texture T0 to T , the warped textures are aligned to the tangent
3 It is a deviation of the mostly used energy function with a squared Euclidean distance

between Sn
lm and shape S ∈ R2K derived from parameter s. It is more reasonable to

take into account the prior distribution in the shape space.



space of the mean texture T by using an iterative approach [2]. The PCA model
for the warped texture is obtained as

T = T + Vt (5)

where V is the matrix consisting of ` principal orthogonal modes of variation in
{T}, t is the vector of texture parameters. The projection from T to t is

t = VT (T − T ) = VT T (6)

By this, the L pixel values in the mean shape is represented as a point in the
texture subspace St in R`.

The appearance of each example is a concatenated vector

A =
(

Λs
t

)
(7)

where Λ is a diagonal matrix of weights for the shape parameters allowing for
the difference in units between the shape and texture variation, typically defined
as rI. Again, by applying PCA on the set {A}, one gets

A = Wa (8)

where W is the matrix consisting of principal orthogonal modes of the variation
in {A} for all training samples. The appearance subspace Sa is modelled by

a = WT A (9)

The search for an AAM solution is guided by the following difference between
the texture Tim in the image patch and the texture Ta reconstructed from the
current appearance parameters

δT = Tim − Ta (10)

More specifically, the search for a face in an image is guided by minimizing
the norm ‖δT‖. The AAM assumes that the appearance displacement δa and
the position (including coordinates (x, y), scale s, and rotation parameter θ)
displacement δp are linearly correlated to δT :

δa = AaδT (11)
δp = ApδT (12)

The prediction matrices Aa,Ap are to be learned from the training data by
using linear regression. In order to estimate Aa, a is displaced systematically
to induce (δa, δT ) pairs for each training image. Due to large consumption of
memory required by the learning of Aa and Ap, the learning has to be done
with a small, limited set of {δa, δT}.



2.3 3D Morphable Model

While ASM and AAM are for 2D image pattern analysis, here in this section, we
temporarily deviate from the analysis of 2D face, and extend the dimension of
face data to 3D by introducing morphable models [9, 22, 26]. With the presence
of convenient 3D acquiring equipment and the development of the computer
hardware, 3D face analysis has now become feasible and promising since it is
invariant to the influence of pose, illumination and expression. One of the most
crucial problems for all the 3D data processing system is the alignment between
the input data and the standard one. The 3D alignment may involve many rigid
or non-rigid transformations. For 3D face analysis,in particular, the alignment
means reconstruction of a normalized 3D face model from either input 2D face
images or unrestrained 3D data. The 3D Morphable Model (3DMM), as a typical
3D deformable model, inherits both the spirits of multidimensional morphable
model[20] and AAM .

The 3DMM is a model of faces represented in 3D where shape information
is separated from texture information. The shape and texture models are learnt
from a database of 3D faces, i.e., faces acquired by a 3D CyberwareTM scan-
ner.Building a 3DMM requires to transform the shape and texture spaces into
vector spaces for which any convex combination of exemplar shapes and tex-
tures describes a realistic human face. Correspondence is the basic requirement
for constructing such vector space. In [21], correspondences are established be-
tween all exemplar faces and a reference face by an optical flow algorithm.This
scheme brings a consistent labeling of vertices and corresponding albedos across
the whole set of exemplar faces. The shape of an exemplar face is then rep-
resented by a shape vector Sex = ((x1, y1, z1) . . . , (xK , yK , zK)) ∈ R3K that
contains the x, y, z coordinates of K vertices. The texture of the face is repre-
sented by a texture vector T ex = ((R1, G1, B1) . . . , (RK , GK , BK)) ∈ R3K that
contains the R,G, B texture values sampled at the same K vertices.

A new face then can be generated by convex combination of the K exemplar
faces, with its shape and texture vectors, S and T , are:

S =
K∑

i=1

aiS
ex
i T =

K∑

i=1

biT
ex
i

K∑

i=1

ai =
K∑

i=1

bi = 1 (13)

Again, PCA is applied separately on the shape and texture space to reduce the
dimensionality. Now, instead of describing a new face as a convex combination
of exemplars, as in Eq.(13), we use the similar shape and texture PCA model of
Eq.(1)(5) as:

S = S + Us T = T + Vt (14)
Note that U and V are the matrix consisting of orthogonal modes of variations
in {Sex} and {T ex}. The 3DMM shape and texture coefficient vectors s and t are
low-dimensional coding of the identity of a face invariant to pose and illumina-
tion influence. Given an input 2D image under arbitrary pose and illumination
conditions or unrestrained 3D face data, 3DMM can recover the vectors of s and
t by an analysis by synthesis fashion, providing an alignment between input
face and exemplar faces in database.



3 Motivations for Improvements

ASM uses the local appearance models to search along the profiles of candi-
date points.It leads to fast converge to the local image evidence. However, since
they are modeled based on the local features, and the “best” candidate point is
only evaluated in local neighborhood, the solution of ASM is often suboptimal,
dependent on the initialization.

By analyzing the relationships between the shape, texture and appearance
subspaces in AAM, we will show the defects of the AAM model. Thereby we
suggest a property that an ideal appearance model should have, which motivates
us to propose improvements of the classical model.

First, let us look into relationship between shape and texture from an intu-
itive viewpoint. A texture (i.e. the patch of intensities) is enclosed by a shape
(before aligning to the mean shape); the same shape can enclose different textures
(i.e. configurations of pixel values). However, the reverse is not true: different
shapes can not enclose the same texture. So the mapping from the texture space
to the shape space is many-to-one. The shape parameters should be determined
completely by texture parameters but not vice versa.

Then, let us look further into the correlations or constraints between the
linear subspaces Ss, St and Sa in terms of their dimensionalities or ranks. Let us
denote the rank of space S by dim(S). We have the following analysis:

1. When dim(Sa)=dim(St)+dim(Ss), the shape and texture parameters are in-
dependent of each other, and there exist no mutual constraints between the
s and t parameters.

2. When dim(St)<dim(Sa)<dim(St)+dim(Ss), not all the shape parameters are
independent of the texture parameters. That is, one shape can correspond
to more than one texture configuration in it, which conforms our intuition.

3. One can also derive the relationship dim(St)<dim(Sa) from Eq.(7) and (8)
the formula

Wa =
(

Λs
t

)
(15)

when that s contains some components which are independent of t.
4. However, in AAM, it is often the case where dim(Sa)<dim(St) if the dimen-

sionalities of Sa and St are chosen to retain, say 98%, of the total variations,
which is reported by Cootes [2] and also observed by us. The consequence is
that some admissible texture configurations cannot been seen in the appear-
ance subspace because dim(Sa)<dim(St), and therefore cannot be reached
by the AAM search. We consider this a flaw of AAM’s modeling of its ap-
pearance subspace.

From the above analysis, we conclude that the ideal model should be dim(Sa)=dim(St)
and hence that s completely linearly determinable by t. In other words, the shape
should be linearly dependent on the texture so that dim(St ∪ Ss)=dim(St). The
direct appearance model (DAM) is proposed mainly for this purpose.

Another motivation of DAM is the memory consumption: the regression of
Aa in AAM is very memory consuming. AAM prediction needs to model linear



relationship between appearance and texture difference according to Eq.(11).
However, both δa and δT are high dimensional vectors, and therefore the storage
size of training data generated for learning Eq.(11) increases very rapidly as the
dimensions increase. It is very difficult to train AAM for Aa even with a moderate
number of images. Learning in a low dimensional space will relieve the burden.

4 Direct Appearance Models

In this section, we introduce an improved appearance model, called Direct Ap-
pearance Model (DAM), for aligning and estimating face appearances.

The new appearance model is motivated by our findings of a flaw of AAM
modeling and difficulties in training AAM presented in previous section. The
DAM model overcomes these problems by its proper subspace modeling based
on the fundament that the mapping from the texture subspace to the shape sub-
space is many-to-one and therefore a shape can be determined entirely by the
texture in it. From these relationships, the DAM model considers an appearance,
which is composed of both shape and texture, to be determinable by using just
the corresponding texture. DAM uses the texture information directly to predict
the shape and to update the estimates of position and appearance (hence the
name DAM) in contrast to AAM’s crucial idea of modeling the AAM appear-
ance subspace from shape and texture combined. In this way, DAM includes
admissible textures previously unseen by AAM, and improves the convergence
and accuracy.

Another merit of DAM is that it predicts the new face position and appear-
ance based on principal components of texture difference vectors, instead of the
raw vectors themselves as in AAM. This cuts down the memory requirement to
a large extent, and further improves the convergence and accuracy.The claimed
advantages of DAM are substantiated by comparative experimental results in
Section 7.1.

4.1 DAM Modeling and Training

DAM consists of a shape model, a texture model and a prediction model. It
predicts the shape parameters directly from the texture parameters. The shape
and texture models are built based on PCA in the same way as in AAM. The
prediction model includes two parts: prediction of position and prediction of
texture.

Recall the conclusions we made earlier: (1) an ideal model should have
dim(Sa)=dim(St) and (2) shape should be computable uniquely from texture
but not vice versa. We propose the following prediction model by assuming a
linear relationship between shape and texture

s = Rt + ε (16)

where ε = s − Rt is noise and R is a k × l projection matrix. Denoting the
expectation by E(·), if all the elements in the variance matrix E(εεT ) are small



enough, the linear assumption made in Eq.(16) is approximately correct. This is
true as will be verified later by experiments. Define the objective cost function

C(R) = E(εT ε) = trace[E(εεT )] (17)

R is learned from training example pairs {(s, t)} to minimize the cost function.
Consider variation δC(R) caused by δR

δC(R) (18)
= trace{E([s− (R + δR)t][s− (R + δR)t]T )}
−trace[E{[s−Rt][s−Rt]T }]

= trace{E[RttT δRT + δRttT R

−stT δRT − δRtsT ]}
= trace{RE(ttT )δRT + ∆RE(ttT )R
−E(stT )∆RT − δRE(tsT )}

Letting δC(R) = 0, we get

trace{δRE(ttT )δRT + δRE(ttT )R} (19)
= trace{E(stT )∆RT + ∆RE(tsT )}

for any ‖δR‖ → 0. Substituting δR by ε1i,j for any (i, j) where ε → 0 and 1i,j

is the matrix in which entry (i, j) is 1 and 0 elsewhere, we arrive at RE(ttT ) =
E(stT ), and hence obtain the optimal solution

R = E(stT )[E(ttT )]−1 (20)

The minimized cost is the trace of the following

E(εεT ) = E(ssT )−RE(ttT )RT (21)

Instead of using δT directly as in the AAM search (cf. Eq.(12), we use prin-
cipal components of it, δT ′, to predict the position displacement

δp = RpδT
′ (22)

where Rp is the prediction matrix learned by using linear regression. To do this,
we collect texture differences induced by small position displacements in each
training image, and perform PCA on this data to get the projection matrix HT .
A texture difference is projected onto this subspace as

δT ′ = HT δT (23)

δT ′ is about 1/4 of δT in dimensionality and this makes the prediction more
stable. The DAM regression in Eq.(22) requires much less memory than the
AAM regression in Eq.(11). This is because p is of much lower dimension than
a and δT ′ much lower than δT . This will be illustrated by numbers later.



Assume that a training set be given as A = {(Si, Ti)} where a shape Si =
((xi

1, y
i
1), . . . , (x

i
K , yi

K)) ∈ R2K is a sequence of K points in the 2D image plane,
and a texture Ti is the patch of image pixels enclosed by Si. The DAM learning
consists of two parts: (1) learning R, and (2) learning H and Rp: (1) R is learned
from the shape-texture pairs {s, t} obtained from the landmarked images. (2) To
learn H and Rp, artificial training data is generated by perturbing the position
parameters p around the landmark points to obtain {δp, δT}; then learn H from
{δT} using PCA; δT ′ is computed after that; and finally Rp is derived from
{δp, δT ′}.

The DAM regression in Eq.(22) requires much less memory than the AAM
regression in Eq.(11), typically DAM needs only about 1/20 of memory required
by AAM. For DAM, there are 200 training images, 4 parameters for the position:
(x, y, θ, scale), and 6 disturbances for each parameter to generate training data
for the training Rp. So, the size of training data for DAM is 200×4×6 = 4, 800.
For AAM, there are 200 training images, 113 appearance parameters, and 4
disturbances for each parameter to generate training data for training Aa. The
size of training data for Aa is 200 × 113 × 4 = 90, 400. Therefore, the size of
training data for AAM’s prediction matrices is 90, 400 + 4, 800 = 95, 200, which
is 19.83 times that for DAM. On a PC, for example, the memory capacity for
AAM training with 200 images would allow DAM training with 3,966 images.

Note that there is a variant of basic AAM [4], which uses texture difference to
predict shape difference. The prediction of shape is done by δs = BδT . However,
this variant is not as good as the basic AAM [4].

4.2 DAM Search

The DAM prediction models leads to the following search procedure: The DAM
search starts with the mean shape and mean texture, equivalent to the mean
appearance with a0 = 0, at a given initial position p0. The texture difference δT
is computed from the current shape patch at the current position, and and its
principal components are used to predict and update p and s using the DAM
linear models described above. If ‖δT‖ calculated using the new appearance at
the position is smaller than the old one, the new appearance and position are
accepted; otherwise the position and appearance are updated by amounts κδa

and κδp with varying κ values. The search algorithm is summarized below:

1. Initialize position parameters p0, and set shape parameters s0 = 0;
2. Get texture Tim from the current position, project it into the texture sub-

space St as t, reconstruct the texture Trec, and compute texture difference
δT0 = Tim − Trec and the energy E0 = ‖δT0‖2;

3. Compute δT ′ = HT δT , and get the position displacement δp = RpδT
′;

4. Set step size κ = 1
5. Update p = p0 − κδp, s = Rt;
6. Compute the difference texture δT using the new shape at the new position,

and its energy E0 = ‖δT0‖2;
7. If |E − E0| < ε, the algorithm is converged; exit;



8. If E < E0, then let p0 = p, s0 = s, δT0 = δT, E0 = E, goto 3;
9. Change κ to the next smaller number in {1.5, 0.5, 0.25, 0.125, . . . , }, goto 5;

The above DAM search can be performed with a multi-resolution pyramid struc-
ture to improve the result.

4.3 Multi-View DAM

In multi-view face alignment, the whole range of views from frontal to side
views are partitioned into several sub-ranges, and one DAM model is trained to
represent the shape and texture for each sub-range. Which view DAM model to
use may be decided by using some pose estimate for static images. In the case
of face alignment from video, the previous view plus the two neighboring view
DAM models may be attempted, and then the final result is chosen to be the
one with the minimum texture residual error.

The full range of face poses are divided into 5 view sub-ranges: [−90◦,−55◦],
[−55◦,−15◦], [−15◦, 15◦], [15◦, 55◦], and [55◦, 90◦] with 0◦ being the frontal view.
The landmarks for frontal, half-side and full-side view faces are illustrated in
Fig.2. The dimensions of shape and texture vectors before and after the PCA
dimension reductions are shown in Table 1 where the dimensions after PCA are
chosen to be such that 98% of the corresponding total energies are retained.
The texture appearances due to respective variations in the first three principal
components of texture are demonstrated in Fig.3.

Fig. 2: Frontal, half-side, and full-side view faces and the labeled landmark
points.(Courtesy of S.Z.Li et al. [16])

The left side models and right side models are reflections of each other, so
we only need to train one side of them. So we train [−15◦, 15◦], [15◦, 55◦], and
[55◦, 90◦] for the 5 models. We can find the corresponding model for all the face
with view in [−90◦, 90◦].

The multi-view DAM search has a similar process to that of DAM.The dif-
ference lies in the beginning of the iteration where multi-view DAM has to
determine which view the input image belongs to and select a proper DAM
model.Note that the p can be computed from δT in one step as δp = RT δT ,
where RT = RpHT , instead of two steps as in Eq.(22) and (23).The search
algorithm is summarized below:



View #1 #2 #3 #4 #5

Fontal 87 69 3185 144 878

Half-Side 65 42 3155 144 1108

Full-Side 38 38 2589 109 266

Table 1: Dimensionalities of shape and texture variations for face data. #1 Number
of landmark points. #2 Dimension of shape space Ss. #3 Number of pixel points in
the mean shape. #4 Dimension of texture space St. #5 Dimension of texture variation
space (δT ′).(Courtesy of S.Z.Li et al. [16])

Mean 1st 2nd 3rd

Fig. 3: Texture and shape variations due to variations in the first three principal com-
ponents of the texture (The shapes change in accordance with s = Rt) for full-side
(±1σ), half-side (±2σ), and frontal (±3σ) views. (Courtesy of S.Z.Liet al. [16])

1. Initialize the position parameters p0, and determine view by which to select
the DAM model to use; set shape parameters s0 = 0;

2. Get texture Tim from the current position, project it into the texture sub-
space St as t, reconstruct the texture Ta, and compute texture difference
δT0 = Tim − Ta and the energy E0 = ‖δT0‖2;

3. get the position displacement δp = RT δT ;
4. Set step size κ = 1;
5. Update p = p0 − κδp, s = Rt;
6. Compute the difference texture δT using the new shape at the new position,

and its energy E = ‖δT‖2;
7. If |E − E0| < ε, the algorithm is converged; exit;
8. If E < E0, then let p0 = p, s0 = s, δT0 = δT, E0 = E, goto 3;
9. Change κ to the next number in {1.5, 0.5, 0.25, 0.125, . . . , }, goto 5;

In our implementation, the initialization and pose estimation are performed
automatically by using a robust real-time multi-view face detector [28], as shown
in Fig.4. A multi-resolution pyramid structure is used in search to improve the
result. Fig.5 demonstrates scenarios of how DAM converges.

When the face is undergone large variation due to stretch in either the x or
y direction, the model fitting can be improved by allowing different scales in the
two directions. This is done by splitting the scale parameter into two: sx and sy.
improvement is demonstrated in Figs.6 on Page 14.



Fig. 4: Initial alignment provided by a multi-view face detector. (Courtesy of S.Z.Li et
al. [16])

Fig. 5: DAM aligned faces (from left to right) at the 0-th, 5-th, 10-th, and 15-th it-
erations, and the original images for (top-bottom) frontal, half-side and full-side view
faces.(Courtesy of S.Z.Li et al. [16])

5 Texture Constrained Active Shape Model

TC-ASM [17] imposes the linear relationship of direct appearance model (DAM)
to improve ASM search. The motivation is the following: ASM has better ac-
curacy in shape localization than AAM when the initial shape is placed close
enough to the true shape whereas the latter model incorporates information
about texture enclosed in the shape and hence yields lower texture reconstruc-
tion error. However, ASM makes use of constraints near the shape only, without
a global optimality criterion, and therefore the solution is sensitive to the ini-
tial shape position. In AAM, the solution finding process is based on the linear
relationship between the variation of the position and the texture reconstruct
error. The reconstruct error δT is influenced very much by the illumination.
Since δT is orthogonal to St (projected back to RL) and dim(St) ¿ dim(T ), the
dimension of the space {δT} is very high, and it is hard to train the regression
matrix Aa,Ap and the prediction of the variance of position can be subject to



(0.0794) (0.06804) (0.0662)

(0.0838) (0.8686) (0.2442)

(0.0701) (0.1155) (0.1140)

(0.0953) (0.5892) (0.3625)

(0.1020) (0.2505) (0.1565)

(0.0997) (0.3019) (0.2720)

Fig. 6: Results of non-isometric (top of each of the three blocks) and isometric (bottom)
search for frontal (top block), half-side (middle block) and full-side (bottom block) view
faces. From left to right of each row are normal, and stretched faces. The number below
each result is the corresponding residual error. (Courtesy of S.Z.Li et al. [16])



significant errors. Also it is time and memory consuming. TC-ASM is aimed to
overcome the above problems.

TC-ASM consists of a shape model,a texture model, K local appearance
models, and a texture-constrained shape model. The former three types are ex-
actly the same as ASM and AAM. The texture-constrained shape model, or the
mapping from texture to shape, is simply assumed linear and could be easily
learnt. In each step of the optimization, a better shape is found under Bayesian
framework. The details of the model will be introduced in the following.

5.1 Texture-Constrained Shape Model

In the shape model, there are some landmarks defined on the edges or contours.
Since they have no explicit definition for their positions, there exists uncertainty
of the shape given the texture, whilst there are correlations between the shape
and the texture. The conditional distribution of shape parameters s given texture
parameters t is simply assumed Gaussian, i.e.,

p(s|t) ∼ N(st,Σt), (24)

where Σt stands for the covariance matrix of the distribution, and st is linearly
determined by the texture t. The linear mapping from t to st is:

st = Rt, (25)

where R is a projection matrix that can be pre-computed from the training pairs
{(si, ti)} by singular-value decomposition. For simplicity, Σt is assumed to be
a known constant matrix. Fig.7 demonstrates the accuracy of the prediction in
the test data via the matrix R. We may see that the predicted shape is close to
the labeled shape even under varying illuminations. Thus, the constraints over
the shape from the texture can be used as an evaluation criterion in the shape
localization task. The prediction of matrix R is also affected by illumination
variation, yet since Eq.(25) is formulated based on the eigenspace, the influence
of the unfamiliar illumination can be alleviated when the texture is projected to
the eigenspace.

The distribution Eq.(24) can also be represented as the prior distribution of
s given the shape st:

p(s|st) ∝ exp{−Eng(s; st)}, (26)

where the energy function is:

Eng(s; st) = ‖s− st‖2Σt
. (27)

5.2 TC-ASM in Bayesian Framework

TC-ASM search starts with the mean shape, namely the shape parameters s0 =
0. The whole search process is outlined as below:



Fig. 7: The comparison of the manually labeled shape (middle row) and the shape
(bottom row) derived from the enclosed texture using the learned projection matrix:
st = Rt. In the top row are the original images. All the images are test data. (Courtesy
of S.C.Yan et al. [17])

1. Set the iteration number n = 1;
2. Using the local appearance models in ASM, we may obtain the candidate

shape Sn
lm with the shape parameters sn

lm based on the shape S(n−1) of the
previous iteration;

3. The texture enclosed by Sn
lm is warped to the mean shape, denoted by tn.

The texture-constrained shape sn
t is predicted from tn by Eq.(25);

4. The posterior (MAP) estimation of Sn or sn given Sn
lm and sn

t is derived
based on the Bayesian framework;

5. If the stopping condition is satisfied, exit; otherwise, n=n+1, goto step 2.

In the following, we illustrate the step 4 and the stopping condition in detail.
To simplify the notation, we shall omit the superscript n in following deduction
since the iteration number is constant. In step 4, the posterior (MAP) estimation



of s given Slm and st is:

p(s|Slm, st) =
p(Slm|s, st)p(s, st)

p(Slm, st)
. (28)

Assume that Slm is conditionally independent to st, given s, i.e.,

p(Slm|s, st) = p(Slm|s). (29)

Then
p(s|Slm, st) ∝ p(Slm|s)p(s|st). (30)

The corresponding energy function is:

Eng(s;Slm, st) = Eng(Slm; s) + Eng(s; st) (31)

From the Eq.(4) and Eq.(27), the best shape obtained in each step is

s= arg min
s

[Eng(s; Slm) + Eng(s; st)]

= arg min
s
‖slm−s‖2Λ + ‖s−st‖2Σt

= arg min
s

[sT (Λ−1 + Σ−1
t )s− 2sT (Λ−1slm + Σ−1

t st)]

= (Λ−1 + Σ−1
t )−1(Λ−1slm + Σ−1

t st).

After restoring the superscript of iteration number, the best shape obtained in
step n is

sn=(Λ−1 + Σ−1
t )−1(Λ−1sn

lm + Σ−1
t sn

t ). (32)

This indicates that the best shape derived in each step is an interpolation be-
tween the shape from the local appearance model and the texture-constrained
shape. In this sense, TC-ASM could be regarded as a trade-off between ASM
and AAM methods.

The stopping condition of the optimization is: if the shape from the local
appearance model and the texture-constrained shape are the same, i.e., the
solution generated by ASM is verified in AAM, the optimal solution must have
been touched. In practice, however, these two shapes would hardly turn to be
the same. A threshold is introduced to evaluate the similarity and sometimes
the convergence criterion in ASM is used (if the above criterion has not been
satisfied for a long time). For higher efficiency and accuracy, a multi-resolution
pyramid method is adopted in optimization process.

6 The Evaluation for Face Alignment

The emergence of many effective face alignment algorithms serves as a contrast
to the lack of an effective method for the evaluation of face alignment results.
In ASM, there has been no convergence criterion for the iteration. As such, the
ASM search can give a bad result without giving the user a warning. In AAM
and DAM, the PCA reconstruction error is used as a distance measure for the



evaluation of alignment quality.However, the reconstruction error may not be a
good discriminant for the evaluation of alignment quality because a non-face can
look like a face when projected onto the PCA face subspace. In TC-ASM, the
algorithm claims to reach a convergence when the solution generated by ASM is
verified in AAM, whereas both convergence criterions are not yet stable.

In this section, we propose a statistical learning approach for constructing
an evaluation function for face alignment. A nonlinear classification function
is learned from a training set of positive and negative training examples to
effectively distinguish between qualified and un-qualified alignment results. The
positive subset consists of qualified face alignment examples and the negative
subset consists of obviously un-qualified and near-but-not-qualified examples.

We use AdaBoost algorithm [29, 30] for the learning. A set of candidate weak
classifiers are created based on edge features extracted using Sobel-like opera-
tors. We choose to use edge features because crucial cues for alignment quality
are around edges. Experimentally, we also found that the Sobel features pro-
duced significant better results than other features such as Haar wavelets. The
AdaBoost learning selects or learns a sequence of best features and the corre-
sponding weak classifiers and combines them into a strong classifier.

In the training stage several strong classifiers is learned in stages using boot-
strap training samples, and in the test they are cascaded to form a stronger
classifier, following an idea in boosting based face detection [31]. Such a divide-
conquer strategy makes the training easier and the good-bad classification more
effective. The evaluation function thus learned gives a quantitative confidence
and the good-bad classification is achieved by comparing the confidence with a
learned optimal threshold.

There are two important distinctions between an evaluation functions thus
learned and the linear evaluation function of reconstruction error used in AAM.
First, the evaluation is learned in such a way to distinguish between good and bad
alignment. Secondly, the scoring is nonlinear, which provides a semantically more
meaningful classification between good and bad alignment. Experimental results
demonstrate that the classification function learned using the proposed approach
provides semantically meaningful scoring for classification between qualified and
un-qualified face alignment.

6.1 Solution Quality Evaluation in ASM/AAM

There has been no convergence criterion for ASM search. In ASM search, the
mean shape is placed near the center of the detected image and a coarse to fine
search performed. Large movements are made in the first few iterations, getting
the position roughly. As the search progressing, more subtle adjustments are
made. The result can gives a good match to the target image or it can fail (see
Figure. 8). The failure can happen even if the starting position is near the target.
When the variations of expression and illumination are large, ASM search can
diverge in order to match the local image pattern.

Similar problem exists in AAM search. There, the PCA reconstruction error
is used as a distance measure for the evaluation of alignment quality (and for



Fig. 8: Four face instances of qualified (top) and un-qualified (bottom) examples with
their warped images. (Courtesy of Huang et al. [18])

guiding the search as well). However, the reconstruction error may not be a good
discriminant for the evaluation of alignment quality because a non-face can look
like a face when projected onto the PCA face subspace. Cootes pointed out that,
of 2700 testing examples, 519 failed to converge to a satisfactory result (the mean
point position error is greater than 7.5 pixels per point) [4].

In the following we present a learning based approach for learning evaluation
function for ASM/AAM based alignment.

6.2 AdaBoost Based Learning

Our objective is to learn an evaluation function from a training set of qualified
and un-qualified alignment examples. From now on, we use the terms positive and
negative examples for classes of data. These examples are the face image after
warping to mean shape, as shown in Fig. 8. Face alignment quality evaluation
can be posed as a two class classification problem: given an alignment result x
(i.e. warped face), the evaluation function H(x) = +1 if x is positive example,
or −1 otherwise. we want to learn such an H(x) that can provide a score in
[−1, +1] with a threshold around 0 for the binary classification.

For two class problems, a set of N labelled training examples is given as
(x1, y1), . . . , (xN , yN ), where yi ∈ {+1,−1} is the class label associated with ex-
ample xi ∈ Rn. A stronger classifier is a linear combination of M weak classifiers

HM (x) =
M∑

m=1

hm(x) (33)

In the real version of AdaBoost [29, 30], the weak classifiers can take a real
value, hm(x) ∈ R, and have absorbed the coefficients needed in the discrete
version (hm(x) ∈ −1,+1 in the latter case). The class label for x is obtained
as H(x) = sign[HM (x)] while the magnitude |HM (x)| indicates the confidence.



Every training example is associated with a weight. During the learning process,
the weights are updated dynamically in such a way that more emphasis is placed
on hard examples which are erroneously classified previously. It is noted in recent
studies [32–34] that the artificial operation of explicit re-weighting is unnecessary
and can be incorporated into a functional optimization procedure of boosting.

0. (Input)
(1) Training examples {(x1, y1), . . . , (xN , yN )},

where N = a + b; of which a examples have yi = +1
and b examples have yi = −1;

(2) The maximum number Mmax of weak classifiers to be combined;
1. (Initialization)

w
(0)
i = 1

2a
for those examples with yi = +1 or

w
(0)
i = 1

2b
for those examples with yi = −1.

M = 0;
2. (Forward Inclusion)

while M < Mmax

(1) M ← M + 1;
(2) Choose hM according to Eq.36;

(3) Update w
(M)
i ← exp[−yiHM (xi)], and normalize to

P
i w

(M)
i = 1;

3. (Output)

H(x) = sign[
PM

m=1 hm(x)].

Fig. 9: RealBoost Algorithm. (Courtesy of Huang et al. [18])

An error occurs when H(x) 6= y, or yHM (x) < 0. The “margin” of an example
(x, y) achieved by h(x) ∈ R on the training set examples is defined as yh(x).
This can be considered as a measure of the confidence of the h’s prediction.
The upper bound on classification error achieved by HM can be derived as the
following exponential loss function [35]

J(HM ) =
∑

i

e−yiHM (xi) =
∑

i

e−yi
PM

m=1 hm(x) (34)

AdaBoost construct hm(x) by stagewise minimization of Eq.(34). Given the
current HM−1(x) =

∑M−1
m=1 hm(x), the best hM (x) for the new strong classifier

HM (x) = HM−1(x) + hM (x) is the one which leads to the minimum cost

hM = arg min
h†

J(HM−1(x) + h†(x)) (35)

The minimizer is [29, 30]

hM (x) =
1
2

log
P (y = +1|x,w(M−1))
P (y = −1|x,w(M−1))

(36)



where w(M−1)(x, y) = exp (−yFM−1(x)) is the weight for the labeled example
(x, y) and

P (y = +1|x,w(M−1)) =
E

(
w(x, y) · 1[y=+1]|x

)

E (w(x, y) | x)
(37)

where E(·) stands for the mathematical expectation and 1[C] is one if C is true
or zero otherwise. P (y = −1|x,w(M−1)) is defined similarly.

The AdaBoost algorithm based on the descriptions from [29, 30] is shown in
Fig. 9. There, the re-weight formula in step 2.(3) is equivalent to the multiplica-
tive rule in the original form of AdaBoost [36, 29]. In Section 6.3, we will present
a statistical model for stagewise approximation of P (y = +1|x,w(M−1)).

6.3 Construction of Candidate Weak Classifiers

The optimal weak classifier at stage M is derived as Eq.(36). Using P (y|x, w) =
p(x|y, w)P (y), it can be expressed as

hM (x) = LM (x)− T (38)

where

LM (x) =
1
2

log
p(x|y = +1, w)
p(x|y = −1, w)

(39)

T =
1
2

log
P (y = +1)
P (y = −1)

(40)

The log likelihood ratio (LLR) LM (x) is learned from the training examples of
the two classes. The threshold T is determined by the log ratio of prior prob-
abilities. In practice, T can be adjusted to balance between the detection and
false alarm rates (i.e. to choose a point on the ROC curve).

Learning optimal weak classifiers requires modelling the LLR of Eq.(39).
Estimating the likelihood for high dimensional data x is a non-trivial task.
In this work, we make use of the stagewise characteristics of boosting, and
derive the likelihood p(x|y, w(M−1)) based on an over-complete scalar feature
set Z = {z′1, . . . , z′K}. More specifically, we approximate p(x|y, w(M−1)) by
p(z1, . . . , zM−1, z

′|y, w(M−1)) where zm (m = 1, . . . ,M − 1) are the features that
have already been selected from Z by the previous stages, and z′ is the feature
to be selected. The following describes the candidate feature set Z, and presents
a method for constructing weak classifiers based on these features.

Because the shape is about boundaries between regions, it makes sense to
use edge information (magnitude or orientation or both) extracted from a grey-
scale image. In this work, we use the simple Sobel filter for extracting the edge
information. Two filters are used: Kw for horizontal edges and Kh for vertical
edges, as follows:

Kw(w, h) =




1 0 −1
2 0 −2
1 0 −1


 and Kh(w, h) =




1 2 1
0 0 0
−1 −2 −1


 (41)



The convolution of the image with the two filter masks gives two edge
strength values.

Gw(w, h) = Kw ∗ I(w, h) (42)

Gh(w, h) = Kh ∗ I(w, h) (43)

The edge magnitude and direction are obtained as:

S(w, h) =
√

G2
w(w, h) + G2

h(w, h) (44)

φ(w, h) = arctan(
Gh(w, h)
Gw(w, h)

) (45)

The edge information based on Sobel operator is sensitive to noise. To solve this
problem, we use sub-block of image to convolve with Sobel filter (see Fig. 10),
which is similar to Haar-like feature calculation.

Fig. 10: The two types of simple Sobel-like filters defined on sub-windows. The rectan-
gles are of size w×h and are at distances of (dw, dh) apart. Each feature takes a value
calculated by the weighted (±1,±2) sum of the pixels in the rectangles. (Courtesy of
Huang et al. [18])

6.4 Statistical Learning of Weak Classifiers

A scalar feature z′k : x → R is a transform from the n-dimensional (400-D
if a face example x is of size 20x20) data space to the real line. These block
differences are an extension to the Sobel filters. For each face example of size
20x20, there are hundreds of thousands of different z′k for admissible w, h, dw, dh
values, so Z is an over-complete feature set for the intrinsically low-dimensional
face pattern x. In this work, an optimal weak classifier (38) is associated with
a single scalar feature; to find the best new weak classifier is to choose the best
corresponding feature.



We can define the following component LLR’s for the target LM (x):

L̃m(x) =
1
2

log
p(zm|y = +1, w(m−1))
p(zm|y = −1, w(m−1))

(46)

for the selected features, zm’s (m = 1, . . . , M − 1), and

L
(M)
k (x) =

1
2

log
p(z′k(x)|y = +1, w(M−1))
p(z′k(x)|y = −1, w(M−1))

(47)

for features to be selected, z′k ∈ Z. Then, after some mathematical derivation,
we can approximate the target LLR function as

LM (x) =
1
2

log
p(x|y = +1, w(M−1))
p(x|y = −1, w(M−1))

≈
M−1∑
m=1

L̃m(x) + L
(M)
k (x) (48)

Let

∆LM (x) = LM (x)−
M−1∑
m=1

L̃m(x) (49)

The best feature is the one whose corresponding L
(M)
k (x) best fits ∆LM (x). It

can be found as the solution to the following minimization problem

k∗ = arg min
k,β

N∑

i=1

[
∆LM (xi)− βL

(M)
k (xi)

]2

(50)

This can be done in two steps as follows: First, find k∗ for which

(L(M)
k (x1), L

(M)
k (x2), . . . , L

(M)
k (xN )) (51)

is most parallel to

(∆LM (x1),∆LM (x2), . . . , ∆LM (xN )) (52)

This amounts to finding k for which L
(M)
k is most correlated with ∆LM over the

data distribution, and set zM = z′k∗ . Then, we compute

β∗ =
∑N

i=1 ∆LM (xi)Lk∗(xi)∑N
i=1[Lk∗(xi)]2

(53)

After that, we obtain

L̃M (x) = β∗Lk∗(x) (54)

The strong classifier is then given as

HM (x) =
M∑

m=1

(
L̃m(x)− T

)
=

M∑
m=1

L̃m(x)−MT (55)

The evaluation function HM (x) thus learned gives a quantitative confidence
and the good-bad classification is achieved by comparing the confidence with the
threshold value of zero.



7 Experimental Results

7.1 DAM

Computation of Subspaces A total of 80 images of size 128x128 are collected.
Each image contains a different face in an area of about 64x64 pixels. The images
set is randomly partitioned into a training set of 40 images and a test set of the
other 40. Each image is mirrored and this doubles the total number of images
in each set.

K = 72 face landmark points are labeled manually (see an example in Fig. 11.
The shape subspace is k = 39 dimensional, which retains 98% of the total shape
variation. The mean shape contains a texture of L = 3186 pixels. The texture
subspace is ` = 72 dimensional, as the result of retaining 98% of total texture
variation. These are common to both AAM and DAM.

For AAM, an appearance subspace is constructed to combine both shape
and texture information: A concatenated shape and texture vector is 39+72
dimensional, where the weight parameter is calculated as r = 7.5 for Λ = rI
in Eq.(7). It is reduced to a 65 dimensional appearance subspace which retains
98% of total variation of the concatenated features.

For DAM, the linearity assumption made for the model s = Rt+ε of Eq.(16)
is well verified because all the elements in E(εεT ) calculated over the training
set are smaller than 10−5.

The original texture difference δT , which is used in AAM for predicating
position displacement, is 3186 dimensional; it is reduced to 724 dimensional δT ′,
which is used in DAM for the prediction, to retain 98% of variation over the
1920 training examples.

DAM requires much less memory during the learning of the prediction matri-
ces Rp in Eq.(22) than AAM for learning Aa in Eq.(11). For DAM, there are 80
training images, 4 parameters for the position: (x, y, θ, scale), and 6 disturbances
for each parameter to generate training data for the training Rp. So, the size
of training data for DAM is 80 × 4 × 6 = 1920. For AAM, there are 80 train-
ing images, 65 appearance parameters, and 4 disturbances for each parameter
to generate training data for training Aa. The size of training data for Aa is

Fig. 11: A face image and the landmark points. (Courtesy of X.W.Hou et al. [15])



80 × 65 × 4 = 20800. Therefore, the size of training data for AAM’s prediction
matrices is 20800+1920 = 22720, which is 11.83 times that for DAM. On a PC,
for example, the memory capacity for AAM training with 80 images would allow
DAM training with 946 images.

Alignment and Appearance Estimation Table 2 compares DAM and AAM
in terms of the quality of position and texture parameter estimates, and the
convergence rates. The effect of using δT ′ instead of δT is demonstrated through
DAM’, which is DAM minus the PCA subspace modeling of δT . The initial
position is a shift from the true position by dx = 6, dy = 6. The ‖δp‖ is calculated
for each image as the averaged distance between corresponding points in the two
shapes, and therefore it is also a measure of difference in shape. The convergence
is judged by the satisfaction of two conditions: ‖δT‖2 < 0.5 and ‖δp‖ < 3.

E(‖δT‖2) std(‖δT‖2) E(‖δp‖) std(‖δp‖) cvg rate

DAM 0.156572 0.065024 0.986815 0.283375 100%

DAM’ 0.155651 0.058994 0.963054 0.292493 100%

AAM 0.712095 0.642727 2.095902 1.221458 70%

DAM 1.114020 4.748753 2.942606 2.023033 85%

DAM’ 1.180690 5.062784 3.034340 2.398411 80%

AAM 2.508195 5.841266 4.253023 5.118888 62%

Table 2: Comparisons of DAM, DAM’ and AAM in terms of errors in estimated texture
(appearance) parameters δT and position δp and convergence rates for the training
images (first block of three rows) and test images (second block). (Courtesy of X.W.Hou
et al. [15])

Fig. 12 illustrates average scenarios of DAM and AAM alignment. Fig. 13
illustrates the dynamics of total error δT for 10 images randomly selected from
the training set and 10 from the test set. We see that DAM has faster convergence
and smaller error than AAM.

Multi-View DAM The training set contains 200 frontal, 200 half-side, and
170 full-side view faces whose sizes are of about 64x64 pixels, while the test
set contains 80 images for each view group. The landmark points are labeled
manually (see Fig.2 and Table 1). They are used for the training and as ground-
truth in the test stage.

To compare, we also implemented AAM using the same data in the frontal
view. The shape and texture parameter vectors are 69+144 dimensional, respec-
tively, where the weight parameter for the concatenation of the two parts is
calculated as r = 8.84 for Λ = rI in Eq.(7). The concatenated vector space
is reduced to a 113 dimensional appearance subspace which retains 98% of the
total variation of the concatenated features.



Fig. 12: Scenarios of DAM (top) and AAM (bottom) alignment. (Courtesy of X.W.Hou
et al. [15])
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Fig. 13: The evolution of total δT for the DAM (top) and AAM (bottom) as a func-
tion of iteration number for the training (left) and test (right) images. (Courtesy of
X.W.Hou et al. [15])



Fig. 14: Mean error (the curve) and standard deviation (the bars) in reconstructed
texture ‖δT‖ as a function of iteration number for the DAM (left) and AAM (right)
methods with the training (top) and test (bottom) sets, for frontal face images. The
horizontal dashed lines in the lower part of the figures indicate the average ‖δT‖ for
the manually labeled alignment. (Courtesy of S.Z.Li et al. [16])

Fig. 15: Mean error in ‖δT‖ and standard deviation of the DAM alignment for half-
(left) and full- (right) side view face images from the test set. Note that the mean
errors in the calculated solutions are smaller than obtained using the manually labeled
alignment after a few iterations. (Courtesy of S.Z.Li et al. [16])

Fig. 16: Alignment accuracy of DAM (dashed) and AAM (solid) in terms of localization
errors in the x (left) and y (right) directions. (Courtesy of S.Z.Li et al. [16])



Some results about DAM learning and search have been presented in Fig.2
– Fig.6. Fig.14 compares the convergence rate and accuracy properties of DAM
and AAM (for the frontal view) in terms of the error in δT (cf. Eq.(10)) as
the algorithms iterate. The statistics are calculated from 80 images randomly
selected from the training set and the 80 images from test set. We see that DAM
has faster convergence rate and smaller error than AAM. Fig.15 illustrates the
error of DAM for non-frontal faces. Fig.16 compares the alignment accuracy of
DAM and AAM (for frontal faces) in terms of the percentage of images whose
texture reconstruction error δT is smaller than 0.2, where the statistics are ob-
tained using another test set including the 80 test images mentioned above and
additional 20 other test images. It shows again that DAM is more accurate than
AAM.

The DAM search is fairly fast. It takes on average 39 ms per iteration for
frontal and half-side view faces, and 24 ms for full-side view faces in an image of
size 320x240 pixels. Every view model takes about 10 iterations to converge. If
3 view models are searched with per face, as is done with image sequences from
video, the algorithm takes about 1 second to find the best face alignment.

7.2 TC-ASM

A data set containing 700 face images with different illumination conditions
and expressions are selected from the AR database[37] in our experiments, each
of which is 512 × 512, 256 grays image containing the frontal view face about
200 × 200. 83 landmark points are manually labeled on the face. We randomly
select 600 for training and the other 100 for testing.

For comparison, ASM and AAM are trained on the same data sets, in a three-
level image pyramid (Resolution is reduced 1/2 level by level) as TC-ASM. By
means of PCA with 98% total variations retained, the dimension of the shape
parameter in ASM shape space is reduced to 88, and the texture parameter
vector in AAM texture space is reduced to 393. The concatenated vector of the
shape and texture parameter vector with the weighting parameter γ = 13.77 is
reduced to 277. Two types of experiments are presented: (1) the comparison of
the point-position accuracy and (2) the comparison of the texture reconstruction
error. The experiments are all performed in the 3-level resolution image pyramid.

Point Position Accuracy The average point-point distances between the
searched shape and the manually labeled shape of the three models are com-
pared in Fig.17. The vertical axis represents the percentage of the solutions for
which the average point-point distances to the manually labeled ones are smaller
than the corresponding horizonal axis value. The statistics are calculated from
100 test images with different initializations, with random displacements to the
ground truth of 10, 20, 30 and 40 pixels. The results show that TC-ASM out-
performs both ASM and AAM in most cases since the curve of TC-ASM lies
above the curves for ASM and AAM. It also suggests that AAM outperforms
ASM when the initial displacement is small, while ASM is more robust to the
increasing of the initial displacement.



Fig. 17: Accuracy of ASM, AAM, TC-ASM. From upper to lower, left to right are the
results obtained with the initial displacements of 10, 20, 30 and 40 pixels. Note that
the value of vertical coordinate is the percentage of examples that have the point-point
distance smaller than the corresponding value of horizonal coordinate. (Courtesy of
S.C.Yan et al. [17])

Fig. 18: Standard deviation in the results of each example for ASM (dotted) and TC-
ASM (solid) with training set (left) and test set(right).(Courtesy of S.C.Yan et al.
[17])



We compare the stability of TC-ASM with ASM in Fig.18. The value of
horizonal axis is the index number of the selected examples, whereas the value
of the vertical axis is the average standard deviation of the results obtained from
10 different initializations which deviate from the ground truth by approximately
20 pixels. The result convinces that TC-ASM is more stable to initializations.
An example is given in Fig.19.

Fig. 19: Stability of ASM (Middle column) and TC-ASM (Right column) in shape local-
ization. The different initialization conditions are showed in the left column.(Courtesy
of S.C.Yan et al. [17])

Texture Reconstruction Error The texture reconstruction error comparison
of the three models in Fig.20 illustrates that TC-ASM improves the accuracy of
the texture matching. The texture accuracy of TC-ASM is close to that of AAM
while its position accuracy is better than AAM (see Fig.17). Although AAM
has more cases with small texture reconstruction error, TC-ASM has more cases
with the texture reconstruction error smaller than 0.2.



An example in which AAM fails for a different illumination condition from
the training data, yet TC-ASM performs well is presented in Fig.21. Fig.22 shows
a scenario of AAM and TC-ASM alignment.

Fig. 20: Distribution of the texture reconstruction error in ASM(dotted), AAM(square)
and TC-ASM(asterisk) with training data (left) and test data (right). (Courtesy of
S.C.Yan et al. [17])

Fig. 21: Sensitivities of AAM (upper) and TC-ASM (lower) to illumination condition
not seen in the training data. From left to right are the results obtained at the 0-th,
2-th, and 10-th iterations.( Result in different level of image pyramid is scaled back to
the original scale) (Courtesy of S.C.Yan et al. [17])

From the experiment, TC-ASM is more computationally expensive than
ASM, but it is much faster than AAM. In our experiment (600 training images,
83 landmarks and a P-III 667 computer with 256M memory), it takes averagely
32 ms per iteration, which is twice of ASM (16 ms) but one fifth of AAM (172



Fig. 22: Scenarios of AAM (upper) and TC-ASM (lower) alignment with texture recon-
struct error 0.3405 and 0.1827 respectively. From left to right are results obtained at
the 0-th, 5-th, 10-th, 15-th iterations and the original image. (Result in different level
of image pyramid is scaled back to the original scale) (Courtesy of S.C.Yan et al. [17])

ms). The training time of AAM is more than two hours, while TC-ASM is only
about 12 minutes.

7.3 The Evaluation for Face Alignment

The positive and negative training and set date are generated as follows: All
the shapes are aligned or warping to the tangent space of the mean shape S.
After that, the texture T0 is warped correspondingly to T ∈ RL, where L is the
number of pixels in the mean shape S.

In our work, 2536 positive examples and 3000 negative examples are used
to train a strong classifier. The 2536 positive examples are derived from 1268
original positive examples plus the mirror images. The negative examples are
generated by random rotating, scaling, shifting positive examples’ shape points.
A strong classifier is trained to reject 92% negative examples, while correctly
accepting 100% of positive examples.

A cascade of classifiers is trained to train a computational effective model,
makes training easier with divide-conquer strategy. When training a new stage,
negative examples are bootstrapped based on the classifier trained in the pre-
vious stages. The details of training a cascade of 5 stages is summarized Table
3. As the result of training, we achieved 100% correct acceptance and correct
rejection rates on the training set.

We compare the learned evaluation function with the PCA texture recon-
struction error based evaluation method, using the same data sets (but PCA
does not need negative examples in training). The dimensionality of the PCA
subspace is chosen to retain 99% of the total variance of the data. The best
threshold of reconstruction error is selected to minimize the classification error.
Fig. 23 shows the ROC curve for the reconstruction error based alignment eval-



uation method for the training set. Note that this method cannot achieve 100%
correct rates.
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Fig. 23: ROC curve for the reconstruction error based alignment evaluation for the
training set. (Courtesy of Huang et al. [18])

During the test, a total of 1528 aligned examples (800 qualified images and
728 non-qualified images) are used. We evaluate each face images and give a
score in terms of (a) the confidence value HM (x) for the learning based method
and (b) the confidence value distPCA − threshold for the PCA based method.
The qualified and un-qualified alignment decision is judged by comparing the
score with the normalized threshold of 0. Some examples of accepted (the top
part) and rejected (the bottom part) face alignment results are shown in Fig.24.
Fig. 25 compares the two methods in terms of their ROC curves (first plot) and
error curves (the second plot), where the axis label P(pos/neg) means the false
positive rate and so on.

stage number of pos number of neg number of WC False Alarm

1 2536 3000 22 0.076

2 2536 3000 237 0.069

3 2536 888 294 0.263

4 2536 235 263 0.409

5 2536 96 208 0.0

Table 3: Training results (WC: weak classifier) (Courtesy of Huang et al. [18])
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Fig. 24: Alignment quality evaluation results: accepted images (top) and rejected im-
ages (bottom) (Courtesy of Huang et al. [18])
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Fig. 25: Comparision between reconstruction error method and boost method (Cour-
tesy of Huang et al. [18])



Lastly, we would like to mention that experimentally, we also found that the
Sobel features produced significant better results than other features such as
Haar wavelets. This is not elaborated here.

8 Conclusion

In this chapter, we reviewed important shape and texture based deformable
models, such as ASM, AAM and their variants, for image analysis. These image
analysis tools can not only provides alignment between the input and the target
to best fit the constraints, but also provides aligned features for object pattern
classification.

Although great advance has been achieved in the past decade, there are still
challenges for future research. One area is the robustness of deformable model
towards variances of pose, illumination and expression. Existing models can only
deal with a moderate amount of such variations, so the performance deteriorates
when extreme illumination conditions or exaggerated expressions present. While
morphable model has demonstrated its effectiveness 3D object analysis, efficient,
realtime and exact model searching algorithms are still lacking. Solving these
problems will lead to better applications.
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