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Abstract

We present a novel variational approach for simultaneous segmentation of two images of the same

object taken from different viewpoints. Due to noise, clutter and occlusions, neither of the images contains

sufficient information for correct object-background partitioning. The evolving object contour in each

image provides a dynamic prior for the segmentation of the other object view. We call this process mutual

segmentation. The foundation of the proposed method is a unified level-set framework for region and

edge based segmentation, associated with a shape similarity term. The suggested shape term incorporates

the semantic knowledge gained in the segmentation process of the image pair, accounting for excess or

deficient parts in the estimated object shape. Transformations, including planar projectivities, between

the object views are accommodated by a registration process held concurrently with the segmentation.

The proposed segmentation algorithm is demonstrated on a variety of image pairs. The Homography

between each of the image pairs is estimated and its accuracy is evaluated.

1 Introduction

Segmentation is defined as the task of partitioning the image into foreground (object) and background re-

gions. Since the concept of object is subjective and application dependent, segmentation is considered

ill-posed. Moreover, even when the object of interest is well-defined, segmentation is challenging. This

is so since in the imaging process the inherent properties of the inspected object may be corrupted due

to noise, occlusion, illumination conditions and more. General syntactical assumptions such as continuity
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and smoothness of edges and homogeneity of semantic regions should thus be complemented with a-priori

semantical information on the objects to be segmented.

This paper addresses the segmentation of an image pair of the same object in different appearances and

poses. We can then redefine segmentation as the task of extracting the common object in both images. Un-

certainty regarding the object boundaries can be resolved having two instances instead of one. Nevertheless,

this setting provides only an implicit prior. The “double” segmentation problem is thus far from being trivial.

Mathematical modeling of prior information and its incorporation in object extraction frameworks is an

active field of research. Segmentation is commonly inferred by minimizing an objective functional. Thus,

the compatibility of the object-background partition with the image data is constrained subject to a general

model on natural images, e.g. [20]. Specific information on the segmented object, based on its expected

characteristics, is incorporated via additional constraints. These may include shape, color, texture, etc.

Model-based approaches embody common properties of the object class. Refer for example to [11] that

extracts thin structures such as blood vessels, or to [27] that incorporates geometric information to segment

road networks. When the object shape is specified, resemblance of the segmented object to the reference

shape can be also imposed. Prior-based segmentation methods, e.g. [7, 8, 23, 24, 25, 29] assume the existence

of a well-defined shape prior and use it to extract obscured object boundaries. The statistical approaches,

e.g. [3, 5, 12, 18, 29, 33], capture possible shape variability by employing a set of similar but not identical

shape priors. These methods, however, depend on the availability of a comprehensive set of priors or a

segmented instance of the object of interest.

The proposed framework is useful when explicit prior knowledge is limited or not available. Instead, two

images of the same object are given. Had good segmentation been possible in either image, it could have

supported the segmentation of the other. However, in the absence of additional information on the object

of interest, segmentation of each image by itself is prone to errors. Specifically, background regions can

be mistakenly labeled as foreground (excess) or vice versa (deficiency). The resulting (possibly erroneous)

segmentation of one of the images cannot provide a reliable prior for the other.

We therefore suggest a coupled segmentation process for both images, in which the information gained

in the evolving segmentation of one image is a dynamic prior for the other. The segmentation and thus the

prior information are refined along the process. We call this mutually supporting evolution process mutual
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segmentation.

Recent works, similar in their spirit include, [28], [35] and [37]. In the cosegmentation method of [28],

both images are simultaneously partitioned assuming that the common property of the foreground regions is

their color probability density function (modeled by histograms) which should be also significantly different

from the color distribution of the background. The unsupervised segmentation algorithm presented in [35],

uses the best SIFT matches of Harris-Affine features to extract the common objects in image pairs. Similarly

to [37], we presume that the object instances resemble in their shapes, thus having the benefit of being

specific to the particular object of interest and insensitive to color and (in most cases) illumination variation.

Yet, while [37] handles images corrupted only by noise, where at least one of them nearly contains sufficient

information to be segmented by itself, we deal with cluttered images corrupted by noise and occlusions.

Possible transformations, including projectivities, between the object views are accommodated by employing

a concurrent segmentation and registration process, as in [25].

We use the level set framework [21] for segmentation, where the segmenting curve is the zero level of a

level set function that evolves subject to some predefined constraints. This parameterization-free represen-

tation of the curve allows automatic changes in its topology. The shape of the object being segmented is

dynamically encoded by assigning the positive and the negative levels of the level-set function to the fore-

ground and the background image regions respectively. Transformations applied on the level-set coordinate

system transform the represented shape accordingly. This enables a meaningful definition of a dissimilarity

measure between shapes that accommodates parametric transformations.

The mutual segmentation approach goes beyond the concepts of shape-based segmentation, because a

well-defined shape prior is not available and the matching is between two possibly corrupted and noisy

images. The main difficulty resides in labeling regions where the aligned images do not overlap. Obviously,

erroneous foreground-background classifications spoil the segmentation of both images. Fig. 1 exemplifies

labeling ambiguity. The regions pointed by the red arrows could be attributed either to the boot (according

to one of the images) or to the background (according to the other).

The conflict between two possible interpretations of jointly segmented images has never been addressed

before. Note that when more than two object instances are available, this ambiguity can be resolved by

applying a majority rule [9]. Having only two images, we favor the image partitioning that minimizes a
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biased shape dissimilarity measure between the images. The definition of this biased shape term is one of

the important contributions of the proposed study.

We suggest a novel framework formutual segmentation of two images of the same object, related by pro-

jective transformation1. Segmentation is carried out concurrently with registration of the evolving contours.

The foundation of the proposed method is the construction of two level set functions, one for each image.

Their evolution is controlled by the data contained in the associated image together with the shape informa-

tion gained in the segmentation process of the other image. The shape information is embedded in a biased

shape dissimilarity measure that accommodates either deficient or excess parts in the extracted object shape.

This measure is also invariant to planar projective transformations. The outcomes of the proposed algorithm

include segmentation of the object appearances in both images and the recovery of the homography that

aligns them.

The paper is organized as follows. In section 2 we present the foundation of the cost functional used in

the proposed mutual segmentation algorithm. We review some of the state-of-the-art level-set segmentation

methods. The region based approaches of Chan et al [2] and Paragios et al [22]; The Geodesic Active contour

method introduced by Kichenassamy et al [14] and Caselles et al [1] and the edge alignment constraint sug-

gested by Vasilevskiy et al [34] and independently by Kimmel et al [16]. We also outline the shape similarity

measure suggested in [25] for prior based segmentation. Section 3 introduces the biased shape dissimilar-

ity measure which plays a key role in the proposed mutual segmentation algorithm. The embedding of the

transformation model within the variational framework and the minimization of the resulting functional are

also considered. The mutual segmentation algorithm together with the implementation details are presented

in section 4. Experimental results are provided in section 5. We conclude in section 6.

1A preliminary version of this work was published in [26].
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(a) (b) (c)

Figure 1: (a-b) Two instances of a boot. (c) Superposition of the aligned boot images. There is an inherent

labeling ambiguity in aligned image regions that correspond to different objects. The regions pointed by

the red arrows could be attributed either to the boot (according to one of the images) or to the background

(according to the other).

2 Statistical set up and prior art

2.1 General principles

Most segmentation approaches, despite their diversity, are motivated by the same Gestalt principles of per-

ception, i.e. simplicity (minimum description length), similarity (homogeneity of semantic regions), conti-

nuity, proximity and closure. The image is then partitioned according to a subset of these rules using various

mathematical tools. Commonly, segmentation is obtained by minimizing an objective functional either by

discrete (graph-based) approaches such as Markov Random Fields or by the continuous formulation of cal-

culus of variations. While in this paper we use PDEs to solve segmentation problems, Bayesian statistical

inference formulation is used to set a common language between the discrete and continuous approaches.

Given an image I(x) we would like to infer the delineating curve C between an object and its back-

ground. This is done via the maximization of the probability distribution function (PDF) P (C | I), using

Bayes law:

P (C | I) ∝ P (I | C)P (C) . (1)

The prior probability P (C) will be reformulated to have “syntactic” and “semantic” components. Classical

active contours methods, such as the snake algorithm of Kass et al [13] use parametric representation C =

C(p). In this formulation the term − log P (I | C) =
∫

g(|∇I(C)|)ds is the “external force”, where ds is the
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arc-length. The term − log P (C) =
∫

(α|Cp|
2 + β|Cpp|

2) dp is the “internal force”. The maximization over

all possible separating curves is done by minimizing − log P (C | I). Note that here the prior is syntactic

since it dictates the degree of smoothness of the curve and is not directly related to the class of images or

objects to be segmented. Our main interest in this work is in a special kind of “semantic” prior that depends

on another image of the object.

In the level set framework for curve evolution [21], an evolving curve C(t) is defined as the zero level of

a level set function φ: Ω → R at time t:

C(t) = {x ∈ Ω| φ(x, t) = 0}. (2)

Following [2], we use the Heaviside function of φ

H(φ(x)) =











1 φ(x) ≥ 0

0 otherwise

(3)

as an object indicator function, assigning the positive and the negative levels of φ to the foreground and the

background image regions, respectively. We can now rephrase our PDF as

P (φ | I) ∝ P (I | φ)P (φ) . (4)

Next we elaborate on the conditional probability term P (I | φ).

2.2 Region-based data term

Let I: Ω → R
+ denote a gray level image, where Ω ⊂ R

2 is the image domain. Let ω ⊂ Ω be an open

subset, not necessarily connected, of the image domain Ω. In the spirit of the Gestalt laws of similarity and

proximity, we define a boundary C = ∂ω that delimits homogeneous regions in Ω. In particular, we use

the two-phase formalism, in which the image is partitioned into foreground and background regions. Thus,

given a feature G, e.g. the average gray level, we look for a curve C that maximizes the difference between
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two scalars u+ and u− defined as follows:

u+ = A+

∫

ω

G+(I(x))dx, u− = A−

∫

Ω\ω

G−(I(x))dx. (5)

The superscripts + and − correspond to the feature values in ω ⊂ Ω and in Ω/ω, respectively. Hereafter we

denote x ≡ (x, y), A+ = 1/
∫

ω
dx and A− = 1/

∫

Ω\ω
dx. The possibly different functions G+ and G− are

defined on the object and the background domains, respectively.

In general, one can use a set of features {Gi} corresponding to two sets of scalars {u+
i }, {u

−
i }. The

features chosen should be related to the expected image homogeneity. In the work of Chan and Vese [2] the

image is approximated by a piecewise constant function whose values are given by G+
1 (I(x)) = G−

1 (I(x)) =

I(x). Hence u+
1 = Iin and u−

1 = Iout are the average gray levels in the object regions and in the background

regions respectively. In that formulation it is assumed that the PDF of the gray levels in each region is a

Gaussian with σ = 1. More elaborate characterization of the partition can be obtained using color histograms

or a Gaussian mixture model. For texture-based segmentation the Gabor filters may be used as in [31] and

in [30]. The definition of G(I) could be further extended as suggested in [36], where u+, u− ∈ L2(R
2) are

smooth approximations of the regions in I . In this study we use the average gray levels and the variance [36,

19]:

G+
2 (I) = (I(x) − Iin)2 ; G−

2 (I) = (I(x) − Iout)
2 (6)

We may now express the term −logP (I | φ) via a region based cost functional with a well defined integration

domain:

ERB(φ) =
2

∑

i=1

∫

Ω

[

(G+
i (I(x)) − u+

i )2H(φ) + (G−
i (I(x)) − u−

i )2(1 − H(φ))
]

dx (7)

An elegant statistical formulation representing the region-based term was introduced in [38], followed

by [22] and reviewed in [6].

The evolving boundary C(t) is derived from φ(t) using (2). For a given φ(t) and {Gi}, the feature values

u+
i and u−

i are updated at each iteration according to (5). The level set function φ evolves via the gradient

descent:

φRB

t = δ(φ)
2

∑

i=1

[

G−
i (I(x)) − u−

i )2−(G+
i (I(x)) − u+

i )2
]

, (8)
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where δ is the derivative of the Heaviside function H .

2.3 Edge-based data terms

2.3.1 Geodesic active contour: data part

Edge based segmentation approaches usually define the object boundaries by the local maxima of the image

gradients. Let C(s) = (x(s), y(s)) be the parametric description of a planar contour C: [0, 1] → R
2 where s

is an arc-length parameter.

Let ∇I(x, y) = (Ix, Iy)
T =

(

∂I(x,y)
∂x

, ∂I(x,y)
∂y

)T

denote the vector field of the image gradients. The

Geodesic Active Contour (GAC) term [1] is given by

EGAC(C) =

∫ 1

0

gGAC(|∇I(C(s))|)ds. (9)

The function gGAC is inversely proportional to |∇I|, thus, EGAC(C) is minimized when the curve C is located

on the maxima of the absolute values of the image gradients. We will unorthodoxly split the GAC term,

Eq. (9), into two terms. The data term (DGAC) is given by

EDGAC(C) =

∫ 1

0

gDGAC(|∇I(C(s))|)ds (10)

where

gDGAC(|∇I|) = −
|∇I|2

1 + |∇I|2
. (11)

This term vanishes as the gradient magnitudes decrease to zero and attains −1 asymptotically for large

gradients. Expressing this term in a level-set framework we obtain

EDGAC =

∫

Ω

gDGAC(|∇I|)|∇H(φ(x))|dx, (12)

with the associated gradient descent equation:

φDGAC

t = δ(φ)div

(

gDGAC(|∇I|)
∇φ

|∇φ|

)

. (13)
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The GAC functional includes another geometrical term that will be described in subsection 2.4.

2.3.2 Edge alignment term

Segmentation can be refined by constraining the level set normal directions to align with the directions of

the image gradients as suggested in [16, 34]. The edge alignment term (EA) defined in [15] takes the form:

EEA(C) = −
∫ L

0
|〈∇I(x(s)), ~n(s)〉| ds, where < ·, · > denotes inner product and ~n(s) = {−ys(s), xs(s)}

is the exterior normal to the curve C. The expression for EEA(C) is an integration of the projection of ∇I

on the normal ~n(s) along the curve. A minor contribution of this paper is the level-set formulation of the

alignment term:

EEA = −

∫

Ω

∣

∣

∣

∣

〈∇I,
∇φ

|∇φ|
〉

∣

∣

∣

∣

|∇H(φ)| dx (14)

where ∇φ(x)/|∇φ(x)| is normal to the level-set φ in x. The associated gradient descent equation is

φEA

t = −δ(φ)sign(〈∇φ,∇I〉)∆I , (15)

where ∆I is the Laplacian. This equation is similar to the one derived in [15].

2.4 Syntactic prior: Geometry

The prior probability P (C) in Eq. (1) is determined by the minimum description length criterion (based on

the Gestalt principle of simplicity). That is P (C) ∝ exp(−ν|C|), ν > 0 [6], where |C| =
∫

ds =
∫

|Cp|dp

is the curve length. An equivalent representation, using the level set formulation, takes the form:

|C| = ELEN =

∫

Ω

|∇H(φ(x))|dx (16)

This functional measures the length of the curve and usually serves as an indicator for the curve smooth-

ness [2]. Minimizing (16) with respect to φ, we obtain the associated Euler Lagrange equation for φ:

φLEN

t = δ(φ)div

(

∇φ

|∇φ|

)

. (17)
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Combining ELEN and EDGAC, (defined in Eq.(12)), we get the usual form of the GAC functional [1, 14],

EGAC =

∫

Ω

gGAC(|∇I|)|∇H(φ(x))|dx, (18)

where gGAC = 1 + gDGAC = 1/(1 + |∇I|2). The gradient descent equation is

φGAC

t = δ(φ)div

(

gGAC(|∇I|)
∇φ

|∇φ|

)

. (19)

2.5 Semantic prior: Shape Term

In the previous subsections we described the edge-based, region-based and smoothness constraints that con-

trol the segmentation based on the image data and on general assumptions on natural images. Here, and in

the next section, we present several forms of the shape term, denoted by ESHAPE that are derived from the

semantic knowledge on the object of interest.

Denoting a prior shape representation by φ̃: Ω → R, the statistical formulation is then

P (φ, T | I, φ̃) ∝ P (I | φ)P (φ | φ̃, T )P (T )

where T is the transformation that aligns φ and φ̃. The inverse of the logarithm of the conditional probability

term − log P (φ | φ̃, T ) can be substituted by a dissimilarity measure D(φ, T (φ̃)) between shape representa-

tions φ̃ and φ. Some previous approaches, e.g. [17, 18], used:

D(φ, T (φ̃)) =

∫

Ω

(

φ(x) − T (φ̃(x))
)2

dx

where φ and T (φ̃) are signed distance functions. This measure, however, is affected by the size of the

background area Ω \ ω, see [7] and references therein. Moreover, in a cluttered image, when the weight

of this measure in the segmentation functional is high, objects that do not correspond to the prior shape

are ignored [8]. To avoid these drawbacks several modifications to control the integration domain have

been suggested [7, 8, 29]. In all dissimilarity measures between level-set functions (represented as signed
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distance functions) the alignment term T is restricted to be an isometry. This restriction guarantees that the

transformed level-set function φ̃T = T (φ̃) will preserve the form of a signed distance function.

Recently, [25] suggested to use the square difference between the Heaviside functions of φ and φ̃ as a

dissimilarity measure between the shape representations, where φ and φ̃ are not necessarily distance func-

tions2.

D(φ, φ̃|T ) =

∫

Ω

[

H(φ(x)) − H(T (φ̃(x)))
]2

dx (20)

This formulation enables the introduction of the projective alignment term T between the shapes. Further-

more, D does not depend on the size of the background area Ω \ ω.

Denote L = H(φ(x)) and L̃T = H(T (φ̃)). The functions L: Ω → {0, 1} and L̃T : Ω → {0, 1} are binary

labeling functions. We assume that the labelings L and L̃T are independent and identically distributed. Thus,

the conditional probability based on the proposed dissimilarity measure can be formulated as:

P (φ | φ̃, T ) =
1

N
exp(−

∑

x∈Ω

(L(x) − L̃T (x))2),

where N > 0 is a normalizing scalar.

The shape term (20) is suitable when the prior φ̃ is perfect and constant in time. In the following sec-

tion, a different dissimilarity measure is suggested, which is more appropriate when φ̃ is the evolving (and

imperfect) segmentation of the other image.

3 Mutual Segmentation with Projectivity

In this paper we consider the segmentation of two images, I1 and I2 that depict two imperfect (occluded,

noisy etc.) instances of an object. The segmentation is done by performing a joint maximum apriori proba-

bility (MAP) approximation via an alternating maximization. Indeed since a reliable prior φ̃ is not available

each evolving contour in its turn is employed as a prior for the other. The two level set functions φ1 and

φ2 are alternately evolved. At even iterations the segmenting level-set is φ = φ1 and the prior is given by

2A significant gain from not enforcing φ to be a distance function is the elimination of the process of re-distancing [10, 32].
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φ̃ = φ2. At odd iterations φ = φ2 and φ̃ = φ1. The statistical inference problem takes the form:

P (φ, φ̃, T | I1, I2) ∝ P (I1, I2 | φ, φ̃, T )P (φ | φ̃, T )P (φ̃)P (T ) .

We assume that P (T ) is flat such that no projective transformation is a-priori preferred. The assumption

that the two views are not unrelated is incorporated by initializing T by the identity transformation. The

crucial observation is that P (C | C̃, T ) (or equivalently P (φ | φ̃, T )) which is defined via a dissimilarity

measure between curves is not symmetric with respect to the two curves. This is so since P (φ1 | φ2, T ) is

not necessarily equal to P (φ2 | φ1, T ). The symmetric shape dissimilarity measure defined in Eq. (20) is

thus not suitable for mutually evolving level-set functions. In the next subsection we present a biased shape

dissimilarity term which is more appropriate.

3.1 Biased shape dissimilarity measure

Consider the image pair in Figure 2a-b. Both have deficiencies. In Fig. 2a the hoop is absent. In Fig. 2b

a portion of the creature’s leg was erased. When the final segmentation of Fig. 2a is the prior for the

segmentation of Fig. 2b and vice versa, the imperfections of each segmentation spoil the other, as shown in

Fig. 2e-f. Note that the left leg is incorrectly segmented in Fig. 2e, while the hoop in Fig. 2f is not segmented

at all.

The images in Fig. 2c-d contain superfluous hoops located in different places. When each segmentation

is the prior for the other, using the unbiased dissimilarity measure in Eq. (20), the contours of the superfluous

hoops in Fig. 2c-d undesirably appear in the segmentation shown in Fig. 2h,g respectively.

The discrimination between integral object parts (leg, hoop) and other surrounding objects (superfluous

hoops) raises a fundamental question which extends beyond the scope of the current work and relates to

perceptual organization of images in general. Given more than two images, this difficulty can be tackled

by employing a majority decision rule to determine the object-background partition. However, for mutual

segmentation of two images, another decision tool or source of information is needed. For simplicity, we

assume either of the following “world states”:

1. The images to segment have (mostly) deficiencies. Application of this rule is demonstrated in Fig. 2i-
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j to resolve labeling ambiguities between Fig. 2a and Fig. 2b. Thus, for example, the missing part in

the leg of the creature, shown in Fig. 2b has been labeled as part of the object.

2. The images to segment have (mostly) excess parts. When this rule is applied to Fig. 2c-d, the

superfluous hoops are labeled as background, as shown in Fig. 2k-l.

3. The prior shape is perfect. Examples for the application of this rule are shown in Fig. 2e-h.

Refer again to the dissimilarity measure in Eq. (20). The cost functional integrates the non-overlapping

object-background regions in both images indicated by H(φ) and H(T (φ̃)). This is equivalent to a point-

wise exclusive-or (xor) operation integrated over the image domain. We may thus rewrite the functional as

follows:

D(φ, φ̃| T ) =

∫

Ω

[

H(φ)
(

1 − H(φ̃T )
)

+ (1 − H(φ))H(φ̃T )
]

dx (21)

To simplify the expression we denote T (φ̃) ≡ φ̃T . Note that the expressions (20) and (21) are identical, since

H(φ) is equal to (H(φ))2, when H(φ) is a strictly binary function. There are two types of disagreement

between the labeling of H(φ) and H(φ̃T ). The left term in (21) does not vanish if there exist image regions

labeled as object by the image data (φ) and labeled as background by the shape prior (φ̃T ). The right term

in (21) does not vanish if there exist image regions labeled as background by the image data and labeled as

object by φ̃T . Inserting a weight parameter µ ≥ 0, the relative contributions of the terms are changed.

ESHAPE(φ, φ̃, T ) =

∫

Ω

[

µH(φ)
(

1 − H(φ̃T )
)

+ (1 − H(φ))H(φ̃T )
]

dx (22)

The associated gradient descent equation for φ is then:

φSHAPE

t = δ(φ)[H(φ̃T ) − µ(1 − H(φ̃T ))] (23)

Now, if excess parts are assumed, the left penalty term should be dominant, thus µ > 1. Otherwise, if

deficiencies are assumed, the right penalty term should be dominant and µ < 1.
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3.2 Projective invariance

The mutual shape term ESHAPE in (22) depends on the transformation T between the currently evolved level

set function φ and the level-set function associated with the other image φ̃. We assume that T can be modeled

by planar projective transformation. Let C(t) and C̃(t) be the two planar active contours associated with

the images I and Ĩ , respectively. Recall that C(t) and C̃(t) are the zero levels of the level set functions φ(t)

and φ̃(t) (respectively) at time t. Let p ∈ C and p′ ∈ C̃ denote corresponding points on C and C̃. Their

homogeneous coordinates x and x
′ are related by planar projective homography, i.e. x

′ = Hx where

H =













h11 h12 h13

h21 h22 h23

h31 h32 h33













∈ R
3×3 (24)

is the homography matrix. Specifically,

x′ =
h11x + h12y + h13

h31x + h32y + h33

, y′ =
h21x + h22y + h23

h31x + h32y + h33

(25)

Equivalently we can define T (φ(x)) ≡ φ(x′) = φ(Hx), where H is a linear transformation applied on

the homogeneous coordinate of φ. Thus, given φ and φ̃, we would like to infer the homography H that

minimizes the “distance” (22) between φ and φ̃T . The eight unknown ratios of the homography matrix

entries, ĥk = hij/h33 where k = 1 . . . 8, are re-calculated at each iteration for the currently updated φ and

φ̃. The PDEs for ĥk are obtained by differentiating (22) with respect to each.

∂ĥk

∂t
=

∫

Ω

δ(T (φ̃)) [(1 − H(φ)) − µH(φ)]
∂T (φ̃)

∂ĥk

dx (26)

Derivation of
∂T (φ̃)

∂ĥk

can be done as in [25].

At each iteration, the level set functions of the image pair are evolved alternately with the recovery of the

transformation that aligns them. In subsection 4.2 we discuss further aspects of this process.
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3.3 Unified cost functional

A unified cost functional based on the data of the images to segment, on general assumptions with respect to

properties of natural images, and on the segmentation curves both images takes the following form:

E(φ) = W RBERB(φ) + W LENELEN(φ) + W GACEGAC(φ) + W EAEEA(φ) + W SHAPEESHAPE(φ), (27)

with the equations ( 7, 16, 18, 14, 22).

Note that the smoothness term ELEN (eq. 16) is contained in the GAC term (eq.18) as discussed in sub-

section 2.4. It however appears in the complete energy functional to enable flexibility in the functional con-

struction, in particular when the GAC term should be ignored while the smoothness term is most desirable.

Refer for example for Fig. 3. Practically either of the weights W GAC or W LEN is set to zero. The evolution of

the level-set functions φ in either of the images, is determined at each iteration by φ(t + ∆t) = φ(t) + φt∆t.

The associated gradient descent equations φt are derived using the first variation of the functional (27)

φt = W RBφRB

t + W LENφLEN

t + W GACφGAC

t + W EAφEA

t + W SHAPEφSHAPE

t , (28)

The determination of W TERM is discussed in subsection 4.1.

4 Implementation

The essence of the proposed method is the simultaneous evolution of two level-set functions. Each evolves

on its corresponding image and is controlled by the data of the associated image and by the level-set function

associated with the other image. The planar projective transformation between these two level-set function

is updated at each iteration. The algorithm is quite robust to the selection of initial level-set function φ0(x).

The only limitation is that image regions labeled as foreground in the first iteration, i.e ω0 = {x | φ0(x) ≥ 0},

will contain a significant portion of the object to be segmented, such that the calculated image features will

approximately characterize the object region. Formally, we assume that G+(I(ω0)) ≈ G+(I(ω̂)), where ω̂

is the actual object region in the image. When there exists an estimate of the average gray levels of either the
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foreground or the background image regions, this restriction can be eliminated.

We run the algorithm until the following stopping condition is met:

max(d(φ1), d(φ2)) < s

where s is a predefined threshold and

d(φi) =
∑

x∈Ω

|H(φt+∆t
i (x)) − H(φt

i(x))| i = 1, 2.

Here, φt+∆t
i (x) is the i-est level set function, at time t + ∆t.

4.1 Setting the weights of the energy terms

When the solution to an image analysis problem is obtained by minimizing a cost functional, the issue

of setting the relative weights of the energy terms is unavoidable. However, in the absence of a satisfying

method for the determination of these parameters, this subject is usually marginalized. A guaranteed but time

consuming approach is to set the weight parameters by an exhaustive search on the parameters grid, followed

by qualitative examination of the solutions obtained. In the context of image processing, algorithms for

parameters setting are considered robust if the search space can be significantly reduced or if the parameters

should be only slightly tuned for a class of similar images. Being tedious and subjective this heuristic is not

suitable for most real world applications.

In contrast, we propose a heuristic that adaptively determines the relative weight of the contributions of

the terms of the functional to the evolution of the level set function, as applied in Eq. (28). The proposed

heuristic is based on the assumption that the contributions of the energy terms in each iteration should be

balanced. The following observations are considered:

1. The relative weight between the length term and the area terms (region based terms) is squared as the

image size is increased.

2. The weight of region based term is affected by the units of the feature chosen to characterize the
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regions. The simplest example is the gray level range which is usually chosen to be either [0, 1] or

[0, 255].

3. The terms that are based on the image gradients may have high dynamic range due to noise or sharp

discontinuities.

4. All terms are affected by the instantaneous form of the level set function φ which evolves in time. The

dynamics induced by φ should be taken into consideration.

The suggested scheme for automatic and dynamic weight setting is as follows. Let,

B(φTERM

t (x)) =























UB if φTERM

t (x) > UB

LB if φTERM

t (x) < LB

φTERM

t (x) otherwise

(29)

where,

UB = std(φTERM

t (x)), LB = −UB

Here, std(φt(x)) stands for the standard deviation of φt(x) over Ω. The functional B(.) operates on φTERM

t

to bound its dynamic range. Then, the range of |B(φTERM

t )| is normalized to [0, 1]:

W (φTERM

t ) = B(φTERM

t )/ max
x

|B(φTERM

t (x))|, (30)

where |B| is the absolute value of B. Note that the thresholding operation affects only few values of φTERM

t .

Formally, W can be considered as a parameter rather than a function. Since W is recalculated at each

iteration it is also time dependent. This formulation enables an automatic and adaptive determination of the

weights of the energy terms.

4.2 Recovery of the transformation parameters

Minimizing the cost functional (22) with respect to the eight unknown ratios of the homography matrix

entries is a complicated computational task. Direct update of the parameters via their the derivatives (26)
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may lead to an undesired local minimum as discussed in [25]. We thus suggest to perform a rough search

in the 8 dimensional parameter space working on a coarse to fine set of grids before applying the gradient

based Quasi-Newton method [4]. The former search, done only once, significantly reduces the search space,

constraining it to the region of attraction of the global minimum. The gradient based algorithm, applied in

every iteration, tunes of the search result based on the updated level-set functions. Further discussion on

the application of the Quasi-Newton optimization and its significance for the recovery of the transformation

parameters can be found in [25].

Since the registration of the evolved level-set functions toward each other is done independently, the

mean error (or max error) between the entries of the matrices H1→2 and H−1
2→1 (or H2→1 and H−1

1→2) could be

used as a criterion for obtaining globally optimal of the transformation parameters. Here we assume that the

probability of achieving a minimum, which is not a global one, that satisfies H1→2 ≈ H−1
2→1 is small. Table 1

and Table 2 present the estimated errors in the recovered homographies based on this comparison. The exact

formalism of the error estimate is discussed in Section 5.

4.3 Numerical considerations

We use the finite difference method, in which a grid of nodes spaced by a parameter h is set up over the image

domain. The differential operator is approximated by finite difference equations operating on neighboring

nodes. Following [2], a smooth approximation of the Heaviside function Hǫ is used:

Hǫ(φ) =
1

2
(1 +

2

π
arctan(

φ

ǫ
)) (31)

The evolution of φ at each time step is weighted by the derivative of the regularized form of the Heaviside

function:

δǫ(φ) =
dHǫ(φ)

dφ
=

1

π

ǫ

ǫ2 + φ2
.
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4.4 Algorithm

We summarize the proposed algorithm assuming the following setup. The input is two images I1 and I2

of the same object, taken from different viewpoints. The object contours are approximately coplanar. Two

level-set functions φi, i = 1, 2 that correspond to images Ii are alternately evolved, based on the data of the

corresponding image and the other level-set function.

1. Choose initial level-set functions φi, i = 1, 2, for example, standard circular (or elliptic) cones. The

intersections of the initial level-sets with the corresponding image domains form the initial contours.

2. The homography matrices H1→2 and H2→1 are initialized to the identity matrices.

3. For each image Ii, compute the values u+ and u− using Eq. (5), based on the current object-background

partition, defined by the corresponding level-set function.

4. At even iterations evolve the level-set function φ = φ1 using the other level-set function φ̃ = φ2 as a

prior. At odd iterations evolve the level-set function φ = φ2 using the other level-set function φ̃ = φ1

as a prior.

5. Apply the corresponding projective transformation on the instantaneous prior φ̃ using Eq. (25) with

the parameters estimated in the preceding time step.

6. Update φ using the gradient descent equation (23).

7. Update the transformation parameters hk using the derivatives (26). The relation H1→2 = H−1
2→1 can

be used to speed up (or enhance) the recovery of the transformation parameters.

8. Repeat steps 3-7 until convergence. A convergence criterion is stated in Section 4.

5 Experiments

We exemplify the mutual segmentation algorithm on image pairs related by projective transformations. The

input images are shown with the initial and final segmenting contours. The mismatch between the respective

object views is demonstrated by superposition of the images. The accuracy of recovered homographies is
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Hom. ratios Fig. No. ĥ1 ĥ2 ĥ3 ĥ4 ĥ5 ĥ6 ĥ7 ĥ8

H1→2 Fig. 2 0.858 0.406 -12.12 -0.298 0.964 -27.93 -0.0002 -0.0009

H−1
2→1 0.868 0.408 -12.11 -0.302 0.969 -27.90 -0.0001 -0.0009

Err(ĥi) 0.0058 0.0025 0.0004 0.0067 0.0026 0.0005 0.3333 0

H1→2 Fig. 3 1.0502 0.1496 0.67 -0.1271 0.9857 11.41 -0.0001 0.0008

H−1
2→1 1.0573 0.1504 1.2125 -0.1283 1.0027 11.79 -0.0001 0.0007

Err(ĥi) 0.0034 0.0027 0.2882 0.0047 0.0085 0.0164 0 0.0667

H1→2 Fig. 4 1.0898 -.1315 11.4 0.1276 1.0277 -11.55 -0.0018 0.0003

H−1
2→1 0.9921 -0.1289 10.88 0.2303 1.0272 -11.25 -0.0010 0.0018

Err(ĥi) 0.0469 0.0100 0.0233 0.2870 0.0002 0.0132 0.2857 0.7143

H1→2 Fig. 5 1.003 -0.1158 8.58 0.0359 0.9188 -0.16 0.0005 -0.0001

H−1
2→1 1.002 -0.1158 8.61 0.0364 0.9189 -0.12 0.0005 -0.0001

Err(ĥi) 0.0005 0 0.0017 0.0069 0.0001 0.1429 0 0

H1→2 Fig. 6 0.9469 0.1461 17.92 -0.2128 1.031 -29.9 -0.0019 -0.0009

H−1
2→1 0.9503 0.1564 17.97 -0.2240 1.025 -29.6 -0.0018 -0.0007

Err(ĥi) 0.0018 0.0340 0.0014 0.0256 0.0029 0.0050 0.0270 0.1250

H1→2 Fig. 7 0.9162 0.3374 -12.75 -0.2865 0.9016 8.79 -0.0005 -0.0003

H−1
2→1 0.9183 0.3396 -12.53 -0.2882 0.9034 8.81 -0.0005 -0.0003

Err(ĥi) 0.0011 0.0032 0.0087 0.0030 0.0010 0.0011 0 0

Table 1: Comparison of the entries of the matrices H1→2 and H−1
2→1 obtained through the registration phase

in the mutual segmentation algorithm applied to image pairs presented in Figs. 2-7. The error estimate is

calculated according to Err(ĥi) = |ĥi − p̂i|/|ĥi + p̂i|,where ĥi and p̂i are the i-est entries of the normalized

matrices H1→2 and H−1
2→1, respectively.

tested by a comparison between the H1→2 and H−1
2→1. Table 1 exemplifies such comparisons done on the

homographies recovered for the image pairs shown in Figs. 2-7. The term Err(ĥi) = |ĥi− p̂i|/|ĥi + p̂i| is our

suggested error measure for the recovered transformation parameter ĥi, where ĥi and p̂i are the i-est entries

of the normalized matrices H1→2 and H−1
2→1, respectively. Table 2 presents the mean error for each of the

estimated homography matrices.

In all the experiments we set dt = 0.1 and ǫ = 1. The weights of the gradient descent terms (8) are

adaptively determined as described in subsection 4.1. Figure 3 shows two images of a hand taken from

two different view points. The misalignment between the hand instances is shown in Fig. 3e. Successful

segmentation of both images, using the mutual segmentation algorithm with µ < 1, is demonstrated in

Fig. 3c-d. Fig. 3f-h demonstrate unsuccessful segmentation of each image by itself. Fig. 3g-h display

two possible segmentations of the noisy instance of the hand. In the segmentation shown in Fig. 3h the
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Fig. No Mean Error

Fig. 2 0.0440

Fig. 3 0.0488

Fig. 4 0.1726

Fig. 5 0.019

Fig. 6 0.0278

Fig. 7 0.0023

Table 2: The mean of the errors over the entries of the homography matrices H1→2 that were estimated in

each of the experiments. The estimated errors for each entry of the respective matrices are presented in

Table 1.

smoothness term, Eq. (16), has been stressed by multiplying its weight W LEN by 2. The segmenting contour

is thus smoother but does not extract precisely the narrow regions between the fingers.

The boot images in Fig. 4a-b were mutually segmented using the proposed algorithm, with µ < 1. The

delineating contour (shown in Figure 4d-e) traces precisely the boot boundaries while correctly completing

the occluded parts. The misalignment between the boot instances is shown in Fig. 4c. The necessity of

the biased shape dissimilarity measure is demonstrated in Fig. 4f-g. In these figures we used the unbiased

dissimilarity measure (Eq. (20) and the evolving segmentation of each image spoiled the segmentation of

the other. Fig. 5 demonstrates mutual segmentation of two images of a license plate with corrupted digits.

Fig. 5a-b present the license plate images with the initial contour (red). The misalignment between the

images is shown in Fig. 5c. Assuming excess parts we set µ > 1. Successful mutual segmentation results

are shown in Fig. 5d-e. For a comparison, fig. 5f-g display undesired segmentation results obtained when

each image is segmented by itself. Fig. 6 shows the ability of the proposed method to detect the common

object, stop sign, in an image pair despite the clutter. The images have been downloaded from different

web sites (see caption). Note that the poses and surroundings of the stop signs are different. As in all other

examples, the algorithm was tested on gray level images, thus the color cue is not used. The contours (red)

in Fig. 6c-d precisely extract the common object based on its shape. Fig. 6e-f present the final level-set

functions. Mutual segmentation of the chess pieces shown in fig. 7 demonstrates the ability of the algorithm

to deal with both clutter and partial occlusions. Note that though the objects segmented are definitely not

planar, the comparisons of the homographies between the object contours in Table 1, show that homography
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is a reasonable approximation for the transformation.

6 Discussion

We presented a method for concurrent, mutually-supporting segmentation of two images of the same object,

taken from different view points. Having two images instead of one provides redundancy that is employed

by using each instance to guide the segmentation of the other. Unlike previous methods, the concept of a

perfect shape prior is replaced by information gathered from incomplete instances.

Segmentation is metaphorically similar to cliff climbing. Prior-based segmentation is analogous to situa-

tions where someone climbs first and secures a rope to the cliff. If this is not possible, the combined effort of

at least a duo is needed. The two climb in turns: at each stage one person holds the cliff and helps the other

climb. The main contribution of this paper is the formulation of this duo shape term, that enables solution of

the mutual segmentation problem.

Having two object instances is helpful in regions where the aligned images agree, but there is an inherent

ambiguity where they don’t. In this paper, we address this ambiguity via the biased shape dissimilarity

measure. Note that if more than two images are available, the ambiguity can be resolved by majority rule.

This topic is under current research.
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[5] D. Cremers, T. Kohlberger, and C. Schnörr. Shape statistics in kernel space for variational image

segmentation. Pattern Recognition, 36(9):1929–1943, Sep. 2003.

[6] D. Cremers, M. Rousson, and R. Deriche. Review of statistical approaches to level set segmentation:

Integrating color, texture, motion and shape. International Journal of Computer Vision, published

online Aug. 2006. doi:10.1007/s11263-006-8711-1.

[7] D. Cremers and S. Soatto. A pseudo-distance for shape priors in level set segmentation. In Workshop

on Variational, Geometric and Level Set Methods in Computer Vision, pages 169–176, 2003.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2: (a,b) Input images with deficiencies (leg, hoop). (c,d) Input images with excess parts (extra hoops).

(e) Segmentation (red) of the image in (a) using (b) as a prior. (f) Segmentation of the image in (b) using

(a) as a prior. (g) Segmentation of the image in (c) using (d) as a prior. (h) Segmentation of the image in

(d) using (c) as a prior. (i,j) Mutual segmentation results for images (a) and (b) respectively. (k,l) Mutual

segmentation results for images (c) and (d) respectively. The images are related by projective transformation.

The recovered parameters are shown and compared in Table 1.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: (a,b) Noisy (a) and corrupted (b) images of the same object taken from different view points. The

initial contours are drawn in red. (c,d) Successful mutual segmentation results (red). (e) Superposition of

the two images to demonstrate the misalignment. (f- h) Segmentation of each image by itself. The noisy

image (g,h) was segmented twice with different weights of smoothness term: (g) The contribution of the

smoothness term WLEN(t)(φLEN

t ) was restricted to [−1, 1] (refer to subsection 4.1 for details). The contour

“mistakenly” follows image gradients that are due to noise. (h) The smoothness term WLEN(t)(φLEN

t ) was

further stressed, i.e. its contributions were multiplied by two. The segmenting contour (red) is smoother but

the gaps between the fingers are not well extracted.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 4: (a,b) Input images with their initial contours (red). The images are of the same object (boot)

taken from different viewpoints. (c) Superposition of the two images to demonstrate the misalignment.

(f,g) Successful mutual segmentation results (red). (d,e) Segmentation using an unbiased shape dissimilarity

measure, Eq.(20). The evolving segmentation of each image spoiled the other.

29



(a) (b) (c)

(d) (e)

(f) (g)

Figure 5: (a)-(b) Input images with their initial contours (red). (c) Superposition of the two images to

demonstrate the misalignment. (d)-(e) Segmentation of each license plate image by itself using the Chan-

Vese level-set method for segmentation. (f)-(g) Successful mutual segmentation of license plate images with

corrupted digits taken from two different viewpoints.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: (a, b) Different images of stop signs taken from different viewing positions with their initial con-

tours (red).(a) Original image courtesy of Erik Henne, URL: www.erikhenne.indexxxx.com. (b) Original

image courtesy of the Friedman archives, URL: www.friedmanarchives.com/Chicago. (c,d) Successful de-

tection of stop signs using the proposed mutual segmentation algorithm. (e,f) Final level set functions of the

stop-sign images obtained by using the mutual segmentation algorithm.
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(a) (b)

(c) (d)

Figure 7: (a,b) Input images with their initial contours (red). (c, d) Successful segmentation of chess pieces

using the proposed mutual segmentation algorithm. The final delineating contour overcomes clutter and

occlusions.
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