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Abstract We address the problem of object detection and

segmentation using global holistic properties of object

shape. Global shape representations are highly susceptible

to clutter inevitably present in realistic images, and thus can

be applied robustly only using a precise segmentation of

the object. To this end, we propose a figure/ground segmen-

tation method for extraction of image regions that resem-

ble the global properties of a model boundary structure and

are perceptually salient. Our shape representation, called the

chordiogram, is based on geometric relationships of object

boundary edges, while the perceptual saliency cues we use

favor coherent regions distinct from the background. We

formulate the segmentation problem as an integer quadratic

program and use a semidefinite programming relaxation to

solve it. The obtained solutions provide a segmentation of

the object as well as a detection score used for object recog-

nition. Our single-step approach achieves state-of-the-art

performance on several object detection and segmentation

benchmarks.
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1 Introduction

A multitude of different object representations have been ex-

plored, ranging from texture and local features to region de-

scriptors and object shape. Although local features based on

image gradients and texture perform relatively well for some

object classes, many classes are not modeled sufficiently by

local descriptors. For objects primarily characterized by dis-

tinctive shape, local texture features typically provide weak

descriptions. In this paper we focus on the problem of ex-

ploiting global shape properties for object detection. More-

over, we tightly couple these properties to object segmen-

tation, which makes shape-based detection possible in clut-

tered scenes.

Shape is commonly defined in terms of the set of con-

tours that describe the boundary of an object. In contrast to

gradient- and texture-based representations, shape is more

descriptive at a larger scale, ideally capturing the object of

interest as a whole. This has been recognized by the Gestalt

school of perception, which has established the principle

of holism in visual perception (Palmer 1999; Koffka 1935).

This principle suggests that an object should be perceived in

its totality and not merely as an additive collection of indi-

vidual parts. The essential goal of a holistic representation

for object recognition is to capture not just the presence of

object parts but also non-local relationships between these

parts. In this work, our response to the mantra ‘the whole is

greater than the sum of its parts’ is ‘the whole is the sum of

all the relationships between its parts’, as we make precise

below.

Some of the most notable holistic representations are

based on global transforms, such as Fourier transform

(Zhang and Lu 2003) or the Medial Axis Transform (Blum

1973). Unfortunately, such transforms assume a pre-seg-

mented object shape as input. As a result, the above rep-
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Fig. 1 Using BoSS to perform simultaneous shape-based object de-

tection and segmentation in a cluttered scene

resentations cannot be used directly for object detection in

realistic scenes which inevitably contain clutter.

To address the problems arising from clutter, a number

of structural theories for object perception were introduced.

According to this paradigm, an object can be decomposed

and described as a configuration of atomic parts. Structural-

ism has inspired a number of approaches such as general-

ized cylinders (Marr 2010; Binford 1971), Recognition by

Components Theory (Biederman 1987), and superquadrics

(Pentland 1986). Although being well motivated from a per-

ceptual point of view, the above approaches have not found

wide applicability. First, the theories assume that one can ex-

tract the shape primitives in images, which is very difficult in

realistic images. Second, even if one can obtain good prim-

itive candidates from an image, the search for the correct

shape is typically not straightforward and tractable (Grim-

son and Lozano-Perez 1987).

To alleviate the above problems, a number of approaches

were proposed in recent years that use primitives which are

simpler and easier to extract such as edgels (Huttenlocher et

al. 1993), contour segments (Ferrari et al. 2008) or statisti-

cal descriptors of local or semi-local contours such as Shape

Context (Belongie et al. 2002). The above local primitives

are combined in a global configuration model. Depending

on expressiveness of the model, inference can be intractable,

such as graph matching where one captures all pairwise de-

pendences among parts (Leordeanu et al. 2007), or tractable,

such as, for example, dynamic programming (Ling and Ja-

cobs 2007) in which case many of the dependences are left

out. Another strategy is to capture all global dependences

among parts in a less expressive model such as Thin-Plate

Splines (Belongie et al. 2002) or Procrustes (Mcneill and

Vijayakumar 2006). The above shape models present a step

towards recognition in cluttered scenes but depart from the

idea of holism.

In this work we advocate holistic shape-based recog-

nition in realistic cluttered scenes. In particular, we pro-

pose a recognition method, called Boundary Structure

Segmentation (BoSS).1 This method relates the object de-

tection, based on a novel holistic shape descriptor, to fig-

ure/ground segmentation and performs them simultaneously

(see Fig. 1). While matching an input image with an object

1A preliminary version of this work appeared in CVPR 2010 (Toshev

et al. 2010).

model, BoSS selects a foreground region with the following

properties:

– Similarity in Shape: captured by a top-down process ex-

ploiting object-specific knowledge. Evidence from human

perception indicates that familiarity with the target shape

plays a large role in figure/ground assignment (Palmer

1999).

• Perceptual Saliency: captured by a bottom-up process

based on general grouping principles, which apply to

wide range of objects. In particular, the perceptual group-

ing component is based on configural cues of salient con-

tours, color and texture coherence, and small perimeter

prior.

Furthermore, the shape-based detection costs of matching

several models to an image can be used to detect the cor-

responding object class as the one whose model has the

smallest matching cost. In this way, object segmentation and

detection are integrated in a unified framework. More pre-

cisely, the contributions of the approach are threefold:

Shape Representation We introduce a global, boundary-

based shape representation, called chordiogram, which is

defined as the distribution of all geometric relationships

(relative location and normals) between pairs of boundary

edges—called chords—whose normals relate to the segmen-

tation interior. This representation captures the boundary

structure of a segmentation as well as the position of the in-

terior relative to the boundary. Moreover, the chordiogram

is translation invariant and robust to shape deformations.

The chordiogram can be theoretically related to corre-

spondence estimation techniques and thus to other common

shape matching approaches. In particular, we show that the

cost of chordiogram matching is a lower bound on the cost of

the point correspondence estimation problem between two

shapes. Furthermore, it is also equal to the cost of chord cor-

respondence problem between two shapes. Thus the chor-

diogram provides approximate means to measure the cost of

point correspondence estimation without the need of explicit

inference.

Figure/Ground Segmentation We match the chordiogram

while simultaneously extracting figure/ground segmenta-

tion. This is a key advantage of the representation, which

relates the object boundary to its interior and thus to region

segmentation. The perceptual grouping component of the

segmentation model, which is defined in terms of configu-

ral cues of salient contours, color and texture coherence, and

small perimeter prior, ensures that the detections constitute

salient regions. More importantly, the joint matching and

segmentation removes the irrelevant image contours during

matching and allows us to obtain correct object detections

and segmentation in highly cluttered images.
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Inference We pose BoSS in terms of selection of superpix-

els obtained via an initial over-segmentation. The selection

problem is a hard combinatorial problem which has a con-

cise formulation as an integer quadratic program consisting

of two terms—a boundary structure matching term defined

over superpixel boundaries, and a perceptual grouping term

defined over superpixels. The terms are coupled via linear

constraints relating the superpixels with their boundary. The

resulting optimization problem is solved using a Semidefi-

nite Programming relaxation and yields shape similarity and

figure/ground segmentation in a single step.

We achieve state-of-the-art results on two challenging ob-

ject detection tasks—94.3% detection rate at 0.3 fppi on

ETHZ Shape Dataset (Ferrari et al. 2006) and 92.4% detec-

tion rate at 1.0 fppi on INRIA horses (Ferrari et al. 2007) as

well as accurate object boundaries, evaluated on the former

dataset.

2 Chordiogram

We introduce a novel shape descriptor, called chordiogram.

This descriptor adheres to the principle of holistic visual

perception by describing each object contour in the con-

text of the whole object. In other words, the contribution of

an edge or a contour to the whole object representation de-

pends on all other object contours. Furthermore, it captures

both the boundary as well as the interior of the object. In

addition, it is invariant to certain rigid transformations and

robust to shape deformations. Most importantly, however, it

can be applied in images with severe clutter, which allows

for recognition in unsegmented images.

To define the chordiogram, consider the outline of a pre-

segmented object as shown in Fig. 2(a) and denote by C a

set of sampled boundary points of this outline (in the follow-

ing we will include in C all the pixels lying on the outline).

A pair of boundary edges p and q from C will be referred

to as a chord. We can think of a chord as a way to express

a dependency between edges p and q . We define features

describing the geometry of the chord:

– Length lpq and orientation ψpq of the vector p → q .

– Normalized normals θp and θq to the boundary at p and q

with respect to the chord orientation ψpq : θp = θ ′
p − ψpq

and θq = θ ′
q − ψpq , where θ ′

p and θ ′
q are the normals at p

and q respectively.

Thus, the chord features can be written as a four-tuple:

fpq = (lpq ,ψpq , θp, θq)T . (1)

We describe the shape of a segmented object by capturing

the features of all chords. In this way we attempt to capture

all dependencies among object boundary points and achieve

Fig. 2 Chord features and orientation of the normals at boundary

edges

Fig. 3 For an input shape, all chord features are binned in the quan-

tized chord feature space which is the resulting chordiogram

a holistic description. More precisely, the chordiogram (de-

noted by ch) is defined as a K-dimensional histogram of all

chord features, where the features are quantized into bins

and the mth chordiogram element is given by:

chm(C) = #
{
(p, q) | p,q ∈ C, fpq ∈ bin(m)

}
. (2)

Note that the above definition can be applied not only to

contours but also on any unordered point set C for which

the points have normals associated with them.

The chordiogram construction process is visualized in

Fig. 3. The length features lpq are binned in bl bins in log

space, which allows for larger shape deformation between

points lying further apart. The length h of the largest bin

determines the scale of the descriptor—every chord whose

two boundary points lie within distance h will be captured

by the descriptor. To guarantee that the descriptor is global,

we set h equal to the diameter of the object in case of pre-

segmented object masks. The remaining three features are

angles lying in [0,2π) and are binned uniformly—the chord

orientation in br bins; the normal angles are binned in bn

angles. This binning strategy results in a N = bl × br × b2
n

dimensional shape descriptor at scale h.

The chord features are chosen such that they completely

describe the geometry of a chord. When it comes to the chor-

diogram, the features capture different shape properties. The

chord length and orientation capture global coarse shape

properties (see Fig. 4(a)), while the fine information is cap-

tured by the normals (see Fig. 4(b)).

The chord features determine the invariance of the chor-

diogram to geometric transformations. Since we do not cap-

ture absolute location information, the resulting descriptor

is translation invariant. However, the chord orientation fea-

ture prevents the descriptor from being rotation invariant.
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Fig. 4 For each pair of shapes (upper row), we show two chordio-

grams: one computed over the normal features θ only (middle row)

and one over the chord length l and orientation ψ (lower row)

Similarly, the chord length feature prevents the chordiogram

from being scale invariant. Removing those features would

make the descriptor rotation and scale invariant, however,

less descriptive. Hence, we have chose to keep these features

and perform a search over scale and rotation.

To evaluate the dissimilarity between two shapes we can

use any metric between the chordiograms extracted from the

shapes. In the subsequent experiments we use L1 distance

between L1-normalized chordiograms, which we will call

chordiogram distance:

d(u, v) =
∥∥u/‖u‖1 − v/‖v‖1

∥∥
1

(3)

for two chordiograms u and v.

3 Properties and Analysis of the Chordiogram

In this section, we explore the properties of the chordiogram

as a shape descriptor, motivate its holistic nature and present

a theoretical analysis of the connection between chordio-

grams and point-set correspondence methods. In the next

section, we show how chordiograms can be used in cluttered

images via joint segmentation and detection.

3.1 Figure/Ground Organization

An important difference with most contour-based shape

representations, is that the chordiogram captures the con-

tour orientation relative to the object interior. Orienting the

boundary normals with respect to the interior allows us to

capture different interpretations of a contour, as shown in

Fig. 5. This property will allow us to relate the descriptor

to the segmentation of the image, as we will see in Sect. 4.

In addition, it contributes to better discrimination, for exam-

ple, between concave and convex structures (configurations

fp1q1
and fp2q2

respectively in Fig. 2(b)), which otherwise

would be indistinguishable.

Fig. 5 Rubin’s vase, whose contours are shown in (a), can have two

different interpretations depending on the figure (see (a) and (b)).

A purely contour-based shape descriptor would not be able to differ-

entiate between these two interpretations. The chordiogram, however,

is able to make this distinction through the orientation of the normals

of its chords

Fig. 6 Two shapes which are perceptually different and have one iden-

tical part—torso. Since the chordiogram captures the parts in the con-

text of the whole shape, the chordiogram distance between the two

shapes is larger than the distance between the parts together (see text)

3.2 Gestaltism

The introduced descriptor is a global since it takes into

account all possible chords—long chords as well as short

chords. Thus we capture short-range as well as long-range

geometric relations. To give some intuition about the holis-

tic nature of the descriptor, consider the example of a horse

and a centaur in Fig. 6, each of which can be thought of be-

ing composed of two parts—a head and a torso. Since the

chordiogram captures not only the shape of the individual

parts but also their relationship, the chordiogram distance

between the two shapes:

d
(
chhorse, chcentaur

)
= 0.72

is larger than the distance between the isolated parts to-

gether:

d
(
chhorse

torso + chhorse
head , chcentaur

torso + chcentaur
head

)
= 0.46

In other words, each object part is captured in the context of

the whole object, which we interpret is a holistic representa-

tion.

3.3 Shape Part Correspondence

A common paradigm in shape matching is to try to quan-

tify the similarity between two shapes by establishing corre-

spondences between points on the shapes. Correspondences

between the points serve as an explanation of the match,



Int J Comput Vis

while the quality of the match is determined using a match-

ing model (Yoshida and Sakoe 1982; Basri et al. 1998). The

chordiogram, as defined in Sect. 2, does not capture any

absolute boundary point information as part of the chord

features, neither it captures any location relations among

chords. As a result, it is not clear whether the chordiogram,

as a histogram, can be used to establish correspondences

among boundary points of two shapes.

In this section we relate the chordiogram to the graph

matching problem, which is a widely used approach to

the correspondence problem (Shapiro and Haralick 1979;

Gold and Rangarajan 1996; Umeyama 1988), and obtain the

following insights:

1. We provide a different interpretation of the chordiogram

matching as bipartite matching among chords. We show

that the chordiogram can be used to compute the cost of

this bipartite matching efficiently without recovering any

explicit correspondences.

2. We bound the chordiogram matching from above with

the cost of a graph matching among points on the shape.

This relates our descriptor to correspondence estimation.

3. Finally, we show how to estimate correspondences be-

tween shapes starting from the bipartite matching inter-

pretation of our descriptor.

Next we set up the notation and tools needed for the sub-

sequent analysis.

Graph matching Suppose that the two shapes, whose sim-

ilarity needs to be assessed, are defined in terms of point

sets:

P s =
{
ps

1, . . . , p
s
n

}
for s ∈ {1,2}

For simplicity, we assume that both point sets have the same

cardinality n. In this case, we can think of a shape as a com-

plete graph, whose nodes are the above point set and the

edges are the chords (see Sect. 2).

Chord distances Furthermore, a chord (i, j) from shape

described with point set P s , can be described by the bin into

which it falls using a predefined binning scheme b. This can

be written as a chordiogram ch
b,s
ij built only on the point set

{i, j}:

ch
b,s
ij = ch

(
{i, j}

)

Using the definition from (2), the above chordiogram can be

considered as a binary indicator vector which describes in

which bin the chord falls into:

(
ch

b,s
ij

)
m

=

{
1 if f s

ij ∈ binb(m)

0 otherwise

Fig. 7 Top: two similar shapes. Middle: for each of the two shapes,

we show chords of different lengths for fixed orientation and normals.

The colors of the chords correspond to the bins they fall in. Bottom:

(a) One can use the feature vectors of the chords to compute a distance

between them, or (b) a chordiogram for each chord can be defined and

the distance between them can be used

Denote further by chb,s the chordiogram for shape s using

binning scheme b and N =
(
n
2

)
= ‖ch1‖ = ‖ch2‖ the number

of chords.

In the following exposition we will use a sequence of

nested binning schemes, as defined in Indyk and Thaper

(2003). Suppose that Δ is the diameter of the chord set of

both shapes, where the diameter is defined in terms of the

L1 distance on the feature vector fij of a chord (i, j). Fur-

ther, δ is the smallest L1 distance among a pair of chords.

We assume that each chord has a unique feature vector so

that δ > 0. Then the bth binning scheme is defined by par-

titioning each feature space using a grid of size δ2b . The

values of b are {−1,0,1, . . . , ⌈log2(Δ/δ)⌉} such that they

define together a fine to coarse hierarchical binning, where

at the finest level each bin contains a single chord, while at

the coarsest level all chords are contained in a single bin.

Using the above descriptors of a chord, we can define the

following three distances Wij ;kl between chords (i, j) and

(k, l) from two different shapes, which characterize their

dissimilarity:

– Distance in feature space (see Fig. 7(a)):

W
orig

ij ;kl
=

∥∥f 1
ij − f 2

kl

∥∥
1

(4)

– Chordiogram-based distance: For a particular binning

scheme b, one can declare two chords similar if they lie

in the same bin, and dissimilar otherwise (see Fig. 7(b)).

This can be expressed as follows:

W b
ij ;kl =

∥∥ch
b,1
ij − ch

b,2
kl

∥∥
1

(5)
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Fig. 8 For the two shapes from Fig. 7, we visualize chords and their

bin membership for three different nested binning schemes. Note that

for the two coarse binning schemes, the chords ij and kl fall in the

same bin, while in the finer binning scheme they are assigned to differ-

ent bins. Aggregating the distances over all binning schemes gives an

approximation of chord distance in the original feature space (see text)

– Multilevel chordiogram-based distance: In addition to

the above bin comparison distance, one can combine mul-

tiple binning schemes into a single distance (see Fig. 8):

Wmbins
ij ;kl =

B∑

b=−1

αb

∥∥ch
b,1
ij − ch

b,2
kl

∥∥
1

(6)

with positive weights αb.

Graph Matching Formulation We would like to recover

one-to-one correspondence between both graphs. For this

purpose, we define a correspondence indicator variable

xik =

{
1 if p1

i and p2
k are in correspondence

0 otherwise
(7)

Then, the graph matching problem, which evaluates the

structural similarity between the graphs, can be formulated

as follows:

(GM): min
x

∑

ijkl

Wij ;klxikxj l (8)

subject to
∑

k

xik = 1 for all i (9)

∑

i

xik = 1 for all k (10)

xik ∈ {0,1} for all i, k (11)

where w can be any positive chord distance, such as the one

defined in (4–6). The constraints (9–10) guarantee one-to-

one correspondence, while the integral constraints (11) as-

sure that the solution to the problem is a correspondence

indicator variable, as defined in (7).

Graph Matching via Chord Matching Following Chekuri

et al. (2005), we reformulate the above problem into an

equivalent one, in which we introduce a new set of variables

X : Xijkl = xikxj l . These variables can be thought of as cor-

respondence variables between chords. Then problem (GM)

from (8) can be formulated in terms of the chord correspon-

dence variables. This new formulation has correspondence

uniqueness and integrability constraints as GM. In addition,

it has consistency constraints which guarantee that the ob-

tained chord correspondences are consistent with a set of

point correspondences (see Fig. 9):

(GMC): min
X

∑

ijkl

Wij ;klXijkl (12)

subject to
∑

k,l

Xijkl = 1 for all i, j (13)

∑

i,j

Xijkl = 1 for all k, l (14)

∑

l

Xij1kl =
∑

l

Xij2kl

for all i, k, j1, j2 (15)

∑

j

Xijkl1 =
∑

l

Xijkl2

for all i, k, l1, l2 (16)

Xijkl ∈ {0,1} for all i, k (17)

Constraints (13–14) stem directly from the definition of

X and the constraints (9–11) on x. Further, the constraints

(15–16) assure that corresponding chords agree on a unique

correspondence between the points. This constraint can be

derived from the following relationship between point and

chord correspondences:

xik = xik

∑

l

xj l =
∑

l

Xijkl for all j (18)

Relaxation of Graph Matching To solve the integer pro-

gram (GMC), one needs to resort to relaxations of the prob-

lem (see Fig. 10).
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Fig. 9 Equivalent formulations of the graph matching problem. Left:

The original graph matching formulation (GM) through point corre-

spondence variables. Right: An equivalent formulation using chord

correspondence variables (GMC)

The first tractable problem can be obtained by relaxing

the integral constraints (17) to non-negativity constraints.

As a result, one obtains the following exactly solvable linear

program (Chekuri et al. 2005), which we call point match-

ing (PM) indicating that it aims to recover point correspon-

dences:

(PM): min
X

W · X subject to X ∈ PPM (19)

where W · X =
∑

ijkl Wij ;klXijkl . The above constraint set

PPM is defined in terms of the following constraints:

PPM =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
k,l Xijkl = 1 for all i, j

∑
i,j Xijkl = 1 for all k, l

∑
l Xij1kl =

∑
l Xij2kl for all i, k, j1, j2∑

j Xijkl1 =
∑

l Xijkl2 for all i, k, l1, l2

X ≥ 0

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

A different relaxation would be to retain the integral con-

straints (17), but to remove the constraints (15–16) which

guarantee that the chord correspondences translate into point

correspondences. This corresponds to bipartite matching

among the chords of the two shapes, which we will call

chord matching (CM):

(CM): min
X

W · X subject to X ∈ PCM (20)

Fig. 10 Relaxation of GMC. Left: Point Matching (PM) is obtained

by relaxing the integrability constraint. Right: Chord Matching (CM)

is obtained by relaxing the consistency constraints

with constraints

PCM =

⎧
⎪⎨
⎪⎩

∑
k,l Xijkl = 1 for all i, j

∑
i,j Xijkl = 1 for all k, l

Xijkl ∈ {0,1} for all i, j, k, l

⎫
⎪⎬
⎪⎭

The latter program does not guarantee that the resulting

chord correspondence can be directly translated to point cor-

respondences. However, it is an integer program, which can

be solved exactly using Max-Flow estimation algorithms.

Relations Between Graph Matching and Chordiogram Dis-

tance Using the above definition of graph matching and its

relaxations, one can show that the chordiogram distance is

closely related to the correspondence problem between two

shapes. First, we show the relationship between the chordio-

gram and bipartite matching among chords:

Theorem 1 Consider the chord matching problem (CM)

(see (20)) with the multilevel chordiogram-based distance

(see (6)):

min
X

Wmbins · X subject to X ∈ PCM

The solution of this problem can be characterized as follows:

– The minimum can be analytically computed using the

chordiogram distance:

min
X∈PCM

Wmbins · X =

B∑

b=−1

αb

∥∥chb,1 − chb,2
∥∥

1

for weights αb = 2b.
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– All the minimizers can be described in terms of the chor-

diograms of the individual shapes with the following set:

P
∗
CM =

{
X ∈ PCM

∣∣∣∣
∑

(i,j)∈binb(m)
(k,l)∈binb(m)

Xijkl = min
{
chb,1

m , chb,2
m

}

for all bins m and schemes b

}
(21)

Furthermore, we can relate the chordiogram distance to

point matching between shapes:

Theorem 2 Suppose that X∗
cm,orig is a minimizer of the

chord matching problem (see (20)) using data terms W orig

based on the distance in the original feature space (see (4)):

X∗
cm,orig ∈ arg min

X
W orig · X subject to X ∈ PCM

Further, X∗
pm,mbins is a minimizer of the point matching

problem (see (19)) using data terms Wmbins based on the

multilevel chordiogram-based distance (see (6)):

X∗
pm,mbins ∈ arg min

X
Wmbins · X subject to X ∈ PPM

Then, the following relationship holds:

αW orig · X∗
cm,orig ≤

B∑

b=−1

αb

∥∥chb,1 − chb,2
∥∥

1

≤ Wmbins · X∗
pm,mbins

for a positive constant α.

The proof of both theorems is given in Appendix A.

There are several insights we gain from the above theorems

which relate our shape representation to matching points on

the two shapes.

1. As shown in Theorem 1, the chordiogram distance is a

minimizer of a bipartite matching among chords for a

specific form of the chord distances. Thus, it quantifies

the best possible correspondences among chords on two

shapes without explicitly giving those correspondences.

In addition, the chordiogram distance does not require

any inference and thus it is more efficient.

2. As shown in the first inequality of Theorem 2, the chor-

diogram over several binning schemes is an upper bound

of the bipartite matching for which the similarities are

defined in the original chord feature space. This shows

that by choosing several binning schemes for the chor-

diogram, we can obtain an approximation to the original

distance in the chord feature space.

3. As shown in the second inequality of Theorem 2, the dis-

tance based on our shape descriptor is a lower bound of

the linear programming approximation for establishing

correspondences among points on two shapes.

Correspondence Recovery The above theorem is based on

the fact that we can think of the chordiogram distance as a

different relaxation of the original graph matching formula-

tion. This allows for recovery of point correspondences—if

we have X ∈ PPM, then we can use (18) for an arbitrary

j to estimate point correspondences. To obtain such an X,

however, we will not solve (PM) directly, but rather use the

solution for (CM) obtained from the chordiogram distance.

More precisely, we will try to find X ∈ PPM closest to any

minimizer of (CM):

min
X

{∥∥X − X∗
cm

∥∥
2

∣∣X ∈ PPM,X∗
cm ∈ P

∗
CM

}
(22)

Note the above problem is an integer quadratic program, and

thus NP-hard. To obtain an approximate solution, one can

relax the above problem by replacing the integral constraints

with nonnegativity constraints in the definition of P ∗
CM:

P
∗∗
CM =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
k,l Xijkl = 1 for all i, j

∑
i,j Xijkl = 1 for all k, l

Xijkl ≥ 0 for all i, j, k, l
∑

(i,j),(k,l)∈bin(m) Xijkl = min{ch1
m, ch2

m}

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The above polytope P ∗∗
CM is a convex set and if we replace

P ∗
CM with P ∗∗

CM in problem (22), then we obtain a convex

program. The correspondence recovery procedure is sum-

marized in Algorithm 1.

Algorithm 1 Correspondence estimation from chordio-

grams

Require: Chordiograms ch1, ch2 of two shapes.

1: Define P ∗∗
CM using ch1 and ch2.

2: Solve program (22) and obtain minimizer X∗ ∈ PPM.

3: Recover correspondence indicator variables x from X∗

using (18).

4: Obtain discrete indicators

x̂ij =

{
1 iff j = arg maxj1

{xij1
}

0 otherwise

Examples We show results of the correspondence recovery

algorithm on selected pairs of shapes from MPEG 7 dataset

(Latecki et al. 2000). From each shape, defined by the out-

line of the shape mask, we sample uniformly 30 points,

which are to be put in correspondence. The chordiogram is
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Fig. 11 Examples of recovered correspondence on pairs of shapes.

Points, colored in the same color, are in correspondence

computed using only the sample points. For the optimiza-

tion problem in step 2 of the algorithm, we use the CVX

optimization package (Grant and Boyd 2010). Results are

shown in Fig. 11. As we can see, correct correspondences

are recovered for most of the points for articulated as well

as rigid objects. The main difficulties are in cases of strong

articulation (see lizard in row 1, column 2, where animal’s

torso and tail are articulated differently), or lack of matching

points (see elephant in row 1, column 3, where in the left ob-

ject two legs are visible, while in the right object three legs

are visible).

4 Boundary Structure Segmentation and Detection

Model

The introduced chordiogram as a holistic and global repre-

sentation can potentially suffer from all the irrelevant struc-

ture present in images, such as interior contours and back-

ground clutter. This is a major challenge in applying global

object representations in realistic images, which include

multiple objects and rich background structure.

To address this problem, we propose a chordiogram-

based object detection model called Boundary Structure

Segmentation (BoSS) model, which solves simultaneously

for object segmentation and detection. First, we show how

to relate region segmentation to chordiogram matching in

Sects. 4.1 and 4.2. The bottom-up perceptual principles are

described in Sect. 4.3. The BoSS model and inference are

explained in full detail in Sects. 4.4 and 4.5.

4.1 Chordiogram Parameterization

In order to relate the chordiogram to image segmentation,

we parameterize it in terms of variables that track selected

segments and segment boundaries.

Oversegmentation As a starting point for our method, we

assume that we have an over-segmentation of the input im-

age. The property we require from the segments is that they

do not cross object boundaries (most of the time). In this

way, every object in the image is representable as a set of

such segments and the object boundary as a set of segment

boundary.

Fig. 12 There are two cases in which boundary b can be an object

boundary

Segment Parametrization For each segment k obtained via

the oversegmentation we introduce a segment indicator vari-

able sk ∈ {−1,1}:

sk =

{
1 segment k is foreground

−1 otherwise
(23)

We use N to denote the number of segments.

Segment Boundary Parameterization We denote by B the

set of all boundary segments between pairs of neighboring

segments, where the number of such boundary segments is

M = |B|. Note that a contour b is a boundary because ex-

actly one of its neighboring segments k and m is foreground

and the other is background (see Fig. 12). To differentiate

between those two cases, for each contour b and its two

neighboring segments k and m we include in B two bound-

aries: bm and bk . The first denotes the case when m is fore-

ground and k is background; the second denotes the opposite

case.

We introduce boundary indicator variables which indi-

cate whether a segment boundary is an object boundary.

This variable not only captures the state of the boundary but

tracks which segment configuration causes this state. More

precisely, for each boundary bk ∈ B we introduce a bound-

ary indicator variable tkb ∈ {0,1}:

tkb =

⎧
⎪⎨
⎪⎩

1 segment k is foreground and

segment m is background

0 otherwise

(24)

As a result, there are two variables associated with

each boundary. If a segment boundary designates an ob-

ject boundary, then exactly one of the variables has value 1.

Otherwise both are 0. The relationship between the values

of the boundary and segment variables is summarized in Ta-

ble 1. This relationship can be expressed in terms of two

constraints:

tkb − tmb =
1

2
(sk − sm) (25)

tkb tmb = 0 (26)
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Fig. 13 The chordiogram of an object can be decomposed in terms

of chordiograms which relate pair of boundaries, as shown on the left.

If the object is not segmented, the boundaries can be selected via the

boundary indicator variables

Table 1 We present the relationship between boundary and segment

indicator variables

Boundary Segments

tkb tmb sk sm

1 0 1 −1

0 1 −1 1

0 0 1 1

0 0 −1 −1

Chordiogram Additivity To parameterize the chordiogram

using the above variables, it will prove useful to provide an

equivalent definition to (2). For a given segmented object,

the chords connecting points on two boundaries b and c,

caused by segments k and m being foreground respectively,

can be described by a chordiogram chkm
bc ∈ R

K , bk, cm ∈ B

(see Fig. 13(a)):

(
chkm

bc

)
l
= #

{
(p, q) | fpq ∈ bin(l),p ∈ bk, q ∈ cm

}
(27)

The above quantity can be considered as boundary-pair

chordiogram. Note that the boundary-pair chordiogram is a

subset of the overall chordiogram. Then (2) can be expressed

as a sum of all boundary-pair chordiograms for all pairs of

boundaries. This has the following linear form:

ch =
∑

bk ,cm∈B

chkm
bc (28)

The above decomposition will be referred to as chordiogram

additivity—the descriptor can be expressed in an additive

form in terms of relations between object parts. Note that

this is not a contradiction to the holistic nature of the de-

scriptor since the additive components are not object parts,

but configurations between parts.

Chordiogram Parameterization If we do not have a seg-

mented object, we can select the object boundaries using the

indicator variables (see Fig. 13(b)) and express the resulting

image chordiogram as follows:

ch(t) =
∑

bk ,cm∈B

chkm
bc tkb tmc (29)

The value of the lth bin can be expressed as a quadratic func-

tion:

ch(t)l =
∑

bk,cm∈B

(
chkm

bc

)
l
tkb tmc = tT Ql t (30)

for a matrix Ql which contains the values of the boundary-

pair chordiogram: (Ql)bk;cm = (chkm
bc )l .

Note that in the above parameterization one needs to

indicate not only the boundary but also its relationship to

the neighboring segments. This information is already con-

tained in the chordiogram, since as defined in Sect. 2, each

chord captures the object interior via the orientation of the

normals.

4.2 Shape Matching

After we have parameterized the chordiogram in terms of

the boundary indicators (see (29)), we chose to compare it

with the model chmodel using L1 distance:

match(t,m) =
∥∥chmodel − ch(t)

∥∥
1

(31)

The above shape matching cost evaluates the shape similar-

ity between a model and a particular selection of segment

boundaries. This motivates us to formulate the problem of

shape matching as minimization of the above cost while tak-

ing into account the relation between boundaries and seg-

ments, as expressed in constraints in (25):

(SM): min
t,s

∥∥chmodel − ch(t)
∥∥

1
(32)

s.t. tkb − tmb =
1

2
(sk − sm) for all bm, bk ∈ B

tkb tmb = 0, t ∈ {0,1}2M , s ∈ {−1,1}N .

Solving the above optimization problem produces:

– Figure/ground segmentation: The optimal values of the

boundary and segment indicators encode the object inte-

rior and boundary.

– Shape-based detection cost: The minimum of the objec-

tive function quantifies the quality of the match based on

shape similarity.

Solving the optimization problem for several object mod-

els, and selecting the best match, accomplishes joint shape-

based detection and segmentation.

4.3 Perceptual Grouping

Our model can express grouping principles relating regions

as well as boundaries.
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Fig. 14 Left: input image. Middle: if we use all segment boundaries,

than non-existing objects can be easily hallucinated. Right: if we rely

on an edge/contour detection, then we can miss correct boundaries,

which the segmentation can potentially hallucinate

4.3.1 Region Grouping Principles

While matching the input image to a model, we would like

to ensure that the resulting figure represents a perceptually

salient segmentation, i.e. the resulting figure should be a co-

herent region or set of regions distinct from the background.

This property can be expressed using the segment indica-

tor variables, as introduced in Sect. 4.1, and a Min-Cut-type

smoothness criterion. If we denote by we,g the similarity be-

tween the appearance of segments k and m, then we can en-

courage region coherence by the standard graph cut score:

groupr(s) = −sT Ws = −1T W1 + 2
∑

k∈figure
m∈ground

wk,m (33)

for s ∈ {−1,1}N .

4.3.2 Boundary Grouping Principles

In many cases an edge/contour detector cannot detect all

object boundaries since there is no evidence in the image

(see Fig. 14, right). However, if we use segmentation we can

hallucinate object boundaries and recover the missing ones

(see Fig. 14, left). This comes with the danger that one can

also hallucinate non-existing objects in the maze of segment

boundaries.

To address this issue we propose to use all segment

boundaries, while at the same time incurring a cost if we

choose hallucinated ones. In this way we will be able to

complete the bottom of the bottle in Fig. 14 by paying a

small cost, while we will never detect the apple since the

cost for hallucinating all boundaries will be prohibitively

large.

For a boundary segment b, we denote by cb the percent of

the pixels of b not covered by image edges extracted using

thresholded Probability of Boundary edge detector (Martin

et al. 2004). Then the boundary cost is defined as

groupb(t) = cT t =
∑

bk∈B

cbt
k
b (34)

for tkb ∈ {0,1}2M .

Fig. 15 For an input image and model, as shown in the first row, our

algorithm computes an object segmentation displayed in (a) row. We

present three solutions by using only the matching term from (31) in

first column; the matching term together with the superpixel segmenta-

tion prior (see (33)) in second column; and the whole cost function con-

sisting of the matching, segmentation and the boundary term in third

column (see (35)). (b) We also show for the three cost combinations the

relaxed values of the segmentation variable s, as explained in Sect. 4.5

4.4 BoSS Model

The BoSS model combines the costs from the previous

sections. It solves for a shape match using cost (31) from

Sect. 4.2, while at the same time applies grouping principles

as formulated in costs (33) and (34) from Sect. 4.3:

min
t,s

match(t,m) + δgroupr(s) + γ groupb(t)

s.t. tkb − tmb =
1

2
(sk − sm) for bk, bm ∈ B (35)

tkb tmb = 0, t ∈ {0,1}2M , s ∈ {−1,1}N

where δ and γ are weights of the different terms. The differ-

ence from the problem (SM) in (32) lies in the addition of

two grouping terms.

Term Contributions We examine the contribution of each

term of the model on one concrete example presented in

Fig. 15. The shown results were obtained using the opti-

mization described in Sect. 4.5. By using only the matching

term we are able to localize the object and obtain a rough

mask, which however extends the back of the horse and ig-

nores its legs (first column). The inclusion of the superpixel

grouping bias helps to remove some of the erroneous su-

perpixels above the object which have a different color than

the horse (second column). Finally, if we add the bound-

ary term, it serves as a sparsity regularization on t and re-
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sults in a tighter segmentation (third column). Thus, the in-

correct superpixels above the horse get removed, since they

contain hallucinated boundaries not supported by edge re-

sponse. Additionally, it recovers some of the legs, since they

exhibit strong edge response along their boundary.

4.5 Inference

Both the Shape Matching problem formulated as an inte-

ger quadratic program (SM) in (32) and the BoSS program

in (35) are in general NP-hard. This is not surprising since

it is the problem of selecting from a set of exponentially

many segments such that the resulting region has a de-

sired shape and perceptual properties. To compute an ap-

proximate solution, we apply the Semi-definite Program-

ming (SDP) relaxation (Goemans and Williamson 1995;

Boyd and Vandenberghe 2004). Since the latter program is

a superset of the former, we present an optimization scheme

for the BoSS program only.

First, we re-write the objective as a linear function and

a set of quadratic constraints. We introduce for the lth bin

a variable βl , which denotes the difference of the model

and image chordiogram at this bin. Then the objective of

the BoSS program can be expressed in terms of β and a

quadratic constraint for each bin:

(BoSS): min
t,s,β

1T β − δsT Ws + γ cT t (36)

s.t. tT Ql t − chmodel
l ≤ βl (37)

chmodel
l − tT Ql t ≤ βl (38)

tkb − tmb =
1

2
(sk − sm) (39)

tkb tmb = 0 (40)

t ∈ {0,1}2M , s ∈ {−1,1}N (41)

for all pairs of segment boundaries bk, bm ∈ B. In the first

two constraints (37) and (38) we use the chordiogram pa-

rameterization as defined in (30).

To apply the SDP relaxation, we introduce variables T

and S, which bring both the quadratic terms (37) and (38)

into linear form: T = t tT ; and the quadratic terms in (36)

into linear form: S = ssT . This allows us to state the relax-

ation as follows:

(BoSSsdp): min
t,s,β

1T β − δtr
(
W T S

)
+ γ cT t (42)

s.t. tr
(
QT

l T
)
− chmodel

l ≤ βl (43)

chmodel
l − tr

(
QT

l T
)
≤ βl (44)

tkb − tmb =
1

2
(sk − sm) (45)

Tbk;bm = 0 (46)

tkb = Tbk;bk for bk ∈ B (47)

diag(S) = 1n (48)

(
T t

tT 1

)
� 0 (49)

(
S s

sT 1

)
� 0 (50)

The above problem was obtained from problem (36) in

two steps. First, we relax the constraints T = t tT to T � t tT

and S = ssT to S � ssT respectively, which by Schur com-

plement are equivalent to (49) and (50) (Boyd and Vanden-

berghe 2004). Second, we weakly enforce the domain of the

variables from the constraint (41). The −1/1-integer con-

straint on s is expressed as diagonal equality constraint on

the relaxed S (see (48)), which can be interpreted as bound-

ing the squared value of the elements of s by 1. The 0/1-

integer constraint (see (47)) is enforced by requiring that

the diagonal and the first row of T have the same value.

Since T = t tT , this has the meaning that the elements of t

are equal to their squared values, which is only true if they

are 0 or 1. Finally, the boundary-region constraints, one of

which is quadratic, naturally translate to linear constraints.

The above problem is a linear program with inequality

constraints in the cone of positive semi-definite matrices. As

such, it is convex and can be solved exactly with any stan-

dard optimization package which supports such problems.

Discretization Discrete solutions are obtained by thresh-

olding s. Since s has N elements, there are at most N differ-

ent discretizations, all of which are ranked using their dis-

tance to the model. If a threshold results in a set of sev-

eral disconnected regions, we consider all possible subsets

of this set. For each of the discretized segmentations, the

matching cost function is evaluated. The algorithm outputs

the top 5 ranked non-overlapping masks. Note that we are

capable of detecting several instances of an object class

since they result in several disconnected regions which are

evaluated independently.

BoSS Algorithm The BoSS algorithms starts with an input

image and a set of models. It solves the above optimization

problem for each image-model pair at each scale. The best

matching model gives the object segmentation as well as a

detection cost—the chordiogram distance of the model to

the obtained segmentation. The full details are presented in

Algorithm 2.

5 Related Work

In the context of the proposed method, we review in this

section relevant work.
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Algorithm 2 BoSS algorithm.

Input: Model masks m1, . . . ,mk ; image segmentation

parametrized by t and s; scales h1, . . . , hp .

for i = 1 . . . k do

for j = 1 . . . p do

mi,j ← rescale mi to scale hj :

Compute chmod
i,j of mi,j at scale hj using (2).

Solve relaxed BoSS problem (42) using chmodel
i,j .

Discretize to obtain segmentation si,j .

Compute chi,j from si,j at scale hj using (2).

Detection cost: di,j ←
∥∥ chi,j

‖chi,j ‖
−

chmodel
i,j

‖chmodel
i,j ‖

∥∥
1
.

end for

end for

(i∗, j∗) ← arg mini,j di,j .

Output: Segmentation si∗,j∗ and detection cost di∗,j∗ .

Holistic Representations Some of the first attempts to de-

fine holistic representations are based on global transforms

of the input object shape. Examples include Fourier coeffi-

cients of a contour distance function (Zhang and Lu 2003)

and Zernicke moments applied on the object mask (Zhang

and Lu 2003). Another class of holistic shape representa-

tions was initiated by the development of the Medial Axis

Transform by Blum, which is defined as the set of centers of

maximally inscribed circles in a closed shape (Blum 1973).

This set can be thought of as a skeleton of the shape, which is

computed globally, and reveals geometrical as well as topo-

logical shape properties. Depending how those properties

are captured, the medial axis has led to the development of

Shocks, Shock graphs (Kimia et al. 1995; Siddiqi et al. 1999;

Sebastian et al. 2004; Trinh and Kimia 2011) as well as M-

reps in medical imaging (Pizer et al. 1999). To deal with the

instability of the medial axis to small boundary protrusions

a more robust transform based on the Poisson equation has

been proposed (Gorelick and Basri 2009).

More recently, Zhu et al. (2008) proposed a holistic shape

matching approach which selects relevant object contours

while matching Shape Contexts (Belongie et al. 2002). In

a follow-up work, the above matching has been combined

with discriminative learning to leverage salient object con-

tours (Srinivasan et al. 2010).

The presented BoSS model does not try to establish a

point correspondence between the model and the object

shape. In many cases, however, an explicit correspondence

estimation between the two shapes lies in the core of a shape

matching technique. Spectral graph matching in conjunction

with geometric features of edgels and pairs of edgels has

been used by Leordeanu et al. (2007). A parametric statisti-

cal framework, which models the shape deformation of the

point set is the Active Shape Model (Cootes 1995).

Simpler models which do not capture all pairwise rela-

tionships between shape parts depart from the idea of holism

but allow for tractable inference. This is commonly done by

treating a shape as a linearly ordered point set instead of un-

organized point set as the chordiogram assumes. Lu et al.

(2009) explore particle filtering to search for a set of object

contours. Felzenszwalb and Schwartz (2007) propose a hier-

archical representation by decomposing a contour into a tree

of subcontours and using dynamic programming to perform

matching. A globally optimal shape matching and segmen-

tation based on the Minimum Ratio Cycle algorithm was

introduced by Schoenemann and Cremers (2007). Dynamic

programming has been also applied in a multi-stage frame-

work to search for a chain of object contours (Ravishankar et

al. 2008). A similar approach to shape-based recognition is

to search for a chain of image contours which best matches

to a model in a contour network extracted from the image

(Ferrari et al. 2006).

The chordiogram uses edgels as atomic shape parts. A

different approach is to use contour segments as parts. For

example, a descriptor of groups of adjacent contour seg-

ments was introduced in conjunction with an SVM classifier

for the purpose of recognition (Ferrari et al. 2008). Bound-

ary fragments scored using a classifier and geometrically re-

lated to an object center have been explored as well (Opelt et

al. 2006; Shotton et al. 2005). The simple fragment config-

uration model allows for efficient inference using a voting

scheme.

Statistical Representations The presented descriptor in

this work captures relationships among edgels in a statis-

tical fashion. Similarly, geometric hashing has been used to

describe purely geometric properties (Lamdan et al. 1990)

as well as topological properties at a global scale (Carls-

son 1999). A widely used descriptor, called Shape Context

(Belongie et al. 2002) captures a semi-local distribution of

edges. Its descriptive power has been extended to more de-

formed and articulated shapes (Ling and Jacobs 2007).

Histograms of geometric properties of sets of points have

been used to match 3D models (Osada et al. 2002). These

histograms can be interpreted as distributions of shape func-

tions, where each function represents a property of a small

set of points.

Recognition and Segmentation Close interplay between

segmentation and recognition has been studied by Yu and

Shi (2003) who guide segmentation using part detections

and do not use global shape descriptors. Segment shape

descriptors based on the Poisson equation have been used

for detection and segmentation (Gorelick and Basri 2009).

Leibe et al. (2008) combine recognition and segmentation

in a probabilistic framework. Recently, Gu et al. (2009) use

global shape features on image segments. However, segmen-

tation is a preprocessing step, decoupled from the subse-

quent matching.
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Object dependent segmentation has been addressed in

prior work (Borenstein et al. 2004; Levin and Weiss 2006).

Both methods combine bottom-up segmentation with top-

down matching, using templates of object parts as a way

to match shape. An explicit reasoning about figure/ground

organization has been proposed by Ren et al. (2005) who

use shapemes for local shape matching. Although these ap-

proaches have segmentation and boundary priors they em-

ploy only local shape descriptors.

6 Experiments

In this section we evaluate both the chordiogram on its own

as well as BoSS on several established benchmarks. The pa-

rameter of the model and its implementation details are de-

scribed in Sect. 6.1. In Sect. 6.2 we evaluate the performance

of the chordiogram on the task of recognition of preseg-

mented objects. In Sect. 6.3 we present recognition and seg-

mentation results of our chordiogram-based method BoSS

on two datasets of real cluttered images.

6.1 Implementation Details

We use the chordiogram on presegmented objects with

parameters bl = 4, br = 8, bn = 8, resulting in a 2048-

dimensional descriptor. The number of bins was selected

such that on the one hand it results in a discriminative de-

scriptor and on the other hand the dimensionality of the de-

scriptor is not too large. When we use the chordiogram in

the BoSS model, we use bl = 3, br = 4, bn = 4, resulting in

a 196-dimensional descriptor. A lower dimensional descrip-

tor is used for computational reasons—in the BoSS infer-

ence in (36) we introduce a variable for each chordiogram

bin and thus a larger descriptor would result in a harder op-

timization.

To obtain superpixels we oversegment the image using

NCuts (Cour et al. 2005) with n = 45 segments. The num-

ber of segments was chosen such that the resulting segmen-

tation covers most of the object boundaries. The grouping

cues used to define the affinity matrix Wpixels are color and

intervening contours (Yu and Shi 2003) based on Probability

of Boundary edge detector (Martin et al. 2004).

To define the segmentation term (33) in our model we

can use any affinity matrix. We choose to use the same

grouping cues as for segmentation above. For each pair of

superpixels k and m we average the pixel affinities to ob-

tain an affinity matrix over the superpixels: W
superpixels
km =

1
akam

∑
p∈k,q∈m Ŵ

pixels
pq , where ak and am are the size of

the superpixels k and m respectively. Above, Ŵpixels is ob-

tained from the top n eigenvectors E of Wpixels : Ŵpixels =

EΛET ≈ Wpixels , where Λ are the corresponding eigen-

values. This low-rank approximation represents a smoothed

version of the original matrix and reduces the noise in the

original affinities. Finally, the weights of the term in (35)

were chosen to be δ = 0.01 and γ = 0.6 on five images from

ETHZ dataset and held constant for all experiments.

For the optimization we use SeDuMi (Sturm 1999) which

is based on the Primal-Dual Interior Point Method. To com-

pute the number of variables in the SDP, one can assume

that each superpixel has at most C neighboring superpixels.

Hence we obtain M = Cn boundary variables. Thus, if we

denote by D the dimensionality of the chordiogram, then

the total variable number in the relaxed problem is bounded

by n2 + C2n2 + D ∈ O(n2). In our experiments, we have

n = 45 and the value of C is less than 5 which results in less

than 200 boundary segment variables. The empirical run-

ning time of the optimization is around 30–45 seconds on

a 3.50 GHz processor. Note that for other applications the

number of needed superpixels n to segment an object might

be larger than 45 which will increase the running time of the

algorithm.

6.2 Chordiogram Evaluation

To evaluate the performance of the chordiogram for the

task of object recognition, we perform experiments on the

MPEG-7 CE-Shape 1 part B dataset (Latecki et al. 2000).

This dataset is used for evaluation of shape-based classifi-

cation and retrieval. It consists of 1400 binary object masks

representing 70 different classes, each class having 20 ex-

amples. The recognition rate reported for this dataset is the

Bullseye score: each shape is matched to all shapes and the

percentage of the 20 possible correct matches among the top

40 matches is recorded; the score is the average percentage

over all shapes.

To compute a distance between two binary object masks

using the chordiogram, we first scale-normalize the masks.

Since the chordiogram is not rotation invariant, we rotate

each mask br times using br rotations of angle {0, 2π
br

, . . . ,

(br −1) 2π
br

} around the object mask center of mass, compute

the chordiogram and normalize it by setting its L1 norm to 1.

Thus, we obtain br descriptors {ch
(1)
i , . . . , ch

(br )
i } for the ith

object. The distance between two objects i and j is defined

as the smallest distance in L1 sense among all rotated chor-

diograms:

d(i, j) = min
θi ,θj

{∥∥ch
(θi )
i − ch

(θj )

j

∥∥
1
|θi, θj ∈ {1, . . . , br}

}

The bullseye score of the chordiogram in comparison to

other shape matching approaches is presented in Table 2.

Using the above setup, we achieve a score of 80.85%. We

outperform most of the approaches with exception of Shape

Trees by Felzenszwalb and Schwartz (2007), Hierarchical

Procrustes by Mcneill and Vijayakumar (2006) and Inner

Distance Shape Context by Ling and Jacobs (2007). The
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Table 2 Bullseye score of the chordiogram and other shape matching

methods on the MPEG dataset

Method Bulleye score

Mokhtarian et al. (1997) 75.44%

Latecki and Lakamper (2000) 76.45%

Belongie et al. (2002) 76.51%

Sebastian et al. (2003) 78.16%

Tu and Yuille (2004) 80.03%

chordiogram 80.85%

Ling and Jacobs (2007) 85.40%

Mcneill and Vijayakumar (2006) 86.35%

Felzenszwalb and Schwartz (2007) 87.70%

main reason is that the latter methods are based on metrics

which are computed along the shape contour, while our ap-

proach uses Euclidean distances to capture shape. As a re-

sult these methods deal better with non-rigid deformations

and articulations than the chordiogram.

However, the use of rigid metrics to capture relationships

between contours allows for a parameterization of the chor-

diogram in terms of image segmentation and thus deals with

image clutter, as we will see in the next section. An addi-

tional advantage of the chordiogram is that its distance is

simply a L1 norm computation, while the above approaches

require an inference of some sort.

6.3 BoSS Evaluation

In this section we turn to the evaluation of our complete

model BoSS on two datasets consisting of real images.

6.3.1 ETHZ Shape Dataset

The ETHZ Shape Dataset (Ferrari et al. 2010) consists of

255 images of 5 different object classes—Applelogos (40

images), Bottles (48 images), Mugs (48 images), Giraffes

(87 images) and Swans (32 images). The dataset is designed

in such a way that the selected object classes do not have dis-

tinctive appearance and the only representation, which can

be used to detect object class instances, is their shape. As

a result, this dataset has been widely used for evaluation of

shape-based detection methods. Some of the challenges in

this dataset are highly cluttered images—in the background

as well as internal spurious contours; wide variation of ob-

ject scale; multiple instances of an object in the same image.

However, the depicted objects are fully included in the im-

ages and are not occluded. Also, the used objects vary in

shape but are not articulated (detection of the giraffe’s legs

is not part of the task).

We apply the BoSS model using hand-drawn object out-

lines as shape models, one model per class. These models

were supplied with the dataset. We use 7 different scales,

such that the scale of each model, defined as the diame-

ter of its bounding box, ranges from 100 to 300 pixels. We

use non-maximum suppression—for every two hypotheses,

whose bounding boxes overlap by more than 50%, we retain

the one with the higher score and discard the other one.

Detection Results In order to compute precision, recall and

detection rates, traditionally two detection criteria were es-

tablished. According to the 20% overlap detection criterion

we declare a detection if the intersection of the hypothesis

and ground truth bounding boxes overlap more than 20%

with the each of them. A stricter criterion is the Pascal cri-

terion which declares a detection if the intersection of the

hypothesis and groundtruth bounding boxes is at least 50%

of their union.

The results of BoSS under both criteria are presented and

compared to other methods in Table 3 and Fig. 16. Under

the 20% overlap criterion we achieve state-of-the-art perfor-

mance of 91.2%/93.0% detection rate at 0.3/0.4 false pos-

itives per image (fppi). Under the stricter Pascal criterion

we achieve 86.1%/88.6% detection rate at 0.3/0.4 fppi with-

out any learning. With learning, which we call reranking

(see below), we achieve state-of-the-art detection rates of

94.3%/96.0%.

For Applelogos, Swans and Bottles, the results for both

criteria are almost the same, which shows that we achieve

good localization of the objects. For Giraffes and Mugs re-

sults are slightly lower due to imperfect segmentation (some

segments leak into the background or missed parts)—the de-

tections which are correct under the weaker 20% overlap cri-

terion, are not counted as correct under the Pascal criterion.

In Fig. 17 we show examples of typical detections in the

datasets described above. Our method is capable of detect-

ing objects of various scales in highly cluttered images, even

when the object is small and most of the image contours

and segments are not part of the object. Note that the trans-

lation invariance of the chordiogram allows us to find the

object without having to search exhaustively for location.

Additionally, the segmentation gives us a pixel-level object

localization which is much more precise compared to the

bounding-box localization used by other methods.

Our approach is robust against local shape variations as

well as global transformations. As shown in Fig. 18(a), us-

ing a single mug model BoSS obtains detections of objects

whose shape deviates from the model in various ways: as-

pect ration, global shape, shape of parts, etc. In addition, it

tolerates global transformations as minor rotations and fore-

shortening (see Fig. 18(b)).

The major sources for incorrect detections are accidental

alignments with background contours, which we call hallu-

cinations, and partially incorrect boundaries (see Fig. 19).

The former cause shows the limitation of shape—one can
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Table 3 Detection rates at 0.3/0.4 false positives per image, using the

20% overlap and Pascal criteria. († use only hand-drawn models; ∗

use strongly labeled training data with bounding boxes, while we use

hand-drawn models and weakly labeled data (no bounding boxes) in

the reranking; ♯ considers in the experiments only at most one object

per image and does not detect multiple objects per image; ◦ uses a

slightly weaker detection criterion than Pascal)

Algorithm Apple logos Bottles Giraffes Mugs Swans Average

20% over. BoSS† 86.4%/88.6% 96.4%/98.2% 97.8%/97.8% 84.8%/86.4% 93.4% /93.4% 91.2%/93.0%

(Lu et al. 2009)†♯ 92.5%/92.5% 95.8%/95.8% 86.2%/92.0% 83.3%/92.0% 93.8%/93.8% 90.3%/93.2%

(Fritz and Schiele 2008)∗ –/89.9% –/76.8% –/90.5% –/82.7% –/84.0% –/84.8%

(Ferrari et al. 2010)† 84.1%/86.4% 90.9%/92.7% 65.6%/70.3% 80.3%/83.4% 90.9%/93.9% 82.4%/85.3%

Pascal crit. BoSS† 86.4%/88.6% 96.4%/96.4% 81.3%/86.8% 72.7%/77.3% 93.9%/93.9% 86.1%/88.6%

BoSS∗
rerank 100%/100% 96.3%/97.1% 86.1% /91.7% 90.1%/91.5% 98.8%/100% 94.3%/96.0%

(Maji and Malik 2009)∗ 95.0%/95.0% 92.9%/96.4% 89.6%/89.6% 93.6%/96.7% 88.2%/88.2% 91.9%/93.2%

(Srinivasan et al. 2010)∗ 95.0%/95.0% 100%/100% 87.2% /89.6% 93.6%/93.6% 100%/100% 95.2%/95.6%

(Gu et al. 2009)∗ 90.6%/– 94.8%/– 79.8%/– 83.2%/– 86.8%/– 87.1%/–

(Ravishankar et al. 2008)†◦ 95.5%/97.7% 90.9%/92.7% 91.2%/93.4% 93.7%/95.3% 93.9%/96.9% 93.0%/95.2%

Fig. 16 Results on ETHZ Shape dataset. Results using BoSS are shown using 20% overlap as well as after reranking using the stricter Pascal

criterion. Both consistently outperform other approaches, evaluated using the weaker 20% overlap criterion

sometimes find a constellation of contours which resemble

the model outline. Some of those cases can be ruled out by

using perceptual grouping principle. However, in other cases

the lack of an appearance model is limiting.

Reranking In order to compare with approaches on the

ETHZ Shape Dataset which use supervision, we use weakly

labeled data to rerank the detections obtained from BoSS.

We use only the labels of the training images to train a clas-

sifier but not the bounding boxes. This classifier can be used

to rerank new hypotheses obtained from BoSS.

More precisely, we use half of the dataset as training and

the other half as test (we use 5 random splits). We use BoSS

to mine for positive and negative examples. The top de-

tection in a training image using a model which represents

the label of that image is considered a positive example; all

other detections are negative examples. The chordiograms of

these examples are used as features to train one-vs-all SVM

(Joachims 1999) for each class. During test time, each de-

tection is scored using the output of the SVM corresponding

to the model used to obtain this detection.

Note that this is a different setup of supervision which re-

quires less labeling—while we need one hand-drawn model
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Fig. 17 Example detection on

ETHZ Shape Dataset. For each

example, we show on the left

side the input image and in the

middle and the right side the

segmentation for the best

matching model. In particular,

we show in the middle the

selected segment boundaries in

green. On the right the selected

object mask and the best

matching model are displayed

(Color figure online)

per class to obtain detections via BoSS, we do not use the

bounding boxes but only the labels of the training images

to score them. We argue that the effort to obtain a model

is constant while segmenting images by hand is much more

time consuming. Although the hand-drawn models are the

driving force for object detection, the weakly labeled data

is used to learn a discriminative chordiogram-based model

which takes into account the shape deformations present in

the dataset and not captured in the hand-drawn model. The

majority of the approaches in Table 3, which use learning,

use bounding-boxes as labeling but no hand-drawn models.

The results are shown in Table 3. The weak supervision

leads to 94.3%/96.0% detection rate under Pascal criterion,

which is an improvement of approx. 5% over BoSS. It is at-

tributed to the discriminatively learned weights of the chor-

diogram’s bins. This corresponds to discriminatively learn-

ing object shape variations and builds on the power of BoSS

to deal with clutter.

Segmentation In addition to the detection results, we eval-

uate the quality of the detected object boundaries and object

masks. For evaluation of the former we follow the test set-

tings of Ferrari et al. (2010).2 We report recall and precision

2A detected boundary point is considered a true positive if it lies within

t pixels of a ground truth boundary point, where t is set to 4% of the
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Table 4 Precision/recall of the detected object boundaries and pixel

classification error of the detected object masks for the ETHZ Shape

Dataset. We present results using only the shape matching cost

(see (32)) as well as the full cost—BoSS—which consists of shape

matching as well as perceptual grouping terms (see (35))

Boundary precision/recall Pixel error

SM BoSS Ferrari et al. (2010) SM BoSS

Applelogos 91.9%/97.1% 91.8%/97.5% 91.6%/93.9% 2.0% 1.6%

Bottles 89.4%/91.1% 90.3%/92.5% 83.4%/84.5% 2.8% 2.7%

Giraffes 75.4%/81.3% 76.8%/82.4% 68.5%/77.3% 6.2% 5.9%

Mugs 77.7%/89.1% 86.5%/90.5% 84.4%/77.6% 5.5% 3.6%

Swans 81.0%/86.8% 85.8%/87.6% 77.7%/77.2% 6.7% 4.9%

Fig. 18 Example detections on the ETHZ Shape Dataset which show

the robustness of the chordiogram and BoSS to shape variations. For

each example, we show on the left side the selected segment bound-

aries in green, and on the right the selected object mask. We use the

same model to obtain those detections. Note, however, that the detected

mugs may have different aspect ratio, largely varying shape of the body

(rectangle or cone), and shape and size of the handle

of the detected boundaries in correctly detected images in

Table 4. We achieve higher recall at higher precision com-

pared to Ferrari et al. (2010).3 This is mainly result of the

fact that BoSS attempts to recover a closed contour and in

this way the complete object boundary. These statistics show

that the combination of shape matching and figure/ground

organization results in precise boundaries (>87% for all

classes except Giraffes). The slightly lower results for Gi-

raffes is due to the legs which are not fully captured in the

provided class models. We also provide object mask eval-

uation as percentage of the image pixels classified incor-

rectly by the detected mask (see Table 4). For all classes we

diagonal of the ground truth mask. Based on this definition, one com-

putes recall and precision.

3It should be noted that we use hand-drawn models while Ferrari et al.

(2010) uses the models learned from the labeled data.

Fig. 19 Examples of missdetections

achieve less than 6% error, and especially classes with small

shape variation such as Bottles and Applelogos we have pre-

cise masks (< 3% error).

To analyze the contribution of the perceptual terms, we

apply BoSS on the ETHZ Shape Dataset without the percep-

tual terms (see program SM in (32)) and compare the result-

ing segmentations and object boundaries to the one obtained

using the full BoSS model. The results are compared in Ta-

ble 4. Although SM performs pretty comparable to the full

model, its boundary and pixel precisions are slightly below

the ones obtain via BoSS—on average SM has 4.6% pixel

error, while BoSS reduces it to 3.7%. Perceptual grouping

tends to correct shape-based segmentation in cases where

the shape match is not very good, but the bottom-up group-

ing is based on a strong signal.

6.3.2 INRIA Horses Dataset

The INRIA Horses Dataset has 340 images, half of which

contain horses and the other half have background objects.

This dataset presents challenges not only in terms of clutter

and scale variation, but also in articulation, since the horses
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(a)

Method Det. rate

BoSS 92.4%

Maji and Malik (2009) 85.3%

Ferrari et al. (2008) 80.8%

Ferrari et al. (2010) 73.8%

(b)

Fig. 20 (a) Detection rate vs false positives per image (fppi) for our

and other approaches on INRIA Horse dataset. (b) Detection rates at

1 fppi

are in different poses. Also, some of the objects are partially

occluded.

We use 6 horse models representing different poses for

the INRIA Horse Dataset (see Fig. 21). In these experi-

ments we used 10 scales such that the scale of the model,

defined as the diameter of its bounding box, ranges from 55

to 450 pixels. Similarly to the previous dataset, we use non-

maximum suppression—for every two hypotheses, whose

bounding boxes overlap by more than 50%, we retain the

one with the higher score and discard the other one.

Detection Results On INRIA Horses dataset, we achieve

state of the art detection rate of 92.4% at 1.0 fppi (see

Fig. 20). Examples of detections of horses in different poses,

scales and in cluttered images are shown in Fig. 21.

6.3.3 BoSS vs. Multiple Segmentation-Based Approaches

Most of the applications of segmentation in computer vision

serve as coarsening of the input space. In the case of gen-

eral object recognition, one often computes texture-based

descriptors for each segment (Shotton et al. 2009), groups

of segments (Malisiewicz and Efros 2008) or bag-of word

descriptors of segments (Russell et al. 2006). In such ap-

proaches, a pre-segmentation is considered useful if a seg-

ment or groups of segments overlap sufficiently well with

Fig. 21 Examples of detections on the INRIA Horses Dataset. For

each image we show the selected superpixel boundaries on the left and

the detected object segmentation on the right. Bottom right: 6 models

used in the experiments

the object of interest. Therefore, using small groups of seg-

ments or multiple segmentations is often enough to capture

an object.

In the case of shape-based object detection, it is impor-

tant to capture the correct object boundaries in a segment

selection. Therefore, even if the overlap of a segment or a

group of segments with an object of interest is large, these

segments may not capture the shape of the object at all.

To see the importance of being able to select all possi-

ble groups of segments, we compare the BoSS model to

chordiogram-based detection over segments computed via

multiple segmentations. More precisely, we use three differ-

ent segmentations per image with 10, 20, and 30 segments.

For each segmentation, we compute groups of connected

segments of up to 5 segments. This results on average in

5337 groups of segments per image. We consider each group

of segments as a hypothesis for an object segmentation. To

evaluate how likely a hypothesis is an object of a particu-
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Fig. 22 We present three different measures for the quality of the seg-

mentation. For each measure, we use all images from the ETHZ Shape

Dataset and pre-segmentations with 10, 20, 30, and 45 segments. We

display for each measure and pre-segmentation, the median in red, the

25% and 75% quantile as blue boxes, and the range of the values as

black lines (Color figure online)

Table 5 Detection rates of Group of Segments (GoS) and BoSS at 0.3

and 0.4 fppi for the five classes of the ETHZ Shape Dataset

Applelogos Bottles Giraffes

GoS 38.6%/43.2% 85.5%/87.3% 46.2%/52.8%

BoSS 86.4%/88.6% 96.4%/96.4% 81.3%/86.8%

Mugs Swans Average

GoS 50%/50% 78.8%/78.8% 59.1%/62.4%

BoSS 72.7%/77.3% 93.9%/93.9% 86.1%/88.6%

lar class, we compute the chordiogram distance between the

hypothesis and the object model.

The detection rates for the five classes of the ETHZ Shape

Dataset are presented in Table 5. We can see that using only

groups of segments, the detection rate drops, the main rea-

son being that a selection of up to 5 segments is not suf-

ficient to capture all object boundaries. This is apparently

drastic for Applelogos and Mugs, which are large and oc-

cupy most of the image. Of course, one can increase the size

of the groups, however their number groups exponentially

with their size. Therefore, it would become less feasible to

compute the chordiogram for all groups of larger sizes.

6.3.4 Number of Input Superpixels

As justified above, being able to select any possible combi-

nation of segments as a figure segmentation is of paramount

importance when it comes to shape-based object detection.

Using more segments could potentially result in a better ob-

ject segmentation since one should be able to model finer

details of an object shape. However, having more segments

comes at a higher cost since the optimization problem in

Sect. 4.5 will be carried over a larger number of variables.

To evaluate the importance of the number of segments

in the final object segmentation, we run BoSS with a

pre-segmentation on the ETHZ Shape Dataset with 10,

20, 30 and 45 superpixels. For every level of input pre-

segmentation, we evaluate the obtained object segmentation

using the ground truth model and scale for each image. We

use the Pascal overlap score. To better evaluate the qual-

ity of the boundaries of the segmentation, we also compute

boundary precision/recall, as used in the evaluation of the

segmentation in Sect. 6.3.

The results for those three measures over the whole

dataset for the four setups are summarized in Fig. 22. We can

see that the Pascal overlap scores improve with increasing

number of segments. Moreover, the values become closer to

the median, which indicates that with increasing number of

segments the quality of the segmentation improves for more

images. Similar behavior can be observed for boundary pre-

cision/recall. The biggest improvement is in the recall—as

we have more segments, we obtain larger portions of the ob-

ject boundaries better. Also, we can see that there is a clear

improvement from 10 to 20 and from 20 to 30 segments.

However, the observed improvement beyond 30 segments is

small. This means that using 30 segments for this dataset is

sufficient to capture most of the objects. Hence, we use 45

segments in the preceding experiments.

7 Conclusion

In this paper we introduce a novel shape descriptor, called

chordiogram, and a shape-based segmentation and recog-

nition approach, called Boundary Structure Segmentation

(BoSS).

The chordiogram is a global descriptor, which is moti-

vated by the idea of holism introduced by the Gestalt school

of perception. As such, the descriptor capture the object
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shape as a whole. Moreover, the chordiogram can be param-

eterized in terms of image segments. As such it can be re-

lated to perceptual grouping principles in the image, such as

consistency in region appearance and small hallucinations

of object boundaries. This allows us to combine the chor-

diogram with perceptual grouping in the unified approach

(BoSS). We perform simultaneous shape matching and seg-

mentation and as a result, enable holistic shape-based object

detection in cluttered scenes.

The approach is analyzed both theoretically and empiri-

cally. We show that the chordiogram can be viewed as an ap-

proximation of graph matching techniques for shape match-

ing. Furthermore, we show very good performance of the

descriptor for the task of shape retrieval. We evaluated BoSS

for both object recognition and precise object localization on

two datasets of realistic images and achieves state of the art

results on both tasks.
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Appendix A: Proofs of Theorems 1 and 2

Theorem 1 Consider the chord matching problem (CM)

(see (20)) with the multilevel chordiogram-based distance

(see (6)):

min
X

Wmbins · X subject to X ∈ PCM

The solution of this problem can be characterized as follows:

– The minimum can be analytically computed using the

chordiogram distance:

min
X∈PCM

Wmbins · X =

B∑

b=−1

αb

∥∥chb,1 − chb,2
∥∥

1

for weights αb = 2b.

• All the minimizers can be described in terms of the chor-

diograms of the individual shapes with the following set:

P
∗
CM =

{
X ∈ PCM

∣∣∣∣
∑

(i,j)∈binb(m)
(k,l)∈binb(m)

Xijkl = min
{
chb,1

m , chb,2
m

}

for all bins m and schemes b

}
(51)

Proof First we will show that the chordiogram matching

lower bounds the problem (CM) for all X ∈ PCM. In a sec-

ond step, we will show that for X∗ ∈ P ∗
CM the bound turns

into an equality.

Lower Bound for (CM) Suppose that X ∈ PCM. Then, one

can show that

B∑

b=−1

αb

∥∥chb,1 − chb,2
∥∥ (52)

=

B∑

b=−1

αb

∥∥∥∥
∑

i,j

ch
b,1
ij −

∑

k,l

ch
b,2
kl

∥∥∥∥
1

(def. of chordiogram)

=

B∑

b=−1

αb

∥∥∥∥
∑

i,j

(∑

k,l

Xijkl

)
ch

b,1
ij

−
∑

k,l

(∑

i,j

Xijkl

)
ch

b,2
kl

∥∥∥∥
1

(53)

=

B∑

b=−1

αb

∥∥∥∥
∑

i,j,k,l

(
ch

b,1
ij − ch

b,2
kl

)
Xijkl

∥∥∥∥
1

≤
∑

i,j,k,l

B∑

b=−1

αb

∥∥ch
b,1
ij − ch

b,2
kl

∥∥
1
Xijkl (54)

=
∑

i,j,k,l

Wmbins
ij ;kl Xijkl (by (6))

= Wmbins · X

Line (53) is derived using the correspondence uniqueness,

while line (54) uses the positivity of the variables.

Minimizers for (CM) As a second step, we will show that

for each X∗ ∈ P ∗
CM the above inequality turns into an equal-

ity.

Consider for a moment a concrete bin m using finest bin-

ning scheme b = −1. We can use the bin indices of the

chords to define a matching between them. More precisely,

we put chords in correspondence if they lie in the same bin.

After this procedure there will remain chords which are not

in any correspondence. The correspondence assignment for

such chords is deferred for a coarser binning scheme.

Now we turn to the description of the correspondence as-

signment for a particular binning scheme b. For the sake

of brevity we will skip the binning scheme index b. Sup-

pose that X gives a chord mapping for which dm denotes

the number of chords from shape 1 from bin m mapped to

chords from shape 2 which are also in bin m; am chords

from shape 1 from bin m mapped to chords not in bin m;
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and cm chords from shape 1 not in bin m mapped to chords

from shape 2 in bin m. From the definition of dm we have

dm =
∑

(i,j)∈bin(m)
(k,l)∈bin(m)

Xijkl (55)

Since ch1
m counts all the chords lying in bin m from shape

1, which can be mapped either to chords in bin m or not in

bin m from the other shape, then ch1
m = am + dm. Similarly,

ch2
m = dm + cm. Therefore, |ch1

m − ch2
m| = |am − cm|.

Also, since the
∑

ijkl |(ch1
ij )m − (ch2

kl)m|1Xijkl = am +

cm. Thus, we can express the gap in the above inequality

derivation for a single binning scheme as:

W b · X −
∥∥ch1 − ch2

∥∥
1
=

∑

m

(
am + cm − |am − cm|

)

X is a minimizer for (CM) exactly when the above gap

equals zero, i.e. am + cm − |am − cm| = 0 for all m. This

is equivalent to min{am, cm} = 0, which holds iff dm =

min{ch1
m, ch2

m}. The latter identity together with (55) gives

the desired characterization.

Now, suppose that db
m = min{ch1,b

m , ch2,b
m } holds for all

binning schemes from the definition of multiple-bin distance

between chords from (6). This means that all gaps disappear:

W b · X −
∥∥chb,1 − chb,2

∥∥
1
= 0 for all b ∈ {−1,0, . . . ,B}

with B = ⌈log(Δ/δ)⌉ as defined in Sect. 3.3. Combining the

above inequalities together with weights αb gives the equal-

ity relationship in the theorem. �

Theorem 2 Suppose that X∗
cm,orig is a minimizer of the

chord matching problem (see (20)) using data terms W orig

based on the distance in the original feature space (see (4)):

X∗
cm,orig ∈ arg min

X
W orig · X subject to X ∈ PCM

Further, X∗
pm,mbins is a minimizer of the point matching

problem (see (19)) using data terms Wmbins based on the

multilevel chordiogram-based distance (see (6)):

X∗
pm,mbins ∈ arg min

X
Wmbins · X subject to X ∈ PPM

Then, the following relationship holds:

αW orig · X∗
cm,orig ≤

B∑

b=−1

αb

∥∥chb,1 − chb,2
∥∥

1

≤ Wmbins · X∗
pm,mbins

for a positive constant α.

Proof We show both inequalities separately.

First Inequality The left inequality is result of a direct ap-

plication of Lemma 1 from Indyk and Thaper (2003). Note

that the point sets, which are considered in Indyk and Thaper

(2003), correspond to the chords sets in our setting. Then

there is a constant α such that the chordiogram distance is

lower bounded by the weighted bipartite matching among

the chords, where the weights are defined in terms of the L1

distance in the chord feature space:

α
(
W orig · X∗

cm,orig

)
≤

B∑

b=−1

αb

∥∥chb,1 − chb,2
∥∥

1

Second Inequality From the previous theorem, we have

that the middle term is the minimum of the (CM) problem

with data terms Wmbins . It is known that the minimum of the

(CM) problem interpreted as a bipartite matching is smaller

that the minimum of the (PM) problem interpreted as linear

programming relaxation of the graph matching. This gives

us the second inequality. �
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