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Abstract

Estimates suggest that more than 75% of engineering design activity comprises reuse of previous design knowledge to address a new

design problem. Reusing design knowledge has great potential to improve product quality, shorten lead time, and reduce cost. However,

PLM systems, which address the issue of reuse by searching for keywords in filenames, part numbers or context attached to CAD models, do

not provide a robust tool to search reusable knowledge. This paper presents a brief overview of a novel approach to search for 3D models. The

system is built on a client–server–database architecture. The client takes in the query input from the user along with his search preferences

and passes it to the server. The server converts the shape input into feature vectors and a unique skeletal graph representation. Details of the

algorithms to perform these steps are presented here. Principal advantages of our graph representation are: (i) it preserves geometry and

topology of the query model, (ii) it is considerably smaller than the B-Rep graph, and (iii) it is insensitive to minor perturbations in shape, but

sensitive enough to capture the major features of a shape. The combined distance of feature vectors and skeletal graphs in the database

provide an indirect measure of shape similarity between models. Critical database issues such as search system efficiency, semantic gap

reduction and the subjectivity of the similarity definition are addressed. This paper reports our initial results in designing, implementing and

running the shape search system.

q 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Traditional Computer Aided Design (CAD) software has

undergone rapid transformation and has evolved into an

industry commodity. Technological progress enabled CAD

software to incorporate engineering know-how into the

design process and develop Product Data Management

(PDM) systems. CAD models were further integrated

forward in the design cycle into analysis and manufacturing

to develop Computer Aided Engineering (CAE) tools.

Rapid development in each of these areas resulted in a lot of

‘pockets’ of automation. Currently, all of these ‘pockets’ are

being integrated by Product Lifecycle Management (PLM)

systems thereby producing a completely digital design

through manufacturing solution.
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Conservative estimates suggest that more than 75% of

design activity comprises case-based design, i.e. reuse of

previous design knowledge to address a new design problem

[1]. Most PLM systems address the issue of reuse by

searching for keywords in filenames, part numbers or

context attached to the CAD model. However, this method

is not robust primarily because of the following reasons:
1.
 All models will not have a well-defined attached context.
2.
 Keywords such as project names or part names may be

unknown to the user.
3.
 Context may be too narrow or too broad to retrieve

relevant models.
4.
 Context changes with time—such as when designers or

naming conventions change.

Design reuse spans across the entire product lifecycle as

shown in Fig. 1. Design reuse includes not only the CAD

design but also of physical inventories such as tooling or

other knowledge such as cost data and lead time

information. Clearly, effective deployment of a knowledge

mining system that will enable knowledge-reuse would

require a combination of text and shape-based searching.
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Fig. 1. Knowledge-reuse across the Product Lifecycle.
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Significant benefits of design reuse include:
1.
 Reduction of variability, leading to lesser quality and

warranty problems.
2.
 Eliminating unnecessary parts, thus increasing inventory

turnovers.
3.
 Elimination of downstream activities such as testing and

verification and prototyping.
4.
 Uniform engineering specifications, leading towards

standardization.

A significant amount of knowledge generated during

design and manufacturing is associated with 3D CAD

data. Most of this information (context) is in the form of

documents, images and text. From the viewpoint of design

engineers who want to reuse design knowledge, ‘similar

products’ usually means those designs that have ‘similar’

attributes such as shape, materials, processes, tolerances

and applications. Among these attributes, shape is the

most complex to compare and evaluate. In addition, the

3D shape of an object transcends language and is an

unambiguous representation of an engineering artifact

and is tightly coupled with other engineering information

such as analysis and manufacturing information. Hence,

a search system which is capable of retrieving similar

3D models based on their shape will retrieve shape

and related knowledge that would not be discovered

by other means. Furthermore, shape is one of the

factors that significantly influence decision-making and

analysis. Thus, we focus our research on developing

efficient and effective 3D engineering shape search for

design reuse. This paper describes the related literature

and experimental results of a 3D engineering shape search

system.
2. Literature survey

The past years have seen limited attempts in searching

for 3D CAD models. Almost all related methods for

matching 3D shapes decompose a shape into a signature.

An extensive review of related methods is available in [2,3].

Based on the methods used to convert a shape to a signature,

they can be classified into the following categories:
1.
 Invariant/descriptor-based. These methods use invar-

iants or descriptors of the 3D shape such as volume,

surface area, aspect ratio, higher order moments or

moment invariants as signatures [4–6].
2.
 Harmonics-based. These approaches use a set of

harmonic functions of a shape as its signature. Spherical

or Fourier functions are usually used to decompose a

discrete 3D model into an approximate sum of its (first n)

harmonic components [7–9].
3.
 Statistics/probability-based. Osada et al. [10] use shape

functions and construct a shape distribution by random

sampling of points. Ankerst et al. [11] use shape

histograms to approximate and search for a 3D model.
4.
 3D object recognition-based. Some 3D object recog-

nition approaches that have been used for 3D shape

searching are Aspect Graphs [12], Spin Images [13], and

Geometric Hashing [14].
5.
 Graph-based. Graph-based approaches have employed

subgraph isomorphism for matching B-Rep graphs [15,

16], matching eigenvalues of a model signature

graph [17] constructed from the B-Rep graph [18–21].

A multi-resolution Reeb graph that captures the topology

of a part is proposed in [22].
6.
 Feature recognition (FR)-based. Ramesh et al. [23]

decompose a part into cells which are further processed
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to identify machining features and their spatial relation-

ships to calculate similarity between parts. Ascher et al.

[24] simplify parts into maximal feature subgraphs

(MFSG) which are matched to obtain a similarity

measure. Other FR-based methods are discussed in

[25–28].
7.
 Group Technology (GT)-based. A two-step Group

Technology method was developed in [29] to compare

similarity between parts. A Type Abstraction Hierarchy

(TAH) was proposed in [30] as an alternative to GT.

Invariant/descriptor-based and Harmonic-based

methods, while being computationally efficient, are unable

to discriminate among dissimilar shapes. Statistics/prob-

ability-based methods have a tradeoff between compu-

tational cost and number of sampled points. Sampling a

lower number of points leads to very low accuracy. 3D

object recognition-based methods have been tested for

limited shapes and have high storage/computational costs.

Graph-based methods are intractable for large graphs

because of the NP-completeness of graph/subgraph-match-

ing problems. Feature Recognition-based methods do not

decompose shapes uniquely. Additionally, they may require

human intervention. Group Technology-based methods are

not robust or require extensive human input. In summary,

most previous approaches are either granular (categories

4–6) or lumped (categories 1, 2, 3, 7). Granular approaches

represent the shape in great detail making the search

intractable, while lumped approaches combine all shape

characteristics into a single quantity. Furthermore, they do

not address the problem of reducing the semantic gap and

are not scalable. The input to most systems is a detailed

model, which is unrealistic in an engineering design

situation. Depending on the stage of design, the

designer may not know the detailed shape of the model

he/she is searching for. Feature vectors and similarity

metrics are predefined within most systems, thus making it

impossible for the user to define a custom similarity

measure. Importantly, an application domain is not

considered in most methods. The notion of similarity for

engineering shapes is cognitively different than that for

other shapes.

Based on our discussions with personnel from design,

manufacturing, and cognitive psychology, we confirmed

that a universal similarity metric is impossible to formulate.

Similarity is an application-driven, user-perceived notion.

Our discussions also helped us to generate important criteria

for a shape-based search system as shown below:
1.
 Sensitivity. The system must be sensitive to large

variations in shape. However, it must also be invariant

to trivial perturbations in shape.
2.
 Similarity measure. We treat similarity as a customizable

user decision. A user can construct a similarity metric

‘on-the-fly’ and be able to change it real-time after

looking at preliminary results.
3.
 Efficiency. The algorithms developed for performing

similarity searches must be computationally efficient.

Although database indexing could take time, subsequent

processing and searching should be efficient.
4.
 Effectiveness. The system must be effective enough to

find the relevant results in a limited number of retrieved

models. This is related to reducing the ‘semantic gap’

between the user’s similarity notion and the database

similarity metric.
5.
 Global vs. local. We also found that most users would

like to know which local areas of two parts were similar

or dissimilar. This requires that the representation should

capture and allow search based not only on the global

shape attributes, but also local attributes.
6.
 Query interface. The query interface must allow for

multiple modes of inputs—quick, approximate shape

creation through sketching, selecting a query model from

a cluster of parts and construction of a user-driven

similarity metric.
3. System architecture and search process

Based on the criteria described in Section 2, we

developed a three tier Client–Server–Database architecture

(Fig. 2) for a shape-based search system that uses two types

of shape representations (global feature vectors and skeletal

graphs) to capture the global and local shape of the 3D

model. The Client end consists mainly of the user interface

(UI), which enables query creation and display of results.

The Server side takes in the shape input from the Client and

converts it into multiple representations (voxel, skeleton,

feature vectors and skeletal graphs), which are then stored

into the Database for subsequent search and reuse.

3.1. User interface

The function of the user interface (UI) is to allow a user

to browse the database, compose a custom query and to

display the search results The primary function of the UI is

to enable the following user interactions:
1.
 Query-by-example (QBE). QBE is a method of query

creation that allows a user to search for 3D models based

on an example in the form of a 3D model selected from the

database. A query is initiated by choosing a part most

similar to that the user desires. Part choice will be enabled

by a user interface that will enable a user to ‘drill down’

through clusters of similar parts to find a part to initiate the

search process (shown by the dashed-dotted line in Fig. 2).
2.
 Query-by-sketching (QBS). QBS is a query initiated by

sketching an approximate 3D model, the user is interested

in searching for (shown by the thick dashed line in Fig. 2).

Any commercial CAD system can be used to generate

the rough sketch. The rough sketch from a user only needs

to capture the important features of the overall shape of
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the 3D model. The reason for allowing a rough 3D sketch

interface is for the fact that engineering models tend to be

complex and are often difficult to reconstruct from 2D

projection-based sketch-interfaces as provided in most

3D shape search systems (such as in [7]).
3.
 Feature vector choice interface. The search system

generates multiple feature vectors for the same 3D model.

Each feature vector captures different characteristics of

the 3D shape. A user can combine or switch between

different feature vectors dynamically during the search

process. Depending on the user’s notion of similarity, the

search can be ‘reconfigured’ until the user is satisfied.
4.
 Relevance feedback interface. The search system also

allows the user to provide feedback to the system

regarding the relevant and irrelevant models from a

given search result by clicking on the images. A neural

network-based algorithm is used to learn the weights of the

similarity metric for subsequent searches, thereby redu-

cing the semantic gap between the user and the system.
3.2. Server

In this section we explain the functionalities of the

server. The first step in converting 3D models to

a searchable representation is to normalize the model into

a canonical form independent of position, orientation and
scaling. Subsequently, two types of shape representations

are extracted from the normalized model: Global Feature

vectors and Skeletal graph representation. The skeleton

graph is obtained through a series of operations on the

normalized model: voxelization (Section 3.2.1), skeletoni-

zation (Section 3.2.2), and skeletal graph extraction (Section

3.2.3). However, the feature vectors are extracted from the

model after each such operation. While skeletal graphs are

explained in detail in Section 3.2.3, the feature vectors used

in this paper are explained in Section 3.2.4.
3.2.1. Voxelization

Voxelization is defined as the process of converting a

geometric representation of a synthetic model into a set of

voxels (volume elements) that best represents the synthetic

model within the discrete model space. In recent years, a

number of curve, surface and polygon mesh voxelization

algorithms have been proposed. Most algorithms provide

efficient ways to extend 2D scan conversion methods to the

3D domain. The important difference between 2D scan

conversion and voxelization is that voxelization is

decoupled from the rendering process and hence is a one-

time process. The most dominant solid representation

methods are Boundary Representation (B-Rep) and Con-

structive Solid Geometry (CSG). B-Rep describes a part in

terms of its vertices, edges and faces. CSG describes the part
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in terms of a set of Boolean operations applied to primitive

geometric entities such as cubes and cylinders.

It is difficult to voxelize a B-Rep solid because the

interior is not explicitly defined. Except for the point-

classification method proposed in [32], there has not been

any efficient voxelization method proposed for B-Rep

solids. However, advances in parallel computation, hard-

ware and computational power have made voxelization of

B-Rep solids almost real-time. Most 3D CAD systems such

as Pro/Engineere, SolidWorkse and IDEASe use a B-Rep

representation as their internal data structure. Furthermore,

there is no unique CSG representation standard for a part.

Therefore, in this paper, we only consider B-Rep models

since most engineering parts are either available in B-Rep

formats or can be easily translated into a neutral B-Rep

representation such as STEP.
3.2.2. Skeletonization

The notion of a skeleton was introduced by Blum [33].

Skeletonization is the process of extracting a skeleton

from a 3D binary image (voxel model). The model can

be converted into a binary 3D digital model. However,

in digital spaces, only an approximation to the ‘true

skeleton’ can be extracted. The two requirements for a

skeleton are:
1.
 Topological. A skeleton must retain the topology of the

original object.
2.
 Geometrical. A skeleton must be in the ‘middle’ of the

original object and must be invariant to translation,

rotation and scaling.

The three major skeletonization techniques are:
1.
 Voronoi-based. The Voronoi diagram of a set of discrete

points (generating points) is the partition of the given

space into cells. If the density of boundary points of the

3D image goes to infinity, then the corresponding

Voronoi diagram converges to the skeleton. The exact

Euclidean skeleton is usually approximated by a

subgraph of the Voronoi diagram [34].
2.
 Distance transform-based. Distance criteria such as four-

neighbor (city block), eight-neighbor (chessboard) or

(3,4) chamfer distance are used to convert a 3D image into

a distance map representing distances from object

boundaries. The local extrema on the distance map appear

as ridges and they are detected as skeletal points [35].
3.
 Thinning. Thinning is an iterative object reduction

technique for extracting skeletons in digital spaces. It

can be used to generate approximate medial surfaces or

medial axes of the 3D image [36]. Points in the image are

deleted if they satisfy deletion conditions that preserve

topology.

We choose thinning as our preferred skeletonization

method because it offers advantages over distance transform
and Voronoi-based skeletons. Distance transform skeletons

satisfy ‘geometrical’ conditions but may not satisfy

‘topological’ conditions. Voronoi-based skeletons satisfy

both requirements, but are very expensive to compute

especially for realistic engineering models. Furthermore,

Voronoi skeletons have unwanted appendages, which

require pruning as an additional process. Thinning satisfies

the topological requirements but does not always satisfy

geometrical requirements. However, for our application,

topological correctness is more important than geometrical

correctness. We use the skeletonization algorithm described

in [22].

3.2.3. Skeletal graph generation

The skeleton is converted into a hierarchical skeletal

graph for storing in the database. This graph can be analyzed

at different levels depending on the information content.

Previous approaches have converted a skeleton into a voxel

graph [37] or into a skeleton tree [38]. We convert the

skeleton into a skeletal graph made up of the following basic

skeletal entities:
1.
 Node—the voxel situated at the ends of the edges
2.
 Edge—set of voxels forming a single geometric entity
3.
 Loop—one or more edges forming a closed entity

Each edge in the skeleton translates into an independent

geometric entity giving shape to the model in physical space.

Similarly, each loop represents a hole in the 3D model. For

example, if a user wants to search for models with holes, it

can be completed by searching for graphs with loops. Thus

the skeletal graph is more physically relevant than feature

relationship graphs, but simpler than B-Rep graphs.

A skeleton marching algorithm is used to identify the

basic entities form the skeleton and to construct the skeletal

graph. The algorithm identifies edges and simple loops in

the skeleton. Loops, which do not share any edge or node

with the other loops, are called simple loops. To get non-

simple loops in the skeleton, the skeleton is analyzed based

on the depth first technique. Thus, the geometry of the 3D

model is captured in the individual entities of the skeleton

and the topology in the skeletal graph.

3.2.4. Feature vector extraction

A 3D model is converted into a set of feature vectors for

database searching. We extract the following shape

descriptors for a 3D model:
(a)
 Moments/invariants. The three principal moments of

the 3D model are extracted using the ACIS API and

stored as a feature vector. Further, the three second-

order moment invariants for the model are also stored as

a feature vector. Moment/invariants are by nature

independent of orientation. For every voxel in

the model translation, rotational and scale invariant

second-order moments are calculated as described
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below

klmn Z

Ð ÐN
KN

Ð
xlymznrðx; y; zÞdx dy dz

m5=3
000

; l Cm Cn Z 2

where mlmn are central moments after translation.The

three moment invariants that are calculated are:

I1 Zk200 Ck020 Ck002;

I2 Zk002k200 Ck002k020 Ck200k002 Kk2
101 Kk2

011 Kk2
110;

I3 Zk200k020k002 C2k110k011k101 Ck2
101k020 Kk2

011k200

Kk2
110k002
(b)
 Geometry parameters. The geometry parameters stored

as a feature vector are the two aspect ratios for the

bounding box, model surface area, model volume and

the ratio of surface area to volume.
(c)
 Voxelization parameters. The voxel size and the scaling

factor obtained during the normalization process are

stored as a feature vector.
(d)
 Graph parameters. The number of loops, edges and

nodes in a skeletal graph is characteristic of the shape of

the 3D model. We store them as a feature vector. Further,

the different topological relationships in the skeletal

graph like the number of loop–loop, edge–edge and loop–

edge connections are also stored as a feature vector.
3.3. Database

A similarity measure is a function for quantifying the

similarity between two models. It takes the feature vectors

of the query model and that of a model in the database and

outputs a real number that reflects the degree of similarity

between the two models. It is preferable that similarity

measures satisfy the metric axioms [39,40] as follows.

Let S be a set of objects, a metric on S is a function

d : S!S/R, which satisfies the following metric axioms,

for all x, y, z2S

dðx; xÞ Z 0; dðx; yÞ Z 00x Z y;

dðx; yÞCdðx; zÞRdðy; zÞ; dðx; yÞR0; dðx; yÞ Z dðy; xÞ

We use the Euclidean distance between points in feature

space to indirectly represent the similarity measure. In other

words, larger the distance between two models the lesser the

similarity. Clearly, this similarity measure is a metric and is

the primary measure of similarity for models based on

features.
3.3.1. Database indexing

Index structures are used to speed up searching in large

databases, and the design of these structures is a critical
issue for any realistic 3D shape search system. The

logarithmic query time of BC trees is in part responsible

for the success of relational databases [41]. However, the

BC tree index is basically a one-dimensional index

structure, which orders the data records by one attribute at

a time. This one-dimensional index structure is not sufficient

for 3D shape search systems. The fundamental problem is

that the feature vectors representing 3D models are complex

data types. Searching is usually based on overall similarity

(similarity query) rather than the similarity of individual

attributes (attribute query). We have to use all the attributes

simultaneously to determine the similarity. In other words,

we cannot discard a model from the candidate list only

because some attributes do not match the query model.

Thus, in order to search for similar 3D models efficiently,

we need an index structure with properties such that:
1.
 It is a multi-dimensional index. The multi-dimensional

index arranges the models using all the feature elements,

and
2.
 It groups similar models and puts them in the same node

or contiguous index nodes. This grouping can reduce the

disk I/O time during search operations.

R-tree-based multi-dimensional indexes have been

extensively studied for content-based image retrieval. In

such an index, points in feature space are clustered into

groups, while a group is represented by a bounding

rectangle/hyper-rectangle containing the points. The bound-

ing hyper-rectangle is a tight bounding box that is

represented by the coordinates of its corners. To answer a

query, the query point is compared with the bounding box in

order to prune the sub-tree rooted at this hyper-rectangle,

using a nearest-neighbor search. Therefore, the R-tree index

satisfies the requirements of the similarity index listed

above. The leaf nodes contain pointers to 3D models. The

search starts at the root and is directed by internal node to

the leaf node. The tree structure is similar to a BC tree;

however, the criterion to arrange the records is totally

different from that of BC trees.
3.3.2. Graph-based indexing

In addition to similarities between feature vectors, we

also investigate similarity based on skeletal graphs. Skeletal

graphs are undirected entity graphs and are represented as

adjacency matrices. The adjacency matrix is formulated to

capture the structural properties of the skeleton, such as

loop–loop, edge–loop connections, etc. This representation

reflects the topology and the high-level geometry of the

skeletons.

The goal of our search system is to retrieve all models

that are ‘similar’ and not only those that match exactly with

the query model. In graph similarity search, this translates to

finding models whose skeletons have isomorphism as well

as subgraph isomorphism with the query model. Traditional

exact approaches [42] for graph comparison lead to an
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NP-complete problem. It is infeasible to efficiently find

a solution except for small graphs (typically 30–50 nodes).

Therefore, large graphs have to be preprocessed

before comparison [43]. Since the skeletonization of

3D models produces graphs of very small size, we

are able to considerably reduce indexing and search time

for a large number of parts. More than 70% of the 150

models in our database have skeletons with eight entities

or less.

Skeletal graphs are indexed in the database based on a

decision-tree-based approach described in [43]. The small

sizes of our skeletal graphs prove to be inexpensive in terms

of indexing time and space requirements for this algorithm.

Our system uses a rudimentary similarity measure, which is

defined as the ratio of the number of entities that match

between two graphs (say, GA and GB) to the size of the larger

of the two graphs

SimilarityðGA;GBÞ Z
# of Matching Entities

MaxðjGAj; jGBjÞ

� �
!100

This similarity measure is a metric since it satisfies all the

metric axioms described earlier. However, this measure

does not take into account the relative sizes of the skeletal

entities in determining similarity, and is not refined enough

for finer comparison. We are studying the use of additional

geometric measures to describe the local properties of the

3D model. Some of these measures include the lengths of

the edge entities, average circumference and diameters of

loop entities, and the tangential angle between connected

entities at the point of intersection.
3.3.3. Relevance feedback

The semantic gap and subjectivity of similarity make it

difficult to correctly retrieve similar models for a user.

Relevance feedback [44] is used to train the system to

reconfigure its similarity definition to reflect user’s

preference so as to bridge the ‘semantic gap of similarity’.

This reconfiguration is applied on the low-level feature

vectors. However, it is impossible for a user to directly

adjust the weights of low-level feature elements. The

method to circumvent this problem is to present search

results graphically to a user, ask the user to evaluate the

search results, and give feedback to the system. The system,

in turn, identifies patterns in the user’s feedback and adjusts

the weights accordingly. Thus a user just deals with the

‘high-level’ models instead of ‘low-level’ features.

The procedure of relevance feedback consists of the

following steps:
(a)
 Database query. When the system retrieves some

models based on the query example, it will order

them by similarity measure of feature vectors and

presents them to the user.
(b)
 Relevance feedback. Users classify them into relevant

and irrelevant groups and inform the system.
(c)
 Query reinterpretation and reconfiguration. The sys-

tem, in turn, reconfigures itself to reflect the user’s

preference, reinterpret user’s intention and performs the

search again.
(d)
 Repeat query. This process iterates until either the user

is satisfied or the system cannot improve the results

further.
We utilize user’s relevance feedback for updating the

query point to represent user’s query intent. After being

presented the search results, the user is given an option to

identify the relevant and irrelevant models. In query

reinterpretation, the query neighborhood is moved to the

centroid of the relevant models. The new query better

represents the user’s search intention. The search based on

the new query can find more relevant models that were not

identified by the previous search. We are also investigating

other approaches such as weight reconfiguration in

conjunction with neural networks.

3.3.4. Clustering

In order to enable a user to quickly search a model, our

system is designed to provide an easy to browse

hierarchical Query-by-example interface as described

earlier. This interface will use unsupervised clustering

algorithms to form hierarchical similarity-based clusters.

Traditionally, there are three major types of clustering

algorithms: (1) hierarchical (2) K-means clustering and

(3) Self-Organizing Maps (SOMs). We have used SOMs

for forming the cluster maps because they: (1) are

amenable to visualization, (2) allow easy interpretation,

(3) allow dynamic updating, and (4) are simple to

implement. A self-organizing map (SOM) is a clustering

algorithm based on a competitive learning approach [45].

It consists of a number of interconnected computational

units called neurons, which are laid in either a hexagonal

or rectangular topology. As new instances of 3D models

are presented to the network, the positions of neurons are

updated such that similar neurons move closer while

dissimilar neurons move away from each other. Also,

similar models are grouped in neighboring neurons, and

dissimilar models are indexed in distant neurons.
4. Results

We designed and implemented experiments to test our

approaches to deal with challenges for 3D shape search

systems, i.e. subjectivity of shape similarity, semantic gap

and efficiency. The tests were conducted on a DELL

Pentium 2.66 GHz PC with 1.0 GB RAM. The voxelization

and skeletonization algorithms were implemented in CCC
with ACIS libraries, while the database systems were

implemented in Java. In actual deployment, the database

will be constantly updated if a change is made to the CAD

model, and the server side processes of voxelization,
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skeletonization, skeletal graph and feature vector extraction

are repeated.

We tested the ability of the multi-dimensional R-tree

index as well as SOMs to cluster similar models with a

dataset of real-world 3D CAD models, while the efficiency

of search operations using the R-tree index was tested using

both synthetic and the real-world datasets. The real-world

dataset currently consists of about 150 engineering CAD

models. Although this database is being expanded, the size

is still relatively small as compared to typical design

repositories. We therefore generated synthetic datasets for

which the sizes vary from 50 to 1,000,000 data records. The

effects of database size, dimensionality of feature vector, and

node volume on the efficiency of the feature vector-based

search were studied with the synthetic datasets. The

synthetic database was created using a random number

generator. The utility of relevance feedback to enable a

customizable similarity definition was tested with the real-

world dataset.
4.1. Skeletal graph generation and matching

The decision-tree-based index for graph matching was

populated with skeleton graphs of the real-world dataset.

Fig. 3 shows results for a query on the database. The search

results are presented with the rank and similarity values for

each retrieved model. Although, the system retrieves all the

relevant models in the database, it also retrieves irrelevant

parts, since there is no filtering mechanism to reduce the

search space. Enriching the skeletal graph structure with

more information such as local properties (volume, para-

metric equations and moments) and classification of edges

into straight and curved types will increase the precision of

our system. As the database is scaled to have more parts, a

filtering mechanism needs to be designed. Due to

the presence of rich geometric information in our skeletal

graphs, we will be able to reduce the search space.
4.2. Feature-based database indexing

An R-tree-based multi-dimensional index was also built

for the real-world dataset. We used the moment invariants as

the feature vector for search. For this database, the index has

62 nodes and four levels, with a maximum of five models in
Fig. 3. Query results for skeletal graph-based searching.
each node. The results of a query for this database

are presented in Fig. 6 of Section 4.3. For a synthetic

database with 1,000,000 records, the R-tree has 386,829

nodes and 11 levels.

The primary indicators of the search efficiency are the

number of visited nodes and ratio of visited nodes during a

search operation. The visited nodes are loaded into the

temporary memory (RAM) from the database during search

operations. The query model is compared with the models in

the retrieved node to determine the search direction or to

compute similarity. The ratio of visited nodes is the ratio of

the total number of nodes to the number of visited nodes.

Since disk I/O is the bottleneck for current computer

systems, the number of nodes visited directly translates to

the number of disk I/O operations, which directly impacts

overall performance. The ratio of visited nodes indicates the

improvement that R-tree achieves compared to an exhaus-

tive search. Figs. 4 and 5 show some results from testing

synthetic data sets with different sizes and dimensionality,

respectively, when the node volume is five. Dimensionality

is the number of feature elements that describe a 3D model.
Fig. 5. Numbers of visited nodes vs. dimensionality and database size.



Fig. 6. Search results before relevance feedback. The top left model is the

query.
Fig. 8. Models clustered in the R-tree nodes.
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4.3. Relevance feedback

Figs. 6 and 7 are the models retrieved by the search

system before and after query reconstruction based on

relevance feedback. The top-left model is the query

model. These results were obtained by using moment

invariants as the feature vector. It can be seen from Fig. 7

that the similarity is recomputed and the system retrieves

a larger number of similar models after relevance

feedback than before. These results illustrate the effec-

tiveness of relevance feedback in retrieving similar parts

and reducing the semantic gap between the user and the

feature space.
4.4. Database clustering

The multi-dimensional R-tree structure indexes models

based on their similarity into the same or contiguous nodes.

Fig. 8 presents a few examples of the 3D models clustered

in the nodes of the R-tree. However, it must be noted that

R-tree is not optimized for clustering. Therefore, in this

study, self-organizing maps were studied for clustering 3D

engineering parts based on the second-order moment

invariants. The architecture of the SOM consists of

64 nodes in an 8!8 hexagonal topology, while training

was continued until 800 iterations.

Fig. 9 illustrates three sample nodes that were generated

by the Self-Organizing Map (SOM). The models grouped by
Fig. 7. Search results after relevance feedback. The top left model is the

query.
the SOM in each of the three sample nodes are similar.

Due to space constraints we are unable to present all the

results from the two methods for comparison. In the future,

we will use data clustering algorithms to group similar

models into clusters prior to insertion in the R-tree. This will

improve the performance of the multi-dimensional index.

We will also explore methods to cluster models based on the

skeletal graph representations.
5. Discussion

Moment-based shape descriptors and aspect ratio have

been used for 3D shape search systems [5,9], however,

skeletal graph-based techniques have not been explored in

this context. We have used these two representations to

capture the global and local aspects of the shape,

respectively. While the former representations describe

the global shape, they do not capture the global topology of

the 3D model. Skeletal graphs, on the other hand, are

topology-preserving and also have the ability to capture the

local geometric properties thereby satisfying Criteria 4 and

5 as observed in Section 2. In addition, the skeletal graphs

are invariant to trivial perturbations in the shape of the 3D

model (Criterion 1).

One of the principal advantages of skeletal graph-

based approach over traditional global methods is
Fig. 9. Models clustered in SOM nodes.



Fig. 10. Example skeletons for 3D part models.
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that skeletal graphs preserve the topology of the 3D

model, thereby providing meaning to shape search in

the engineering context. For example, the handle model

in Fig. 10(a) is reduced to two entities, namely, a loop

and an edge. The length of the edge characterizes the

length of the handle. Similarly, in Fig. 10(b)–(d) the two

loop entities at both ends in the skeleton indicate bolt-

holes for securing the part. It must, however, be noted

that the resolution of voxelization has serious impact on

the skeleton graph-based matching. For example,

although parts in Fig. 10(c) and (d) have similar overall

shape and functionality, the resolutions are different,

thereby producing ‘un-intuitive’ skeleton for Fig. 10(d).

In the future, we will develop a multiple Level of Detail

(Multi-LOD) approach, where the skeleton of the part is

derived at different resolutions in order to capture

increasing levels of detail in the part, thereby increasing

the effectiveness of skeleton-based search. We observed

that at a higher resolution, the model in Fig. 10(d)

produces a skeleton graph with the same topology as for

the part in Fig. 10(c). This fact explains the reason for

the results in Fig. 3, where the part with rank 3 has

higher similarity (80%) to the query model than the other

two parts with ranks 4 and 5.

The R-tree-based index structure (Section 3.2.1)

addresses the efficiency criterion for feature vector-based

search (Criterion 3 in Section 2), while the decision-tree-

based index structure (Section 3.2.2) addresses this issue

for skeletal graph representation. However, it must be

noted that graph-based structures generally have higher

computational requirements with regards to time and

space for indexing as compared to feature vector-based

indexing.

The relevance feedback mechanism reduces the semantic

gap between the user and the system, thereby addressing the

effectiveness criteria (Criterion 4).

The Feature Vector Choice interface addresses Criteria 2

and 6, while the clustering mechanism was developed to

explicitly address Criterion 6.

The framework developed in this paper allows us to

easily incorporate the different shape representation

available in literature for testing and evaluation. In the

future, we will benchmark the effectiveness of other shape
representation methods available in literature against our

approach.
6. Conclusions

The paper has introduced the database and related

techniques to support a shape search system for PLM

systems. Since our system level representation is based on a

neutral voxel format, changes in standards such as CAD

formats and parametric models will not affect the search

process.

Skeletal graphs, which capture topological properties of

3D models, were used for searching 3D models utilizing

graph-matching algorithms. Parts retrieved from various

queries were ranked based on a similarity measure

developed in the study. To the best of our knowledge, this

paper is the first to demonstrate the feasibility of using

skeletal graphs for 3D shape search.

An R-tree-based multi-dimensional indexing tech-

nique was used to speed up the content-based 3D shape

retrieval effectively. Preliminary testing on a synthetic

database showed the scalability of the system. To

improve the similarity indexing ability of the R-tree, we

investigated the use of clustering algorithms to pre-

classify the models. Preliminary results show that the

clustering algorithms perform better than the R-tree in

grouping similar models. A relevance feedback mech-

anism, namely query reconstruction, was used to

improve the effectiveness of the search system.

Additional tests on large databases are required before

more conclusions can be drawn.

The system performance will be tested against other

available approaches in the 3D shape search domain.

Furthermore, a precision vs. recall study will be performed.

Additionally, methods for searching for local shape features

will be developed.
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