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ABSTRACT: The changes in shapes of fiber-reinforced composite beams, plates and
shells affected by embedded piezoelectric actuators were investigated. An analytical
method was developed to determine the voltages needed to achieve a specified desired
shape. The method is formulated on the basis of mathematical models using two-
dimensional, linear, shallow shell theory including transverse shear effects which are im-
portant in the case of sandwich construction. The solution technique is a minimization of
an error function which is a measure of the difference between the deformed shape caused
by the application of voltages and the desired shape. A computationally efficient, user-
friendly computer code was written which is suitable for performing the numerical
calculations. The code, designated as SHAPE2, gives the voltages needed to achieve
specified changes in shape. To validate the method and the computer code, results gener-
ated by the code were compared to existing analytical and experimental results. The pre-
dictions provided by the SHAPE2 code were in excellent agreement with the results of the

other analyses and data.

1. INTRODUCTION

URING THE COURSE of this investigation two analytical models were devel-

L oped which are applicable to two different types of problems (Figure 1 in

Reference [1]). The first model is presented in Reference [1], and is for calculating

the changes in shapes of beams, plates and shells when the voltages applied to the

piezoelectric actuators are given. The second model is presented in this paper,

and is for determining the voltages needed to achieve a prescribed shape.

A brief summary of previous work as it applies to piezoelectric actuator in-

duced shape control appears in a companion paper [1]. All of the methods pre-
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sented provide, for each specific problem, the change in shape under a given ap-

plied voltage. None of them can handle the "inverse problem" in which the

voltage needed to achieve a specified shape change is to be determined.

2. PROBLEM STATEMENT

Here we consider the problem in which the original shape and actuator con-

figuration of a structure are known and a desired shape is specified (Problem 2

in Figure 1 in Reference [1]). It is desired to find the set of voltages needed which

must be applied to the piezoelectric actuators to achieve the prescribed shape.

This type of information is needed in the operation of piezoelectric actuator

systems, namely in determining the magnitudes of voltages required for efficient

shape control.

We consider six different structural elements: (1) straight beam, (2) curved

beam (3) rectangular plate, (4) circular plate, (5) rectangular shell, and (6) circu-

lar shell (Figure 2 in Reference [1]). The element considered may be supported

along any of its edges or at one or more locations on the top and bottom surfaces.

The supports may be "built-in," "fixed" or "hinged," as illustrated in Figure 3 in

Reference [1]. Each of these elements may be a "solid" laminate, or may be of

sandwich construction consisting of an orthotropic core covered by two face

sheets. The solid laminate or the face sheets may be made of a single material or

of different materials bonded together. The layers (plies) may be arranged in any

sequence, and the thicknesses of the layers may be different. Each layer may be

isotropic or orthotropic, the latter including continuous unidirectional fiber-

reinforced composites. Perfect bonding is assumed to exist between the layers

themselves and between the face sheets and the core.

Piezoelectric actuators may be mounted on the surfaces or embedded inside the

material (Figure 4 in Reference [1]). These actuators may be isotropic or ortho-

tropic and may either be continuous extending over the entire area of the element,

or they may be applied in discrete patches. The continuous actuators may be

located on the surface or at one or more locations inside the material. Rectan-

gular or circular patches of arbitrary thickness can only be on the top or bottom

surfaces.

Upon the application of a voltage to each piezoelectric actuator, the actuator

exerts a force on the material, changing the shape of the structure. The objective

of this investigation was to determine the applied voltage required to achieve a

prescribed change in shape.

The shape of the element is described via a suitably chosen "reference" surface.

The shape of this reference surface is defined by a single z o-coordinate of every

point on the surface, as illustrated in Figure 5 in Reference [1]. Note that the

zo-coordinate is perpendicular to an x-y plane. The shape must be such that the
zo-coordinate of every point can be specified by a polynomial function in x and y

zo	E aix"y" ,	(1)

where a, are constants and m, and n, are integers equal to or greater than zero.
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3. METHOD OF ANALYSIS

In this section we consider the problem in which the element construction (face

sheet lay-up, core thickness, and number and location of piezoelectric actuators)

is given and remains constant. The element is rigidly supported at one or more

points or is free-standing (not supported at all). The original shape and the

desired new shape of the structural element are specified. It is required to find the

voltage which must be applied to each actuator to achieve the desired new shape.

In general, it is desired to apply as small a voltage as possible. Hence, the goal

is to find the smallest amount of voltage which results in the required shape.

The analysis is based on small deformation theory. Therefore, the specified

desired shape must be within the region of "small deformation" from the original

shape. Furthermore, the analysis uses the shape change of a reference surface

(Section 2). The desired shape is generally prescribed by the shape of the "top"

or "bottom" surface of the element. In this case, within the approximations used

in this study, the shapes of either the "top" or the "bottom" surface of the element

can be taken as the reference surface [2].

The analysis utilizes an x, y, and z Cartesian coordinate system with its origin

at a suitable reference point on the reference surface of the element (Figure 1).

This reference point is located either at a fixed support or, in the case of a free-

standing element, at an arbitrary point. At this reference point the linear and an-

gular displacements of the desired new shape and of the original shape are forced

to match.

3.1 Error Function A

As a starting point we assume that a given set of voltages is applied which

results in a change in the shape of the element (dashed line in Figure 2). We intro-

duce an error function which includes the difference between the intermediate

Intermediate Surface

z

Figure 1. Original surface, intermediate surface, and desired surface in the x-z plane.
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azo
dx

Original Surface

Figure 2. Illustration of the difference between the intermediate surface and the desired sur-

face in the x-z plane.

shape and the desired one and the total amount of voltage employed. The error

function has the form

A = FA, + A,	 (2)

where A, is proportional to the amount of voltage applied, A 2 is proportional to

the distance between the reference surface of the desired shape and the interme-

diate reference surface, and r is a weight factor. A has units of length', A,: volt-

age', A2 : length', and F: length'/voltage'. Generally we wish to affect the re-

quired shape change using the smallest amount of applied voltage. The objective

then is to make the error function A as small as possible such that the desired sur-

face and the intermediate surface are nearly identical (i.e., A2 0), and a mini-

mum amount of applied voltage is used (i.e., A, — 0).

In Equation (2), the function A, has the form

=	Aje
	

(3)
= I
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where e i is the voltage applied at the i th electric layer or patch of area A, , and n,,

is the total number of electric layers or patches. The factor F signifies the impor-
tance that is paid to the magnitude of the applied voltages. If the magnitude of the
applied voltages is of no concern (and any amount of voltage can be applied), F
is set to zero. If, on the other hand, as small amount of voltage as possible is to
be used, F is set to a high value (say, F = 1 x 10- 10 in2/V2).) The function A2

has the form

	

A2 =
	A2dydy	(4)

R

where it represents the element domain (Figure 6 in Reference [1]), and A repre-
sents the difference between the z-coordinate of a point on the reference surface
of the desired shape and the z-coordinate of a corresponding point on the interme-
diate reference surface.

The distance A is defined as (Figure 2)

A =	+ Oz.) —	+ Ozd..)	(5)

In order to understand each of the terms in Equation (5), consider a point A on
the original reference surface at (x.,y0 ) (Figure 2). z. is the z-coordinate of the
point A on the original reference surface. Oz o is the difference between the
z-coordinate of point A on the original reference surface, and the z-coordinate of
the corresponding point A' on the intermediate reference surface. Oz. may be ex-
pressed as (Figure 2)

az.	az.
Oz. = (u	+ v —

ay 
+	(6)

ax	A

where u, v, and w are the displacements of A. u is the displacement tangential to
the reference surface in the off-axis x-z plane, v is the displacement tangential to
the reference surface in the off-axis y-z plane, and w is the deflection normal to
the reference surface (Figure 6 in Reference [1]). za s is the z-coordinate of point
B on the desired reference surface at (x., yo ). The point on the desired reference
surface corresponding to point A' on the intermediate reference surface is point
A" located at (x. + Ox.,y. + (5Y.)• 6za,, is the difference between the z-coordi-
nates of points A " and B. It can be approximated by the first two terms of a Taylor
series expansion

,k s\	s

sides = 
ax Bax °	(

aZde

-(TiBby°

The distances Ox o and by. are the changes in the x- and y-coordinates between
points A " and B (Figure 2)

ax)A

	

Sy. = (u — w—ax) A	by. = (v — w —ay ) A

(7)

(8)
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For convenience, the following three parameters, which depend on the geome-

tries of the original and desired surfaces, are introduced

I	(azd.) (az.)	ay-\ (az.
=	

ax ti ax A k ay )B ay )A

(azo\	(azd \„

ax) A	ax 1B

n3 = azy„) A	( ades)

k ay B

With the use of these parameters, Equations (4) through (8) can be rearranged

to yield the following expression for A2

A, =	Rz. — zdos) + nov + ibu + ibvrilxdy	(10)

Until this point, the analysis presented applies to piezoelectric materials which

behave linearly or nonlinearly (Equations (11) and (16) in Reference [1]) with re-

spect to the applied voltages. In the analysis that follows, only piezoelectric

materials with a linear strain-voltage relationship (Equation (11) in Reference [1])

are considered. For these materials, the voltages may be factored out of the dis-

placements u, v, and w in Equation (10) by introducing the matrices fi, V, and

Tv. The components of the V, and W matrices are defined as follows. The dis-

placements u, v, and w are given by (see Table 3 in Reference [1]).

u = f u	v = g • v	w = h • w	 (11)

where f, g, and h are the vectors of the trial functions for the displacements u,
v, and w, respectively, and u, v, and w are the vectors of corresponding coeffi-

cients. If we now apply a unit voltage at the first piezoelectric actuator (with no

voltage at any other actuator) we obtain a set of u, v, and w displacements. The

components of the u, v, and w vectors thus obtained form the first column of the

6, V, and W matrices. The application of a voltage at the second piezoelectric

actuator (with no voltage at any other actuator) results in different u, v, and w dis-

placements. The components of the u, v, and w vectors thus obtained form the

second column of the a, V, and Tv matrices. The subsequent columns are

formed in a similar manner. Numerical values of the components of the ii, V,

and Tv matrices must be obtained by the analysis presented in Reference [1]. Note

that the desired shape is limited to the linear combination of the possible de-

formed shapes resulting from the trial functions. The analysis then minimizes A

and gives the "best" desired shape within this constraint.

712. = (9)
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Using the aforementioned notation, the error function A2 is written as

A2 =	[(z0 — Zdes) + ( 711hT + n 2 fii + ne)erchdy (12)
ii

where e is the vector containing the ri, voltages e, at every layer or patch. Note

that in the form written above, A2 is expressed as a function of e and not A as in

Equation (4).

3.2 Method of Solution 1

Inspection of Equations (3) and (12) reveals that both A i and A2 , and hence A,

can be expressed in terms of the applied voltages. Therefore, the objective to have

as small an error function as possible is achieved by minimizing A with respect

to the applied voltages e. This objective is accomplished when the following con-

dition is met

an
ae 

= o

By substituting Equations (3) and (12) into Equation (13) and by performing the

differentiation we obtain

R,,e — R„ = 0	 (14)

where L, and 11, 1 are defined in Table 1.

The unknown voltages required to achieve the desired shape are determined by

solving Equation (14) for e. The result is

e = R;",q1„	 (15)

The foregoing analysis is applicable when there are no temperature induced

changes in the shape and when rigid body motions are not permitted. The effects

of temperature are included in Reference [2].

The analysis pertaining to elements which are supported in such a way that

rigid body motion is feasible is presented below. This analysis is not only useful

when rigid body motion is feasible but also when the supports are fixed, and rigid

body motion is impossible. In this situation we have two choices, (1) to apply the

analysis presented above or (2) to assume that a rigid body motion is permitted,

perform the calculations as described in the next section (Section 3.3) then set the

resulting rigid body motion to zero. In most cases the latter approach will result

in a better approximation to the desired shape than the first approach.

3.3 Rigid Body Motions

In the foregoing analysis, the element was rigidly fixed at least at one point. In

this section we consider the case when the element is attached to one or more

(13)
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Table 1. Definitions of R e, and R.1.

Term	Definition

Re,	 TIT	lir thifdxdyiki

+ 2U T 1 fihno2dxdr7i

ft

+ 2V T	gThno,c/xdrW

12

+ U T	fT flOxdyli

Q

+ V T	gTgrOxdyV

CI

+ 2U T	frgnosdxdyV + rA

11

	

Rs1	 W

r

hr(zdes	— zoh,dxdy

	

+ U T	fr (zdes — zo)Thdxdy

	

1
+ V T	gr (zdes — zo)n,dxdy

where A is a diagonal matrix containing the areas A, of the electric
layers or patches

A,

0
0

A,

0
0

i.
0 0 Anel
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RIGID BODY	CHANGE IN

MOTION	SHAPE

DESIRED

•

•■

ORIGINAL

Figure 3. Illustration of the steps taken to achieve a desired shape. First the original shape
is translated and/or rotated. Then voltages are applied to cause a shape change.

supports which may impart a force to the element. This force may result in a rigid

body motion (translation and rotation) but not in a change in shape. Under this

circumstance the new location and shape of the element can be reached by a com-

bination of rigid body motion and change in shape (Figure 3). The rigid body

motion is described by the linear and angular displacements of an arbitrarily

chosen reference point R on the reference surface (C„ C,„ , 6C, B y , and in

Figure 4). In the analysis we strive to find the magnitudes of each of these six

Reference surface
before rigid body motion

R	
Reference surface

after rigid body motion
z

Translations
x-Rotation

or

X

V

y-Rotation z-Rotation

Figure 4. Linear and angular displacements of a reference point.
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Desired

Surface

z

z

Figure 5. Illustration of the reference point on the original surface and corresponding point

on the desired surface.

rigid body displacements as well as the minimum amount of voltage which must

be applied to each piezoelectric actuator to achieve the desired location and shape

of the element.

The analysis begins by choosing a reference point R on the original surface

which is the origin of the x-y-z coordinate system (Figure 5). The position of the

corresponding point on the desired surface is R'. Now we allow the original ref-

erence surface to undergo a rigid body translation in the x-y plane so that the ref-

erence point R stays in the plane and moves to R (Figure 5). The magnitude of

these translations are denoted, respectively, C and c . After this translation, R

(which now coincides with R) lies directly "underneath" R', meaning that R and

R' are on the same line perpendicular to the x-y plane. The point R is the origin

for a new x-y-z coordinate system where x=x—C,y=y— Cy , and z = z.

Now we assume that a given set of voltages is applied which results in a change

of shape denoted as Intermediate Surface 1 (dashed line a-b in Figure 6). In addi-

tion, we now include a given set of rigid body z-translation and rotations about

the x-, y-, and z-axes, which results in a new location and orientation of the in-

termediate surface (Intermediate Surface 2; dashed line c-d). The error function

A is again introduced; its form remains the same as in Equation (2)

A = FA i + A2	(16)
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A, is given by Equation (3) and is unaffected by the rigid body motion since it

only involves the magnitude of the voltages e. However, A2 must be modified

since the position of intermediate surface 2 includes the effects of the rigid body

motion. The form of A2 is the same as Equation (4) with A replaced by A.

A, =	A2disc/Y	 (17)
0

The distance A is defined as (Figure 7)

A = (z0 + 6i. + 60,0 — (Zus + bid., + aid..,,„)	(18)

The terms in Equation (18) may be understood by considering a point A on the

original surface located at (x0 ,y0 ) (Figure 7). zo is the z-coordinate of point A on

the original surface. 6z. is the difference between the z-coordinate of point A on

the original surface and the z-coordinate of the corresponding point A' on in-

termediate surface 1 (Figure 7). Oz. is obtained analogously to Equation (6)

	

az.	az.
6z„ = (u--+., + v, + ii)

	

ax	ay	A

6i.„ is the difference between the z-coordinate of the point A' on intermediate

surface 1 and the corresponding point A"' on intermediate surface 2. The form

of bz.„ is discussed subsequently. zd.s is the z-coordinate of point B on the

desired surface corresponding to point A. The point on the desired surface

corresponding to point A' on intermediate surface 1 is point A" located at

Intermediate Surface 1

Intermediate Surface 2

c \	Desired Surface

a

(19)

,

Original Surface
(after x & y translations)	

z

Figure 6. Original surface, intermediate surface 1, intermediate surface 2, and the desired

surface in the x-z plane.
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zo

z

Figure 7. Illustration of the difference between intermediate surface 1, intermediate surface
2, and the desired surface in the x-z plane.

(x0 + 6.xo ,y0 + 40). Sides is the difference between the z-coordinates of points
A" and B. Sides is approximated analogously to Equation (7)

aZdeS) 	(aZdeS) A

(Sz d0, — ( - Sx° + 	Sy°	 (20)
ax B	ay n

The distances Sx̂0 and byo are the changes in the xi and y-coordinates between
points A" and B

az°	az°
&X° = (u — w,	SY'. = (v — w,	 (21)

ax) A	ay)A

The point on the desired reference surface corresponding to point A"' is point

A "" located at (x0 + Sx° + Sxo„,y0 + Sy° + Sy°,). Sz des,, is the difference be-
tween the points A"" and A". As with Ozd.„ it can be approximated by the first
two terms of a Taylor series expansion

	

ozIsrb	(azdf	b	aidf oyAob

aX B	3Y B

The distances Sx̂orb and Sy the changes in the x- and Y.-coordinates between

points A "" and A" and are discussed subsequently. The derivatives in Equa-

tion (22) should be evaluated at A". However, we evaluate the derivatives at B.

This approximation is reasonable because points A" and B are close.

(22)
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In order to explain the forms of (5;„„ (5) 0,„, and Siorb , we must examine the
rigid body motions themselves. There are four possible rigid body motions re-
maining; one translation in the z-coordinate direction and three rotations, one
each about the coordinate axes x, y, and z. Each one of these remaining risid
body motions has associated with it a set of resulting displacements Sx„ ,b , Oyorb,

and Ozo,, . These displacements can be written as

(5x-„ ,„ = ,c b C rb	4.0„= 37 TbC,b	 = Z rb C rb	(23)

where x-b ,y,b, and z rb are vectors containing the X., y, and z displacements asso-
ciated with each of the rigid body motions.

0

0

z„,

yo

0

zo
rb =

0

x,

Z rry

1

— xo
0

(24)

C rb is the vector containing the as yet unknown magnitudes of each rigid body
motion

C rb =

Bs

oy

B,

(25)

The equations in (23) are summarized in Table 2. In this table, small rotation
angles are assumed so that sin 0 0 and cos 0 1. The subscript o refers to
the coordinates of point A in the x-y-z coordinate system on the original surface
after the x and y translations. With the aforementioned procedure for including
rigid body motions, four new unknown constants have been introduced into the
problem via the vector C rb •

The above equations apply when the piezoelectric material behavior is either
linear or nonlinear (Equations (11) and (16) in Reference [1]). We now restrict the
analysis to piezoelectric materials for which the strain-voltage relationship is

Table 2. Displacements associated with the

four remaining rigid body motions.

Motion Oii0„, biorb 4510,1,

z-Translation 0 0 Cz

Rotation about the is-axis 0 100z –Yoez

Rotation about the y-axis ioey 0 –40y

Rotation about the i-axis –Yoez ioe, 0
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linear. Then by using Equations (18) through (23) and the notation developed in

Section 3.1, Equation (12) may be rewritten

A2 =	 (io	ides)	01111W + ri 2	+ gV)e

	

az,„ T	aZa¢s T	12 j_•••J
(Z rb	 X rb	 y rb	rb axay

ax	ay

As before, A2 does not depend explicitly on	but does depend on e and C rb •

3.4 Method of Solution 2

The objective now is to minimize the total error function A with respect to the

applied voltages e and the rigid body motion coefficients C, . This minimization

is achieved by satisfying the following conditions

an	an

	

= o	
ac r„,	°

By substituting Equations (26) and (3) into Equation (27) and by performing the

differentiation the following expression is obtained

	

RRL,

Re,rb	e	Rb	Rrb l icrb i 	R:21 

where L, and	are defined in Table 1, and R—b, Rrb, and RA, are defined in

Table 3.

The unknown voltages and rigid body motion coefficients required to achieve

the desired shape are determined by solving Equation (28) for e and C H, . The

result is

(26)

(27)

(28)

Cer	 b = [ :7r	 b t

it s] _ 0
Rs2

(29)

The magnitudes of C and C, , the coefficients of the translations in the x- and

y-directions, are obtained from the difference between the x- and y-coordinates of

the points R' and R, respectively. As in Section 3.2, in these calculations the

desired shape is specified in terms of the shape of the reference surface.

3.5 Solution with Nonlinear Strain Voltage Material Behavior

Equations (12) and (26) apply when the strain-voltage relationship of the

piezoelectric material is linear. The analysis could be extended to include

piezoelectric materials with nonlinear strain-voltage behavior (Equation (16) in

Reference [1]) by minimizing the A function with respect to e (and, if applicable,



Shape Control of Composite Plates and Shells with Embedded Actuators. II.	473

Table 3. Definitions of Reirb, Rrb and R.2.

Term	Definition

I.Ti ,	hr (zb + ajar xTb + a ai kdes __7,-)
y .,, n,ch-ed9

	

aides	aides 

	

+ T	.1' fT (zb		icr +	19th) mdidY

	

-r	(3X	rb
f2

	

aides 	aide, T )

	

vT	g T

	

(z;„, + 	xth +	yth mdxdy
aX

	

aide,	aides ( Zrb	Xre	Yrb)
aX

(4, +
aide, T

aX Arb

aide, T)
ac, y„ dxdy

aides 
[(zre + a a7s xre +	yd,) (zdes – z.)dxdy

with respect to C,.,,) using a finite-difference quasi-Newton method such as that

discussed in Reference [3].

3.6 Numerical Implementation

Solutions to the aforementioned equations must be obtained by numerical

means. To generate numerical results, a user-friendly computer code, designated

as SHAPE2, was written. The SHAPE2 code uses the numerical integration

schemes discussed in Reference [2] to evaluate the integrals appearing in Tables
1 and 3.

4. VERIFICATION

In order to validate the model and the SHAPE2 computer code, results calcu-

lated by the code were compared to other analytical, numerical, and experi-

mental results. In these verifications, the initial shape and the desired final shape

were entered into the SHAPE2 code. The voltage needed to affect the change in

shape was then calculated. The required voltages thus obtained were compared

with voltages measured in tests or computed by other analytical means.

The following three problems were included in these comparisons:

Reirb

Rth

R52
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1. Cantilever, straight beam made of two continuous piezoelectric layers

2. Flat, rectangular, composite plate with two continuous piezoelectric layers

3. Composite cylindrical shell with one continuous piezoelectric layer

The numerical results generated by the SHAPE1 code were obtained using the

material properties listed in Table 5 in Reference [1].

The piezoelectric film behaves in such a way that the relationship between in-

duced strain and applied voltage is linear [4] (see Equation (11) in Reference [1])

and may be characterized by two material constants c1, 1 and d32 . The values of

these properties for KYNAR piezoelectric film are given in Reference [4] and are

included in Table 5 in Reference [1].

4.1 Cantilever, Piezoelectric Beam

We consider a 3.15 inch long, 0.394 inch wide and 0.00866 inch thick cantilever

beam made of two 0.00433 inch thick KYNAR piezoelectric film layers (Figure

16 in Reference [1]). The top layer is polarized in the direction of an applied volt-

age and the bottom layer is polarized in the direction opposite an applied voltage.

A voltage may be applied across the beam such that the top layer expands while

the bottom layer contracts causing a change in shape from an initially straight

beam to one whose shape can be described by the equation z = c x x 2 . The

final shape of the beam is defined by the constant c which depends on the magni-

tude of the applied voltage and may be calculated from the tip deflection. Lee and

Moon [5] reported experimentally measured tip deflections for several different

applied voltages. From these data the constant c was obtained and the final shape

was determined. This final shape and the originally flat shape were used by

SHAPE2 to predict the voltage needed to attain the prescribed shape change.

This procedure was repeated at five different voltages, and the resulting predic-

tions of SHAPE2 appear in Figure 8. The voltages predicted by SHAPE2 are in

excellent agreement with Lee and Moon's experimentally applied voltages.

4.2 Composite Plate

We consider a 6.0 inch by 4.0 inch T300/976 graphite/epoxy composite plate

with a [ + 30/ — 30], lay-up (Figure 17 in Reference [1]). There is a 0.004 inch

thick continuous layer of KYNAR piezoelectric film bonded to the top and bot-

tom surfaces. Each piezoelectric layer is mechanically isotropic but has ortho-

tropic voltage versus strain behavior. The piezoelectric layers' orientations are

such that the direction of largest strain is in the y-direction (see Figure 17 in Ref-

erence [1]). The top piezoelectric layer is polarized in the direction of an applied

voltage and the bottom layer is polarized in the direction opposite an applied volt-

age. A voltage across both films causes the plate to be in pure bending.

An applied voltage was chosen and the corresponding final shape was calcu-

lated by the SHAPE1 code [1]. This final shape and the originally flat shape were

used by SHAPE2 to predict the voltage needed to attain the prescribed shape

change. This procedure was repeated at four different voltages, and the resulting

predictions of SHAPE2 appear in Figure 9. As can be seen, the voltages pre-
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Figure 8. Comparison of the "actual" and predicted voltages for a cantilever, piezoelectric
beam (see Figure 16 in Reference [1] for dimensions).
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Figure 9. Comparison of the "actual" and predicted voltages for a composite plate (see
Figure 17 in Reference [1] for dimensions). "Actual" is the input voltage to SHAPEI.
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dicted by SHAPE2 are in excellent agreement with the corresponding voltages

used as input to SHAPEI.

4.3 Composite Shell

The aforementioned sample problems apply to flat beams and plates. No ana-

lytical or experimental results are available for the shape change of curved ele-

ments. Tests were therefore performed with a curved element to generate data

which can be compared to the results of the model.

A 10.6 inch long and 6.0 inch wide rectangular shell was constructed of six

layers of T300/976 unidirectional graphite/epoxy tape (Figure 21 in Reference

[1]). The layup was [90/ + 60/ — 601. with the 0° direction along the longitudinal

direction. The radius of the inner surface was 12.0 inches. A continuous layer of

KYNAR piezoelectric film [4] was adhesively bonded to the outer radius surface

by Loctite DEPEND adhesive. The piezoelectric film is mechanically isotropic

but has orthotropic voltage versus strain behavior. The piezoelectric layer's orien-

tation is such that the direction of largest strain is in the lengthwise direction.

One of the corners of the shell was clamped. A voltage was "applied" across the

film and the resulting shape change was calculated by the SHAPEI code. This

final shape and the original shape (z = 0.043 x y 2) were used by SHAPE2 to

predict the voltage needed to attain the prescribed shape change. This procedure

was repeated at five different voltages, and the resulting predictions of SHAPE2

appear in Figure 10. As can be seen, the voltages predicted by SHAPE2 are in ex-

cellent agreement with the corresponding voltages used as input to SHAPEI.

'Actual' Voltage (V)

Figure 10. Comparison of the "actual" and predicted voltages for a composite shell (see

Figure 21 in Reference [1] for dimensions). "Actual" is the input voltage to SHAPEI.



Shape Control of Composite Plates and Shells with Embedded Actuators. II.	477

DESIRED _0.1 SHAPE2 1-11. PREDICTED
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Figure 11. Flowchart describing how the "actual" deformed shape is calculated.

The aforementioned comparisons presented for the three problems show that,

at least for these problems, the SHAPE2 code can predict the voltages necessary

to achieve a desired shape with good accuracy. These results lend confidence to

the SHAPE2 code.

5. SAMPLE PROBLEMS

Solutions to sample problems were obtained to illustrate the capability of the

SHAPE2 code and the type of results provided by the code. The same five cases

were studied as with the SHAPE1 code in [1]:

1. Straight, composite, sandwich beam

2. Curved, composite, sandwich beam

3. Flat, rectangular, composite, sandwich plate

4. Composite, cylindrical, sandwich shell

5. Composite, axisymmetric, sandwich shell

Each of the above structural elements consisted of a 0.10 inch thick aluminum

honeycomb core covered on each side by a T300/976 graphite-epoxy face sheet

(Figure 23 in Reference DD. There was a 0.004 inch thick layer of KYNAR

piezoelectric film placed on the top and bottom of both face sheets. Thus, the

lay-up was [p/ ±45/0/p/core/p/0/ 45/p] with the 0° direction aligned with the

x-axis. Each structure was rigidly supported at its midpoint. The material proper-

ties used in all calculations are listed in Table 5 in Reference [1].

In each problem, a desired shape was chosen. Next, the SHAPE2 code (with

r = 1 x 10-" in2 /V 2) was used to predict the voltage which should be applied

across each piezoelectric film layer in order to obtain the desired shape. Note that

a positive voltage implies that the voltage is applied in the same direction as the

polarization of the layer, while a negative voltage implies that the voltage is ap-

plied in a direction opposite the polarization of the layer. The "actual" deformed

shape (i.e., the shape the element would have if the voltages predicted by

SHAPE2 were applied), was calculated by SHAPE1 using—as input—the volt-

ages given by SHAPE2 (Figure 11).

The first two problems considered 8.0 inch long and 1.0 inch wide straight and

curved beams. For the curved beam, the reference mid-surface was described by

the function zo = —0.05 x x 2 . The third problem was an 8.0 inch long and 6.0

inch wide flat plate, while the fourth problem was an 8.0 inch long and 6.0 inch



-V 1 = V
4 = 468 V -V

2
=V

3
= 259 V

x
(

z

3

2

1

0

.0 0

'92
'E

cu	cr)
4...	co

1

E 3

00
o
u
N 2

5)

N

1

0

-1

Original shape

Desired shape

'Actual' deformed

shape

478	 DAVID B. KOCONIS, LAszLO P. KOLLAR AND GEORGE S. SPRINGER

Table 4. Equations for the desired shapes of sample problems.

Original Shape	Desired Shape

Straight beam

Curved beam

Flat plate

Cylindrical shell

Axisymmetric shell

- 1.2 x 10-'x'

- 5.0012 x 10-2x2

- 1 x 10-5x' + 9 x 10-7xy - 4 x 10-6y2

-5.001 x 10- 2x2 + 8 x 10- 7xy - 3 x 10-8y2

-5.0004 x 10- 2x2 + 1 x 10-'xy - 4.9997 x 10-2y'

wide cylindrical shell with the reference mid-surface described by the function

zo = —0.05 x x 2 . The fifth problem was an axisymmetric cap with reference

mid-surface given by zo = —0.05 x (x 2 + y 2). The original shapes, desired

shapes (Table 4) and "actual" deformed shapes of each of the above five structural

elements are given in Figures 12 through 14.

-4	-3	-2	0	1	2
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Figure 12. Predicted voltages and the desired and "actual" deformed shapes for a straight

and a curved composite beam. Voltages shown are applied to the actuators indicated in

Figure 23 in Reference VI
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Figure 13. Predicted voltages and the desired and "actual" deformed shapes for a com-

posite flat plate and a composite cylindrical shell. Voltages shown are applied to the actua-
tors indicated in Figure 28 in Reference [1].

In the aforementioned problems, it was assumed that the piezoelectric film was

continuously covering the entire surface. To illustrate the use of the SHAPE2

code with patches, one sample problem was studied where the desired shape was

achieved by the use of piezoelectric patches. In this problem, the deflection of an

7.75 inch long and 1.0 inch wide straight beam was investigated. The cross section

of the beam has three layers of T300/976 graphite-epoxy with lay-up [90/0/90]

and six 1.0 inch long, 1.0 inch wide and 0.01 inch thick KYNAR piezoelectric

patches, as shown in Figure 15. The desired shape was z = —1 x 10-5.0. The

voltages required to achieve the desired shape were calculated by the SHAPE2

code for three values of the weight factor F (F = 10- 12 in2/V2, F _ 10-13 in2IV2

and P = 10- 14 ins/V2). For F = 10-14 in2/-2,v the desired and the "actual"

deformed shapes are practically identical as shown in Figure 15. The voltages ap-

plied to the actuators are also indicated in the figure. The "actual" shapes

calculated by the SHAPE1 code for the other values of F are presented in Figure

16 together with the voltages predicted by the SHAPE2 code which would need

to be applied to achieve the shapes shown. Note that as F increases, the agree-

ment between the "actual" and desired shapes becomes worse. However, it is im-
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portant to observe that, coupled with the increase in distance between the two

shapes, the amount of voltage which must be applied becomes significantly

lower. Hence, if the inaccuracy in shape resulting from a larger value of F
r(	= 10-12 in s /V2),) is acceptable, then the voltage requirements can be reduced.

The results of the above sample problems illustrate the applicability of the

SHAPE2 code to several geometries.

6. CONCLUDING REMARKS

A model was developed which describes the changes in shapes of composite

beams, plates and shells containing embedded and surface mounted piezoelectric

actuators. The model provides the voltages needed to achieve a specified desired

shape. The code can also be used to provide, during actual service, the voltages

needed to achieve desired shape changes. Hence, this code, in combination with

the code developed in Reference [1], can provide the tools needed to affect real

time shape control.
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Figure 14. Predicted voltages and the desired and "actual" deformed shape for an axisym-

metric composite shell. Voltages shown are applied to the actuators indicated in Figure 23

in Reference [1].
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Figure 15. Voltages predicted by SHAPE2, and the desired and "actual" deformed shape
for a composite beam with piezoelectric patches.
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Figure 16. Voltages predicted by SHAPE2 and the desired and "actual" deformed shape
for a composite beam with piezoelectric patches for three values of F (see Figure 15 for
beam dimensions).
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