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Introduction
Nanostructures—structures with at least

one dimension between 1 nm and 100 nm—
have attracted steadily growing interest
due to fascinating properties and intrigu-
ing applications that are complementary
or superior to those of bulk materials.1
Much of this interest is powered by the
growing expertise in fabrication methods
that allow more and more ways of realiz-
ing nanostructures with well-controlled
composition, size, and shape. The develop-
ment of synthetic methodologies has also
advanced to a level where nanostructures
can be produced from many kinds of ma-
terials with the quality, quantity, and yield
required for the systematic investigation
of their peculiar properties (see Figure 1).
The fundamental study of phenomena

that occur in nanostructured materials has
already evolved into a new field of re-
search that is often referred to as
nanoscience. In addition to their indispens-
able roles in nanoscience, nanostructures
are central to the development of a broad
range of emerging and exciting applica-
tions such as more powerful computer chips
and higher-density information storage. It
is anticipated that nanotechnology will
change the way we live, just as microtech-
nology has done in the last century.

This issue of MRS Bulletin is focused on
the shape-controlled synthesis and surface
plasmonic properties of nanostructures
made of two metals: gold and silver. Since
the pioneering work by Gustav Mie in
1908,2 it has been recognized for almost a

century that the interaction of light with free
electrons in a gold or silver nanoparticle
can give rise to collective oscillations com-
monly known as surface plasmons (SPs).
Peaks appear in the extinction spectra (ex-
tinction � scattering � absorption) when-
ever SPs are excited by the electric field of
incident light under the resonance condi-
tion. Such extinction peaks are responsible
for the brilliant red color displayed in me-
dieval stained glass windows, which arises
from the presence of gold nanoparticles in
the glass. The attractions of SPs lie in their
potential to confine light to the metal/di-
electric interface, which in turn generates
intense local electromagnetic fields and
greatly amplifies the weak signal typical
of Raman scattering or second-harmonic
generation. The spatial confinement of light
to a structure of subwavelength dimen-
sions also makes it possible to circumvent
the optical diffraction limit, which arises
because the resolution of an optical lens
equals the wavelength divided by the 
numerical aperture, enabling the realiza-
tion of nanoscale photonics.

Surface Plasmons
Plasmonic behavior is a physical concept

that describes the collective oscillation of
conduction electrons in a metal (or a doped
semiconductor).3 Many metals (e.g., alkali
metals, Mg, Al, and to some extent noble
metals such as Au and Ag) can be treated
as free-electron systems whose electronic
and optical properties are determined by
the conduction electrons alone. In the
Drude–Lorentz model, such a metal is de-
noted as a plasma, because it contains
equal numbers of positive ions (fixed in
position) and conduction electrons (free
and highly mobile). Under the irradiation
of an electromagnetic wave, the free elec-
trons are driven by the electric field to co-
herently oscillate at a plasma frequency of
�p relative to the lattice of positive ions.
For a bulk metal with infinite sizes in all
three dimensions, �p can be expressed as

, (1)

where N is the number density of elec-
trons, 0 is the dielectric constant of a vac-
uum, and e and me are the charge and
effective mass of an electron, respectively.
Quantized plasma oscillations are called
plasmons.

In reality, we have to deal with metallic
structures of finite dimensions that are
surrounded by materials with different di-
electric properties. Since an electromagnetic
wave impinging on a metal surface only
has a certain penetration depth (�50 nm
for Ag and Au), just the electrons on the
surface are the most significant. Their 
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collective oscillations are properly termed
surface plasmon polaritons (SPPs), but are
often referred to as surface plasmons
(SPs).3–6 For a metal–vacuum interface,
application of the boundary condition re-
sults in an SP mode of in fre-
quency. As depicted in Figure 2a, such an
SP mode represents a longitudinal surface
charge density wave that can travel across
the surface. For this reason, these SPs are
also widely known as propagating SPs (or
PSPs), which can be excited through a reso-
nant mechanism by passing an electron
through a thin metallic film or by reflect-
ing an electron or a photon from the surface
of a metallic film. By resonance, we mean a
condition in which the frequencies and wave
vectors of both incident and SP waves are
approximately the same, leading to construc-
tive interference and a stronger signal.

Another type of SP (localized SPs, or LSPs)
corresponds to collective excitations of
free electrons confined to a finite volume. A
typical example is shown in Figure 2b,
where the conduction electrons of a spheri-
cal gold colloid oscillate coherently in 
response to the electric field of incident
light.4–6 When this process occurs in a vac-
uum, the resonant frequency becomes

. 
For nearly a century, it has been known

that the number, location, and intensity of
SP bands of a gold or silver nanoparticle
are strongly correlated with both the

�p��3

�p��2

shape and size of the particle. The gold
and silver systems are unique because their
densities of free electrons are in the proper
range to give their nanoparticles SP peaks in
the visible regime. For spherical gold and
silver particles of relatively small size
(���, the wavelength of light, with 
diameters in the range of 1–20 nm), 
only dipole plasmon resonance is in-
volved; their suspensions display a strong
SP peak around 510 nm and 400 nm, 
respectively.

Fabrication of Nanostructures
Many techniques are available for fabri-

cating metallic nanostructures on solid sup-
ports.7 The best-established, most versatile
tool is probably electron-beam lithography
(EBL), which has the capability of extremely
high resolution as a result of the short wave-
lengths associated with high-energy elec-
trons (e.g., �0.005 nm for an accelerating
voltage of 50 kV).8 EBL is also a feature
that can be readily added onto most conven-
tional scanning electron microscopy (SEM)
systems. 

In typical e-beam writing, a tightly fo-
cused beam of electrons is scanned across
the surface of a layer of resist such as
poly(methyl methacrylate). The interac-
tion of electrons with the resist causes local
changes to the polymer chains, making
the material more or less soluble in a de-
veloping solution. When combined with

masked evaporation and liftoff, relief 
patterns in the resist film can be readily
transformed into patterned metallic nano-
structures with well-controlled dimensions
and separations.

In practice, the resolution of e-beam
writing is mainly determined by the scat-
tering of both primary and secondary elec-
trons in the resist film and the substrate.
Structures with lateral dimensions as small
as �30 nm can be routinely generated using
EBL. Features as fine as �2 nm have also
been demonstrated,8 using thin membranes
as substrates to reduce the scattering of
electrons.

A related technique, focused ion-beam
(FIB) lithography, provides another attrac-
tive route to metallic nanostructures.9 It has
been shown that structures as small as
�6 nm can be fabricated by using a 
50 kV Ga� two-lens system, which uses
magnetic lenses like those in electron
microscopes to focus a Ga� ion beam.9 As
an advantage over EBL, this technique can
be used to directly deposit metals as pat-
terned nanostructures by decomposing
suitable precursors. However, this tech-
nique is less popular in the scientific com-
munity because it requires an expensive,
more dedicated instrument system. Al-
though attaining high-throughput fabrica-

Figure 1. Schematic illustration of nanostructure shapes.The shapes in the top row are
single crystals, in the second row are particles with twin defects or stacking faults, and in
the third row are gold shells. All twinned and single-crystal shapes shown, with the
exception of the octahedron, can be synthesized in solution. Control of shape allows control
of optical and catalytic properties, as well as suitability for electronic applications in the case
of wires, tubes, and possibly rods. Dark facets are (100) planes, light gray are (111) planes,
and {111} twin planes are shown in red. Gold shapes represent gold particles, and gray
shapes represent silver particles, although spheres, twinned rods, icosahedrons, and cubes
can also be made from gold.

Figure 2. Schematic illustration of the
collective oscillations of free electrons
for (a) a metal–dielectric interface and
(b) a spherical gold colloid. Excited by
the electric field of incident light, the free
electrons can be collectively displaced
from the lattice of positive ions (consisting
of nuclei and core electrons). While the
plasmon shown in (a) can propagate
across the surface as a charge density
wave, the plasmon depicted in (b) is
localized to each particle. (Courtesy of
R.Van Duyne and T. Schatz,
Northwestern University.)
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tion continues to be a major challenge
with these two techniques, they have be-
come the tools of choice for producing arbi-
trary patterns for many technological and
scientific applications.

A variety of unconventional approaches
have also been demonstrated for low-cost
fabrication of metallic nanostructures. One
example is nanosphere lithography (NSL),
illustrated in the article by Haes et al. in this
issue. This technique relies on monodisperse
spherical colloids that readily assemble on
a flat surface to form a close-packed mono-
layer with hexagonal symmetry. The mono-
layer can serve as a physical mask in the
subsequent step. For most demonstrations,
a metal is evaporated through the mono-
layer to fill the void spaces among adjacent
colloids in the monolayer lattice. Upon
liftoff of the colloids, a periodic array of
nanometer-sized, pyramidal islands of 
the metal is left behind on the substrate. The
lateral dimensions of these islands and the
separation between them are determined
by the size of the spherical colloids, while
the vertical dimension mainly depends on
the amount of deposited material. When a
double layer of spherical colloids is used,
hexagonal dots corresponding to the small
openings that remain in the close-packed
lattice are formed.10 Most recently, a
monolayer of spherical colloids was also
used to direct the spreading of alkanethiols
on a gold substrate to generate nanoscale
rings of gold.11

Although NSL can be used to pattern
large areas in parallel, this technique re-
mains sensitive to defects, distortions, and
domain boundaries that naturally appear
when spherical colloids assemble on flat
substrates. The structures and patterns that
can be generated using this approach are
limited in terms of design and complexity.
In this regard, unconventional approaches
based on soft lithography12 and dip-pen
nanolithography (DPN)13 might provide
some immediate advantages.

Chemical Synthesis of Gold and
Silver Nanostructures

The first documented synthesis of metal-
lic nanostructures can be traced back to
1856 when Michael Faraday demonstrated
the preparation of gold colloids by reduc-
ing an aqueous solution of gold chloride
with phosphorus. His samples displayed
a stable, ruby-red color, and some of them
are still preserved today in the Faraday
Museum in London.14

In the past 150 years, a wealth of method-
ologies has been developed for processing
metals such as gold and silver into nano-
scale structures. However, most of the prod-
ucts are characterized by problems such as
irregular shapes, polydispersed sizes, and

poorly defined structures. Only within the
last decade have chemical methods been
established for generating high-quality gold
and silver nanostructures in quantity, with
the reproducibility required for a system-
atic study of the dependence of surface plas-
monic resonance (SPR) properties on size,
shape, and structure.15 Some of these 
developments are briefly covered in the
articles by Murphy et al., Wiley et al., and
Halas in this issue.

Murphy and co-workers review the
chemical synthesis of one-dimensional
nanostructures of gold and silver via
surfactant-directed routes. In a typical pro-
cess, a precursor such as HAuCl4 or AgNO3
is reduced to atomic species by chemical,
electrochemical, or photochemical means
in the presence of ionic surfactants at high
concentrations. The aspect ratios (ratio of
length to width) of resultant nanostructures
can be easily varied over a wide range 
(up to 23) by adjusting the experimental
parameters. 

These authors also discuss the surface
plasmonic properties associated with gold or
silver nanorods.16 When a spherical particle
is elongated, the SP band is split into two:
the transverse band (along the short axis)
and longitudinal band (along the long
axis). While the transverse band is located at
roughly the same position as that of the
spherical particle, the longitudinal band
can be continuously shifted into the near-
infrared region by increasing the aspect
ratio. Such control allows one to fine-tune
the resonance wavelength at which the
electromagnetic field will be enhanced.

Wiley et al. discuss a different approach,
based on polyol reduction, to the large-scale
synthesis of silver nanostructures with a
variety of well-defined shapes. The seeds
formed in the nucleation step are either
twinned or single-crystalline, depending
on the absence or presence of an oxidative
etchant. In the presence of a suitable capping
agent, the seeds can be directed to grow
into nanostructures in the form of cubes,
wires, quasi-spheres, or triangular plates.
These authors also describe the use of a
galvanic replacement reaction between sil-
ver nanostructures and HAuCl4 in an
aqueous medium as a powerful route to
making gold nanocages—colloidal par-
ticles having hollow interiors and porous
walls. It is worth noting that the SPR
peaks of gold nanocages can be continu-
ously shifted from blue (425 nm) to near-
infrared (1200 nm) by simply adjusting
the molar ratio between Ag and HAuCl4 (in
a fashion similar to titration).

Halas discusses the synthesis and unique
SP properties of gold/silver nanoshells—
concentric nanoparticles consisting of di-
electric cores and metallic shells. In contrast

to gold or silver solid colloids, the SP
bands of such core–shell nanoparticles
can be continuously shifted from the visible
to the near-infrared region (where blood
and soft tissues are optically transparent) by
controlling the diameter or wall thickness
of the nanoshells. Such a tuning capability
has enabled a variety of biomedical appli-
cations, including optical sensing, imaging,
and drug delivery. The author also discusses
a model—plasmon hybridization—that
her group has recently proposed to under-
stand the optical resonant properties of gold
nanoshells. In this new model, the coupling
of plasmons follows a mesoscale analogue
of molecular orbital theory, hybridizing 
in precisely the same manner as the indi-
vidual atomic wave functions in simple
molecules. This model can be used to effec-
tively predict SP properties of metallic
nanostructures and is expected to play an
important role in the design and synthesis
of structures with specific plasmonic 
features.

Light-Scattering and Absorption
Understanding the extinction spectra of

gold and silver nanoparticles has long been
of interest to the scientific community, dat-
ing back at least to Faraday’s investiga-
tions of gold colloids in the middle of the
19th century. In 1908, Gustav Mie solved
Maxwell’s equations and presented the
exact formula for calculating both scatter-
ing and absorption cross sections of a
spherical particle of arbitrary size.2 Mie’s
solution remains of great interest and value
to this day, although it can only be applied
to spherical particles. In the past decade, a
number of numerical methods have been
developed to calculate the optical proper-
ties of small particles of arbitrary shapes; 
a notable example includes the discrete 
dipole approximation (DDA) method.

Thanks to the efforts of several groups,
the DDA method has emerged as a pow-
erful tool for calculating the scattering/
absorption cross sections of small particles.17

In this method, the particle is approximated
as an array of polarizable cubic elements,
with the array being large enough for the
calculation to converge. The scattering and
absorption cross sections of the particle
can be obtained once the location and 
polarizability of each element have been
specified. Figures 3a and 3b show the
spectra calculated using this method for
spherical gold colloids of 20 nm and
50 nm in radius, respectively. In general,
light absorption dominates the extinction
spectrum for particles of relatively small
radius (�20 nm), and light-scattering be-
comes the dominant process for large par-
ticles. As the particles increase in size, the
SP peaks are usually shifted toward the



Shape-Controlled Synthesis and Surface Plasmonic Properties of Metallic Nanostructures

MRS BULLETIN • VOLUME 30 • MAY 2005 341

red wavelengths. New peaks may also 
appear in the extinction spectra due to the
excitation of quadrupole modes.

When compared with molecular species
such as organic chromophores, the absorp-
tion and scattering cross sections of gold
and silver nanoparticles are 5–6 orders 
in magnitude higher. As a result, these
nanoparticles have recently been explored
as a class of therapeutic and contrast agents
for photothermal treatment and optical
imaging of tumors, respectively.18,19 The use
of gold and silver makes it straightforward
to derivatize their surfaces with various
functional groups by taking advantage of
the well-established monolayer chemistry
based on alkanethiols. It has also become
increasingly apparent that one can precisely
control the wavelengths at which gold
and silver nanoparticles absorb and scatter
light by controlling their shapes, dimensions,
and structures (e.g., solid versus hollow).
In addition, it is possible to tailor the 
magnitude of absorption and scattering
coefficients by engineering their geomet-
ric parameters. All of these advances will
greatly boost the use of gold and silver

nanostructures in biomedical applications
such as optical imaging and the treatment
of cancer.

Colorimetric Sensing
The sensitive response of SP peaks to

environmental changes can be exploited to
optically detect and monitor binding events
on the gold or silver surface. The most
popular detection scheme is based on the
excitation of propagating SPs in a metallic
thin film deposited on a transparent sub-
strate.20 Commercial instruments are avail-
able from a number of companies such as
Biacore and Texas Instruments.

In addition to thin films, the localized
SPs of gold or silver colloids have been
widely explored for optical sensing in two
different configurations. The first configu-
ration involves the use of individual nano-
particles and is discussed by Haes et al. 
in this issue. According to the scattering
theory, any variation in the refractive index
of the surface layer will lead to some
changes in the intensity and/or position
for the LSP peak, and an increase in the re-
fractive index often causes the LSP peak to
shift to the red. 

Based on this mechanism, gold nanopar-
ticles supported on substrates or suspended
in solutions have been used by several
groups to demonstrate label-free optical
sensing.21 The sensitivity of such an optical
probe is strongly dependent on the size,
shape, composition, and structure of the
nanoparticles. For example, the sensitivity
factor (i.e., the shift in peak position per
unit change in the refractive index of the
surrounding medium) was reported to be
76.4 nm per refractive index unit (RIU),
defined as a change of 1 in the refractive
index, and 191 nm/RIU, respectively, for 
a submonolayer of gold solid colloids 
(diameter, 13.4 nm) and a hexagonal array
of silver islands (in-plane width, 100 nm;
out-of-plane height, 50 nm) fabricated
using NSL. The sensitivity factor could be
increased to 408.8 nm/RIU for gold nano-
shells of 50 nm in diameter and 4.5 nm in
wall thickness.22 In general, the spectral
shift is relatively insignificant (�20 nm in
wavelength), and a spectrometer is needed
to detect the change in peak position.

Thaxton et al. discuss the second detec-
tion configuration, which relies on the red-
shift of the SP peak accompanying the
aggregation of gold or silver particles due
to the coupling between their LSP modes.
This configuration is distinguished from the
first detection configuration by the presence
of an analyte that can be visually detected
by the naked eye, as long as the analyte
molecules can selectively induce the col-
loids to aggregate into larger particles. This
approach has been employed by the Mirkin

group to qualitatively detect DNA and
single-base mismatches in DNA hybridiza-
tion, and by the Rosenzweig group for 
immunoassays to probe the presence of
proteins.23

Aggregation-induced color changes due
to the formation of sandwich complexes
have also been explored by the Hupp
group to measure the concentration of
metal ions such as K�, Pb2�, Cd2�, and
Hg2� through an ion-templated chelating
process.24 Because the surface of gold and
silver nanoparticles can be readily bioconju-
gated to a number of binding groups, in-
cluding oligonucleotides, proteins, and
other biologically relevant ligands, it is fea-
sible to design and synthesize optically and
chemically encoded nanoparticle probes
that can support biomolecular assays with
numerous advantages over conventional
methods, such as low cost and high sensi-
tivity. It is believed that bioconjugated gold
and silver nanoparticles will become the
centerpiece for a variety of detection
strategies.

Enhancement of Light
Transmission

When light is transmitted through an
aperture with lateral dimensions much
smaller than the wavelength of the light,
the efficiency is extremely low (�10�3 for
a 150-nm-diameter hole), because the pho-
tons have to use an inefficient mechanism
to tunnel through. 

This picture may change completely if the
hole is fabricated in a thin film of silver or
gold. In this case, propagating surface
plasmons can be activated in the metallic
film to substantially enhance the transmit-
tance of light at resonance wavelengths.29

Dintinger et al. review the current under-
standing of this phenomenon and illus-
trate how it can be applied to greatly
improve the performance of various types
of photonic devices. 

In a typical experiment, an aperture
(hole or slit) is fabricated in a silver or gold
thin film suspended or supported on a
transparent substrate, and transmission
spectra are recorded. It is critical to have
the aperture surrounded by a periodic
corrugation in order to facilitate coupling
between the incident light and the SP
modes. 

For a periodic array of holes fabricated
in a suspended film, the light couples to
the SP modes at the input interface and ex-
ponentially decays across the film. This
propagation causes an energy transfer to-
ward the output interface where SP modes
are excited and then decoupled into freely
propagating light. The transmission spec-
tra display peaks at wavelengths where the
SP modes are excited. 

Figure 3. Optical coefficients calculated
using the discrete dipole approximation
method for a spherical gold colloid with
(a) radius r � 20 nm and (b) r � 50 nm
(ext. stands for extinction, abs. for
absorption, and sca. for scattering).
Water was taken as the surrounding
medium. In plotting the spectra, the
calculated cross sections were divided
by �r2 to obtain the dimensionless
optical coefficients (Q). The calculations
were performed by Z.-Y. Li at the
Institute of Physics, Chinese Academy
of Sciences.
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The transmittance normalized to the
aperture area can be orders of magnitude
greater than that predicted by classic dif-
fraction theory. For systems with asym-
metric interfaces (e.g., a silver film
supported on a quartz substrate), the SP
modes at the input and output sides are
different in frequency. As a result, the
transmission spectrum contains two series
of maxima associated with each interface
that are offset by the difference in refrac-
tive index for the media in contact with
the metal surfaces. In addition to the en-
hancement of transmission, it is feasible to
concentrate the transmitted light into a
narrow beam with an angular divergence
of less than a few degrees by surrounding
the aperture with an appropriate grating
on the exit side of the metallic film. These
demonstrations illustrate how surface
plasmons can be exploited to control and
manipulate light at the subwavelength
scale.

Nanoscale Waveguiding
It has been demonstrated both theoreti-

cally and experimentally that a linear chain
of gold or silver nanoparticles can channel
the flow of electromagnetic energy over dis-
tances of hundreds of nanometers without
significant loss.25 The major requirement is
that these nanoparticles are separated by
gaps narrow enough (�1 nm) to enable
near-field coupling between the SPR modes
associated with individual nanoparticles. 

In general, there is a tradeoff between 
energy loss and spatial localization in plas-
monic waveguides, but for important vis-
ible and near-infrared wavelengths, it
should be feasible to achieve centimeter-
scale propagation. In practice, the metallic
plasmonic structures can serve as inter-
connects and can be potentially adopted
to create chip-scale integrated photonics
and nanoscale all-optical networks. It is an-
ticipated that SPR coupling will become as
important as p–n junctions, enabling the
realization of nanoscale photonics, where
optical devices can be scaled down to di-
mensions of less than 10% of the free space
wavelength.

Atwater and co-workers describe the
fabrication of nanoscale optical waveguides
by taking advantage of the SPR coupling
between adjacent metallic nanostructures.
In such waveguiding structures, the electro-
magnetic wave can transport with a spatial
confinement well below the diffraction limit
(�100 nm). A number of methods have
been explored for fabricating plasmonic
waveguides, including e-beam lithogra-
phy, high-energy ion irradiation, and self-
assembly. Although e-beam writing can
routinely generate ordered arrays of metallic
nanoparticles with well-controlled dimen-

sions and spatial separations, the develop-
ment of this technique into a practical
method for producing large numbers of such
nanostructures rapidly and at low cost
still requires great ingenuity. It is also non-
trivial to control the gap between adjacent
nanoparticles below a few nanometers.

In contrast, self-assembly provides a num-
ber of attractive features in organizing metal-
lic nanoparticles into ordered arrays. As
illustrated in the articles by Murphy et al.
and Wiley et al. in this issue, both the size
and shape of the building blocks (i.e.,
nanoparticles) can be readily altered to tai-
lor their SPR features, and the spacing be-
tween adjacent nanoparticles can also be
controlled by coating their surfaces with
thin dielectric shells.

Enhancement of Electromagnetic
Fields

In addition to the scattering and absorp-
tion of light, gold or silver nanostructures
can be used to substantially enhance local
electromagnetic fields. Upon excitation of
SPs, charges will be concentrated at the
metal–dielectric interface, resulting in very
strong amplification of the electric field (E).
For colloidal particles 10–200 nm in size
where LSPs are excited, the |E|2 can be 100
to 10,000 times greater in magnitude than
the incident field. The distribution of 
field has a spatial range on the order of
10–50 nm and is strongly dependent on
the size, shape, and local dielectric envi-
ronment of the particle. For smooth thin
films with thicknesses in the range of
10–200 nm, the excitation of PSPs only
leads to field enhancements (|E|2) on the
order of 10–100, although the field can ex-
tend over a longer spatial range (�1000 nm).

The ability of gold and silver nanostruc-
tures to enhance the local electric fields
has led to the development of a new field
known as surface-enhanced spectroscopy.
Haes et al. present an overview of some
exciting developments in this area. Halas
and Murphy et al. also provide some 
brief discussions on this subject in their 
articles.

Atypical example can be found in surface-
enhanced Raman scattering (SERS),26 a
phenomenon that was discovered almost
30 years ago. SERS is a complicated process
whose operational mechanism can be attri-
buted to at least two factors: electromag-
netic enhancement and chemical enhance-
ment. Electromagnetic enhancement occurs
when the incident light is in resonance with
the SP modes of a metallic thin film or nano-
particle. In this case, it is crucial to fine-tune
the spectral positions of SPs to achieve the
resonance condition. Gold and silver nano-
structures with controllable shapes are ex-
cellent candidates for this application.

Chemical enhancement is related to the
possible chemical interactions, including
charge transfer and polarization, that may
occur between adsorbed molecules and
the surface. In addition to SERS, surface-
enhanced fluorescence has also been re-
ported for chromophores near the surfaces
of metallic nanoparticles.27 When the 
molecules are placed within �5 nm of the
metal nanoparticle surface, fluorescence is
quenched. However, the fluorescence can
be enhanced up to 100-fold by the local-
ized electric field if the molecules are sep-
arated from the metal surface by �10 nm
or more. Furthermore, the enhancement of
local field has also been used to amplify
the weak signals from nonlinear optical pro-
cesses such as second-harmonic generation
(SHG).28 It is expected that surface-
enhanced spectroscopy will play an im-
portant role in single-molecule detection.

Summary and Outlook
Surface plasmons clearly have a broad

range of technological applications. They
provide a powerful tool for controlling,
manipulating, and amplifying light on the
subwavelength scale, enabling the realiza-
tion of highly complex nanoscale devices
such as sensors, light sources, filters, po-
larizers, and waveguides. For this technol-
ogy to reach its paramount potential, active
plasmonic devices such as switches and
modulators still need to be demonstrated.
In recent work by Andrew and Barnes, an
important step forward was made in
showing that SPs could be used to effec-
tively transfer energy from donor to ac-
ceptor molecules separated by silver films
up to 120 nm thick.30 Such a molecular
plasmonic device might lead to the fabri-
cation of more efficient light-emitting
diodes and photovoltaics.

For most of the applications associated
with SPs, generating metallic nanostruc-
tures with controllable sizes, shapes, and
structures represents the first and one of the
most significant challenges to their real-
ization. Compared with nanofabrication
techniques, chemical synthetic methods are
still in a rudimentary stage of development.
There are many fundamental issues that
need to be solved before they can become
the methods of choice for industrial appli-
cations. For example, the exact nucleation
and growth mechanisms involved in most
of the synthetic methods for creating metal-
lic nanoparticles remain mysterious because
of the length and time scales on which
they occur. Although nuclei or seeds may
play the most important role in determin-
ing the morphology of final products, it is
extremely difficult to probe their struc-
tures experimentally. In fact, they might
assume crystal structures different from
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the bulk solids, and their catalytic activi-
ties might strongly depend on their size
and shape. All of these unknowns make it
difficult to decipher the mechanism re-
sponsible for shape-controlled synthesis.

Our goal with this issue is to provide
readers with some representative and ex-
citing snapshots of the new developments
occurring in the field of surface plasmons.
Due to the highly dynamic nature of this
fast-evolving area, it is impossible to cover
every aspect of the subject. There is no doubt
that research on fabrication and synthetic
strategies will continue to develop strongly,
with contributions coming from chemists,
physicists, materials scientists, and engi-
neers. We sincerely hope that readers will
not only enjoy the topics presented here,
but perhaps also find the inspiration to
push this field to the next level of success.
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