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Abstract

A crucial problem in shape deformation analysis is to determine a deformation of a given
shape into another one, which is optimal for a certain cost. It has a number of applications in
particular in medical imaging.

In this article we provide a new general approach to shape deformation analysis, within
the framework of optimal control theory, in which a deformation is represented as the flow of
diffeomorphisms generated by time-dependent vector fields. Using reproducing kernel Hilbert
spaces of vector fields, the general shape deformation analysis problem is specified as an
infinite-dimensional optimal control problem with state and control constraints. In this prob-
lem, the states are diffeomorphisms and the controls are vector fields, both of them being
subject to some constraints. The functional to be minimized is the sum of a first term defined
as geometric norm of the control (kinetic energy of the deformation) and of a data-attachment
term providing a geometric distance to the target shape.

This point of view has several advantages. First, it allows one to model general constrained
shape analysis problems, which opens new issues in this field. Second, using an extension of
the Pontryagin maximum principle, one can characterize the optimal solutions of the shape
deformation problem in a very general way as the solutions of constrained geodesic equations.
Finally, recasting general algorithms of optimal control into shape analysis yields new efficient
numerical methods in shape deformation analysis. Overall, the optimal control point of view
unifies and generalizes different theoretical and numerical approaches to shape deformation
problems, and also allows us to design new approaches.

The optimal control problems that result from this construction are infinite dimensional and
involve some constraints, and thus are nonstandard. In this article we also provide a rigorous
and complete analysis of the infinite-dimensional shape space problem with constraints and of
its finite-dimensional approximations.
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1 Introduction

The mathematical analysis of shapes has become a subject of growing interest in the past few
decades, and has motivated the development of efficient image acquisition and segmentation meth-
ods, with applications to many domains, including computational anatomy and object recognition.

The general purpose of shape analysis is to compare two (or more) shapes in a way that takes
into account their geometric properties. Two shapes can be very similar from a human’s point of
view, like a circle and an ellipse, but very different from a computer’s automated perspective. In
Shape Deformation Analysis, one optimizes a deformation mapping one shape onto the other and
bases the analysis on its properties. This of course implies that a cost has been assigned to every
possible deformation of a shape, the design of this cost function being a crucial step in the method.
This approach has been used extensively in the analysis of anatomical organs from medical images
(see [22]).

In this framework, a powerful and convenient approach represents deformations as flows of
diffeomorphisms generated by time-dependent vector fields [17, 36, 37]. Indeed, when considering
the studied shapes as embedded in a real vector space IRd, deformations of the whole space, like
diffeomorphisms, induce deformations of the shape itself. The set of all possible deformations is
then defined as the set of flows of time-dependent vector fields of a Hilbert space V , called space of
”infinitesimal transformations”, which is a subset of the space of all smooth bounded vector fields
on IRd.

This point of view has several interesting features, not the least of which being that the space of
possible deformations is a well-defined subgroup of the group of diffeomorphisms, equipped with a
structure similar to the one of a right-invariant sub-Riemannian metric [12, 31]. This framework has
led to the development of a family of registration algorithms called Large Deformation Diffeomor-
phic Metric Mapping (LDDMM), in which the correspondence between two shapes comes from the
minimization of an objective functional defined as a sum of two terms [9, 8, 10, 11, 13, 26, 29, 30, 34].
The first term takes into account the cost of the deformation, defined as the integral of the squared
norm of the time-dependent vector field from which it arises. In a way, it is the total kinetic energy
of the deformation. The second term is a data attachment penalizing the difference between the
deformed shape and a target.

An appropriate class of Hilbert spaces of vector fields for V is the one of reproducing kernel
Hilbert spaces (in short, RKHS) [7], because they provide very simple solutions to the spline
interpolation problem when the shape is given by a set of landmarks [40, 42], which is an important
special case since it includes most practical situations after discretization. This framework allows
one to use tools from Riemannian geometry [40], along with classical results from the theory of Lie
groups equipped with right-invariant metrics[5, 6, 24, 28, 42]. These existing approaches provide
an account for some of the geometric information in the shape, like singularities for example.
However, they do not consider other intrinsic properties of the studied shape, which can also depend
on the nature of the object represented by the shape. For example, for landmarks representing
articulations of a robotic arm, the deformation can be searched so as to preserve the distance
between certain landmarks. For cardiac motions, it may be relevant to consider deformations
of the shape assuming that the movement only comes from a force applied only along the fiber
structure of the muscle. In other words, it may be interesting to constrain the possible deformations
(by considering non-holonomic constraints) in order to better fit the model.

As a motivation, consider the following example from computational anatomy, in which one
wants to study together different structures in the brain. In Figures 1(a) three shapes are delin-
eated, and need to be matched to the corresponding shapes in the target, Figure 1(b).

Without adding constraints, there are two natural ways to model this problem. The first
consists of finding a diffeomorphism that simultaneously maps the three initial shapes to the
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(a) Initial shapes. (b) Target shapes.

Figure 1: Matching several shapes at once. Caudate (dark blue), Putamen (cyan) and Thalamus
(green).

corresponding target. Such a model is however not much appropriate since, physically, the sub-
organs are essentially disconnected and may move independently from each other. Some may be
close to each other in an image an distant in another one, which creates very large deformations
when the whole system is matched with a single diffeomorphism, creating artificial distortions and
numerical challenges. The second possibility is then to consider all shapes independently, each
shape being deformed by a diffeomorphism of the plane. This solves the previous problems, but
raises a new one: indeed, in this second model, two shapes are allowed to overlap, which is not
acceptable.

To solve these issues, we can use a fourth diffeomorphism that will model the background
in which the structures are embedded. This “background deformation” will be applied to the
complement of the three shapes on the plane. Then, one adds the constraints that the boundary
of the shapes and that of the background should either move together (stitching constraints) or
slide alongside (sliding constraints). Since the background is deformed by a diffeomorphism, this
also prevents the three shapes from overlapping. This is a basic example of multishapes, which will
be introduced in Section 2.3.

In order to take into account such (and more general) constraints in shape deformation prob-
lems, we propose to model these problems within the framework of optimal control theory, where
the control system models the evolution of the deformation and the control is the time-dependent
vector field (see preliminary ideas in [40]). The point of view of optimal control has already been
adopted in shape analysis without constraints in [9, 10], in the particular case of landmarks and
surfaces. It should be noted that this viewpoint is also closely related with Clebsch optimal control
(see [19]), in which the control system is defined by the infinitesimal action of a group.

The purpose of this paper is to develop the general point of view of optimal control for shape
deformation analysis as comprehensively as possible. We will show the relevance of this framework,
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in particular because it can be used to model constrained shapes among many other applications.
Indeed, a lot of tools have been developed in control theory for solving optimal control problems

with or without constraints. The well-known Pontryagin maximum principle (in short PMP, see
[33]) provides first-order conditions for optimality in the form of Hamiltonian extremal equations
with a maximization condition permitting the computation of the optimal control. It has been
generalized in many ways, and a large number of variants or improvements have been made over
the past decades, with particular efforts in order to be able to address optimal control problems
involving general state/control constraints (see the survey article [23] and the many references
therein). The analysis is, however, mainly done in finite dimension. Since shape analysis has
a natural setting in infinite dimension (indeed, in 2D, the shape space is typically a space of
smooth curves in IR2), we need to derive an appropriate infinite-dimensional variant of the PMP
for constrained problems. Such a variant is nontrivial and nonstandard, given that our constrained
shape analysis problems generally involve an infinite number of equality constraints.

Such a PMP will allow us to derive in a rigorous geometric setting the (constrained) geodesic
equations that must be satisfied by the optimal deformations.

Moreover, modeling shape deformation problems within the framework of optimal control the-
ory can inherit from the many numerical methods that exist in this context and thus lead to new
algorithms in shape analysis.

The paper is organized as follows.
Section 2 is devoted to modeling shape deformation problems with optimal control. We first

briefly describe, in Section 2.1, the framework of diffeomorphic deformations arising from the
integration of time-dependent vector fields belonging to a given RKHS, and recall some properties
of RKHS’s of vector fields. In Section 2.2 we introduce the action of diffeomorphisms on a shape
space, and we model and define the optimal control problem on diffeomorphisms which is at the
heart of the present study, where the control system stands for the evolving deformation and the
minimization runs over all possible time-dependent vector fields attached to a given RKHS and
satisfying some constraints. We prove that, under weak assumptions, this problem is well posed
and has at least one solution (Theorem 1). Since the RKHS is in general only known through its
kernel, we then provide a kernel formulation of the optimal control problem and we analyze the
equivalence between both problems. In Section 2.3 we investigate in our framework two important
variants of shape spaces, which are lifted shapes and multi-shapes. Section 2.4 is devoted to the
study of finite-dimensional approximations of the optimal control problem. Section 2.5 contains a
proof of Theorem 1.

Section 3 is dedicated to the derivation of the constrained geodesic equations in shape spaces,
that must be satisfied by optimal deformations. We first establish in Section 3.1 an infinite-
dimensional variant of the PMP which is adapted to our setting (Theorem 2). As an application,
we derive in Section 3.2 the geodesic equations in shape spaces (Theorem 3), in a geometric setting,
and show that they can be written as a Hamiltonian system.

In Section 4, we design some algorithms in order to solve the optimal control problem modeling
the shape deformation problem. Problems without constraints are first analyzed in Section 4.1,
and we recover some already known algorithms used in unconstrained shape spaces, however with a
more general point of view. We are thus able to extend and generalize existing methods. Problems
with constraints are investigated in Section 4.2 in view of solving constrained matching problems.
We analyze in particular the augmented Lagrangian algorithm, and we also design a method based
on shooting.

In Section 5 we provide numerical examples, investigating first a matching problem with con-
stant total volume, and then a multishape matching problem. In addition, we will come back to
the matching problem of Figure 1.
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2 Modelling shape deformation problems with optimal con-

trol

The following notation will be used throughout the paper. Let d ∈ IN fixed. A vector a ∈ IRd can
be as well viewed as a column matrix of length d. The Euclidean norm of a is denoted by |a|. The
inner product a · b between two vectors a, b ∈ IRd can as well be written, with matrix notations, as
aT b, where aT is the transpose of a. In particular one has |a|2 = a · a = aTa.

Let X be a Banach space. The norm on X is denoted by ‖ ·‖X , and the inner product by (·, ·)X
whenever X is a Hilbert space. The topological dual X∗ of X is defined as the set of all linear
continuous mappings p : X → IR. Endowed with the usual dual norm ‖p‖X∗ = sup{p(x) | x ∈
X, ‖x‖X = 1}, it is a Banach space. For p ∈ X∗, the natural pairing between p and w ∈ X is
p(w) = 〈p, w〉X∗,X , with the duality bracket. If X = IRn then p can be identified with a column
vector through the equality p(w) = pTw.

Let M be an open subset of X, and let Y be another Banach space. The Fréchet derivative
of a map f : M → Y at a point q ∈ M is written as dfq. When it is applied to a vector w, it is
denoted by dfq.w or dfq(w). When Y = IR, we may also write 〈dfq, w〉X∗,X .

We denote byW 1,p(0, 1;M) (resp. H1(0, 1;M)) the usual Sobolev space of elements of Lp(0, 1;M),
with 1 6 p 6 +∞ (resp., with p = 2) having a weak derivative in Lp(0, 1;X). For q0 ∈M we denote
byW 1,p

q0
(0, 1;M) (resp., by H1

q0
(0, 1;M)) the space of all q ∈W 1,p(0, 1;M) (resp., q ∈ H1(0, 1;M))

such that q(0) = q0.
For every ℓ ∈ IN, a mapping ϕ : M → M is called a Cℓ diffeomorphism if it is a bijective

mapping of class Cℓ with an inverse of class Cℓ. The space of all such diffeomorphisms is denoted
by Diff ℓ(M). Note that Diff 0(M) is the space of all homeomorphisms of M .

For every mapping f : IRd → X of class Cℓ with compact support, we define the usual semi-norm

‖f‖ℓ = sup

{

∥

∥

∥

∥

∂ℓ1+···+ℓdf(x)

∂xℓ11 . . . ∂xℓdd

∥

∥

∥

∥

X

∣

∣ x ∈ IRd, (ℓ1, . . . , ℓd) ∈ INd, ℓ1 + · · ·+ ℓd 6 ℓ

}

.

We define the Banach space Cℓ0(IR
d, IRd) (endowed with the norm ‖ · ‖ℓ) as the completion of

the space of vector fields of class Cℓ with compact support on IRd with respect to the norm ‖ · ‖ℓ.
In other words, Cℓ0(IR

d, IRd) is the space of vector fields of class Cℓ on IRd whose derivatives of order
less than or equal to ℓ converge to zero at infinity.

We define Diff ℓ0(IR
d) as the set of all diffeomorphisms of class Cℓ that converge to identity at

infinity. Clearly, Diff ℓ0(IR
d) is the set of all ϕ ∈ Diff ℓ(IRd) such that ϕ− IdIRd ∈ Cℓ0(IR

d, IRd). It is
a group for the composition law (ϕ, ψ) 7→ ϕ ◦ ψ.

Note that, if ℓ > 1, then Diff ℓ0(IR
d) is an open subset of the affine Banach space IdIRd +

Cℓ0(IR
d, IRd). This allows one to develop a differential calculus on Diff ℓ0(IR

d).

2.1 Preliminaries: deformations and RKHS of vector fields

Our approach to shape analysis is based on optimizing evolving deformations. A deformation is
a one-parameter family of flows in IRd generated by time-dependent vector fields on IRd. Let us
define this concept more rigorously.

Diffeomorphic deformations. Let ℓ ∈ IN∗. Let

v : [0, 1] −→ Cℓ0(IR
d, IRd)

t 7−→ v(t)
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be a time-dependent vector field such that the real-valued function t 7→ ‖v(t)‖ℓ is integrable. In
other words, we consider an element v of the space L1(0, 1; Cℓ0(IR

d, IRd)).
According to the Cauchy-Lipshitz theorem, v generates a (unique) flow ϕ : [0, 1] → Diff ℓ0(IR

d)
(see, e.g., [1, 42] or [35, Chapter 11]), that is a one-parameter family of diffeomorphisms such that

∂ϕ

∂t
(t, x) = v(t, ϕ(t, x)),

ϕ(0, x) = x,

for almost every t ∈ [0, 1] and every x ∈ IRd. In other words, considering ϕ as a curve in the space
Diff ℓ0(IR

d), the flow ϕ is the unique solution of

ϕ̇(t) = v(t) ◦ ϕ(t),

ϕ(0) = IdIRd .
(1)

Such a flow ϕ is called a deformation of IRd of class Cℓ.

Proposition 1. The set of deformations of IRd of class Cℓ coincides with the set
{

ϕ ∈W 1,1(0, 1;Diffℓ0(IR
d)) | ϕ(0) = IdIRd

}

.

In other words, the deformations of IRd of class Cℓ are exactly the curves t 7→ ϕ(t) on Diffℓ0(IR
d)

that are integrable on (0, 1) as well as their derivative, such that ϕ(0) = IdIRd .

Proof. Let us first prove that there exists a sequence of positive real numbers (Dn)n∈IN such that
for every deformation ϕ of IRd of class Cℓ, with ℓ ∈ IN∗, induced by the time-dependent vector field
v ∈ L1(0, 1; Cℓ0(IR

d, IRd)), one has

sup
t∈[0,1]

‖ϕ(t)− IdIRd‖i 6 Diexp
(

Di

∫ 1

0

‖v(t)‖i

)

, (2)

for every i ∈ {0, . . . , ℓ}.
The case i = 0 is an immediate consequence of the integral formulation of (1). Combining the

formula for computing derivatives of a composition of mappings with an induction argument shows
that the derivatives of order i of v ◦ ϕ are polynomials in the derivatives of v and ϕ of order less
than or equal to i. Moreover, these polynomials are of degree one with respect to the derivatives
of v, and also of degree one with respect to the derivatives of ϕ of order i. Therefore we can write

∣

∣

∣

∣

d

dt
∂ixϕ(t, x)

∣

∣

∣

∣

6 ‖v(t)‖i|∂
i
xϕ(t, x)|+ ‖v(t)‖i−1Pi(|∂

1
xϕ(t, x)|, . . . , |∂

i−1
x ϕ(t, x)|), (3)

where Pi is a polynomial independent of v and ϕ, and the norms of the derivatives of the ∂jxϕ(t, x)
are computed in the space of IRd-valued multilinear maps. The result then follows from Gronwall
estimates and from an induction argument on i.

That any deformation of IRd of class Cℓ is a curve of class W 1,1 in Diff ℓ0(IR
d) is then a direct

consequence of (2) and (3).
Conversely, for every curve ϕ on Diff ℓ0(IR

d) of class W 1,1, we set v(t) = ϕ̇(t) ◦ϕ−1(t), for every
t ∈ [0, 1]. We have ϕ̇(t) = v(t) ◦ ϕ(t) for almost every t ∈ [0, 1], and hence it suffices to prove
that t 7→ ‖v(t)‖ℓ is integrable. The curve ϕ is continuous on [0, 1] and therefore is bounded. This
implies that t 7→ ϕ(t)−1 is bounded as well. The formula for computing derivatives of compositions
of maps then shows that ‖v(t)‖ℓ is integrable whenever t 7→ ‖ϕ̇(t)‖ℓ is integrable, which completes
the proof since ϕ is of class W 1,1.
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Reproducing Kernel Hilbert Spaces of vector fields. Let us briefly recall the definition
and a few properties of RKHS’s (see [7, 40] for more details). Let ℓ ∈ IN∗ be fixed.

Given a Hilbert space (V, (·, ·)V ), according to the Riesz representation theorem, the mapping
v 7→ (v, ·)V is a bijective isometry between V and V ∗, whose inverse is denoted by KV . Then
for every p ∈ V ∗ and every v ∈ V one has 〈p, v〉V ∗,V = (KV p, v)V and ‖p‖2V ∗ = ‖KV p‖

2
V =

〈p,KV p〉V ∗,V .

Definition 1. A Reproducing Kernel Vector Space (RKHS) of vector fields of class Cℓ0 is a Hilbert
space (V, (·, ·)V ) of vector fields on IRd, such that V ⊂ Cℓ0(IR

d, IRd) with continuous inclusion.

Let V be an RKHS of vector fields of class Cℓ0. Then, for all (b, y) ∈ (IRd)2, by definition the
linear form b ⊗ δy on V , defined by b ⊗ δy(v) = bT v(y) for every v ∈ V , is continuous (actually
this continuity property holds as well for every compactly supported vector-valued distribution of
order at most ℓ on IRd). By definition of KV , there holds 〈b⊗ δy, v〉V ∗,V = (KV (b⊗ δy), v)V . The

reproducing kernel K of V is then the mapping defined on IRd × IRd, with values in the set of real
square matrices of size d, defined by

K(x, y)b = KV (b⊗ δy)(x), (4)

for all (b, x, y) ∈ (IRd)3. In other words, there holds (K(·, y)b, v)V = bT v(y), for all (b, y) ∈ (IRd)2

and every v ∈ V , and K(·, y)b = KV (b⊗ δy) is a vector field of class Cℓ in IRd, element of V .

It is easy to see that (K(·, x)a,K(·, y)b)V = aTK(x, y)b, for all (a, b, x, y) ∈ (IRd)4, and hence
that K(x, y)T = K(y, x) and that K(x, x) is positive semi-definite under the assumption that no
nontrivial linear combination aT1 v(x1)+ · · ·+aTnv(xn), with given distinct xj ’s can vanish for every
v ∈ V . Finally, writing KV (a⊗ δy)(x) = K(x, y)a =

∫

IRd K(x, s)a dδy(s), we have

KV p(x) =

∫

IRd

K(x, y) dp(y), (5)

for every compactly supported vector-valued distribution p on IRd of order less than or equal to ℓ.1

As explained in [7, 42], one of the interests of such a structure is that we can define the kernel
itself instead of defining the space V . Indeed a given kernel K yields a unique associated RKHS. It
is usual to consider kernels of the form K(x, y) = γ(|x− y|)IdIRd with γ ∈ C∞(IR). Such a kernel
yields a metric that is invariant under rotation and translation. The most common model is when
γ is a Gaussian function but other families of kernels can be used as well [39, 42].

2.2 From shape space problems to optimal control

We define a shape space in IRd as an open subset M of a Banach space X on which the group of
diffeomorphisms of IRd acts in a certain way. The elements of M , called states of the shape, are
denoted by q. They are usually subsets or immersed submanifolds of IRd, with a typical definition
of the shape space as the setM = Emb1(S, IRd) of all embeddings of class C1 of a given Riemannian
manifold S into IRd. For example, if S is the unit circle then M is the set of all parametrized C1

simple closed curves in IRd. In practical applications or in numerical implementations, one has to
consider finite-dimensional approximations, so that S usually just consists of a finite set of points,
and then M is a space of landmarks (see [39, 42] and see examples further).

Let us first explain how the group of diffeomorphisms acts on the shape space M , and then in
which sense this action induces a control system on M .

1Indeed, it suffices to note that

bTKV p(x) = (b⊗ δx,KV p)V ∗,V = (p,KV b⊗ δx) =

∫
IRd

(K(y, x)b)T dp(y) = bT
∫
IRd

K(x, y)dp(y).
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The group structure of Diff ℓ
0(IR

d). Let ℓ ∈ IN∗. The set Diff ℓ0(IR
d) is an open subspace of

the affine Banach space IdIRd +Cℓ0(IR
d, IRd) and also a group for the composition law. However, we

can be more precise.
First of all, the mappings (ϕ, ψ) 7→ ϕ ◦ ψ and ϕ 7→ ϕ−1 are continuous (this follows from the

formula for the computation of the derivatives of compositions of mappings).
Moreover, for every ψ ∈ Diff ℓ0(IR

d), the right-multiplication mapping ϕ 7→ Rψ(ϕ) = ϕ ◦ ψ is
Lipschitz and of class C1, as the restriction of the continuous affine map (IdIRd+v) 7→ (IdIRd+v)◦ψ.
Its derivative (dRψ)Id

IRd
: Cℓ0(IR

d, IRd) → Cℓ0(IR
d, IRd) at IdIRd is then given by v 7→ v◦ψ. Moreover,

(v, ψ) 7→ v ◦ ψ is easily seen to be continuous.
Finally, the mapping

Cℓ+1
0 (IRd, IRd)×Diff ℓ0(IR

d) → Cℓ(IRd, IRd)
(v, ψ) 7→ v ◦ ψ

is of class C1. Indeed we have ‖v◦(ψ+δψ)−v◦ψ−dvψ.δψ‖ℓ = o(‖δψ‖ℓ), for every δψ ∈ Cℓ0(IR
d, IRd).

Then, using the uniform continuity of any derivative div of order i 6 ℓ, it follows that the mapping
ψ 7→ dvψ is continuous. These properties are useful for the study of the Fréchet Lie group structure

of Diff∞
0 (IRd) [32].

Group action on the shape space. In the sequel, we fix ℓ ∈ IN, and we assume that the space

Diff
max(1,ℓ)
0 (IRd) acts continuously on M (recall that M is an open subset of a Banach space X)

according to a mapping

Diff
max(1,ℓ)
0 (IRd)×M → M

(ϕ, q) 7→ ϕ · q,
(6)

such that IdIRd ·q = q and ϕ ·(ψ ·q) = (ϕ◦ψ) ·q for every q ∈M and all (ϕ, ψ) ∈ (Diffmax(1,ℓ)(IRd))2.

Definition 2. M is a shape space of order ℓ ∈ IN if the action (6) is compatible with the properties

of the group structure of Diff
max(1,ℓ)
0 (IRd) described above, that is:

• For every q ∈ M fixed, the mapping ϕ 7→ ϕ · q is Lipschitz with respect to the (weaker when
ℓ = 0) norm ‖ · ‖ℓ, i.e., there exists γ > 0 such that

‖ϕ1 · q − ϕ2 · q‖X 6 γ‖ϕ1 − ϕ2‖ℓ (7)

for all (ϕ1, ϕ2) ∈ (Diff
max(1,ℓ)
0 (IRd))2.

• The mapping ϕ 7→ ϕ · q is differentiable at IdIRd . This differential is denoted by ξq and is

called the infinitesimal action of C
max(1,ℓ)
0 (IRd, IRd). From (7) one has

‖ξqv‖X 6 γ‖v‖ℓ,

for every v ∈ Cℓ0(IR
d, IRd), and if ℓ = 0 then ξq has a unique continuous extension to the

whole space C0
0(IR

d, IRd).

• The mapping
ξ :M × Cℓ0(IR

d, IRd) −→ X
(q, v) 7−→ ξqv

(8)

is continuous, and its restriction to M × Cℓ+1
0 (IRd, IRd) is of class C1. In particular the

mapping q 7→ ξqv is of class C1, for every bounded vector field v of class Cℓ+1.
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Example 1. For ℓ > 1, the action of Diff ℓ0(IR
d) on itself by left composition makes it a shape

space of order ℓ in IRd.

Example 2. Let ℓ ∈ IN and let S be a Cℓ smooth compact Riemannian manifold. Consider the
space M = X = Cℓ(S, IRd) equipped with its usual Banach norm. Then M is a shape space of

order ℓ, where the action of Diff
max(1,ℓ)
0 (IRd) is given by the composition ϕ · q = ϕ ◦ q. Indeed, it

is continuous thanks to the rule for computing derivatives of a composition, and we also have

‖ϕ1 · q − ϕ2 · q‖X 6 γ‖ϕ1 − ϕ2‖ℓ.

Moreover, given q ∈M and v ∈ Cℓ0(IR
d, IRd), ξqv is the vector field along q given by ξq(v) = v ◦ q ∈

Cℓ(M, IRd). Finally, the formula for computing derivatives of a composition yields

‖v ◦ (q + δq)− v ◦ q − dvq.δq‖X = o(‖δq‖X),

for every δq ∈ M , and the last part of the definition follows. This framework describes most of
shape spaces.

An interesting particular case of this general example is when S = (s1, . . . , sn) is a finite set
(zero-dimensional manifold), X = (IRd)n and

M = Lmkd(n) = {(x1, . . . , xn) ∈ (IRd)n | xi 6= xj if i 6= j}

is a (so-called) space of n landmarks in IRd. For q = (x1, . . . , xn), the smooth action of order 0
is ϕ · q = (ϕ(x1), . . . , ϕ(xn)). For v ∈ C0

0(IR
2, IR2), the infinitesimal action of v at q is given by

ξq(v) = (v(x1), . . . , v(xn)).

Remark 1. In most cases, and in all examples given throughout this paper, the mapping ξ
restricted to M × Cℓ+k0 (IRd, IRd) is of class Ck, for every k ∈ IN.

Proposition 2. For every q ∈ M , the mapping ϕ 7→ ϕ · q is of class C1, and its differential at
ϕ is given by ξϕ·qdRϕ−1 . In particular, given q0 ∈ M and given ϕ a deformation of IRd of class

Cmax 1,ℓ
0 , which is the flow of the time-dependent vector field v, the curve t 7→ q(t) = ϕ(t) · q0 is of

class W 1,1 and one has
q̇(t) = ξϕ(t)·q0 ϕ̇(t) ◦ ϕ(t)

−1 = ξq(t)v(t), (9)

for almost every t ∈ [0, 1].

Proof. Let q0 ∈ M , fix ϕ ∈ Diff ℓ0(IR
d) and take δϕ ∈ TϕDiff ℓ0(IR

d) = Cℓ0(IR
d, IRd). Then ϕ+ δϕ ∈

Diff ℓ0(IR
d) for ‖δϕ‖ℓ small enough. We define v = (dRϕ−1)ϕδϕ = δϕ ◦ ϕ−1. We have

(ϕ+ δϕ) · q = (IdIRd + v) · (ϕ · q) = ϕ · q + ξϕ·qv + o(v) = ϕ · q + ξϕ·qϕ̇ ◦ ϕ−1 + o(δϕ),

and therefore the mapping ϕ 7→ ϕ · q is differentiable at ϕ, with continuous differential ξϕ·qdRϕ−1 .
The result follows as the image of a curve of class W 1,1 through a C1 mapping is still of class W 1,1.
The derivative is then computed thanks to the chain rule.

The result of this proposition shows that the shape q(t) = ϕ(t) ·q0 is evolving in time according
to the differential equation (9), where v is the time-dependent vector field associated with the
deformation ϕ.

At this step we make a crucial connection between shape space analysis and control theory,
by adopting another point of view. The differential equation (9) can be seen as a control system
on M , where the time-dependent vector field v is seen as a control. In conclusion, the group of
diffeomorphisms acts on the shape space M , and this action induces a control system on M .

As said in the introduction, in shape analysis problems, the shapes are usually assumed to
evolve in time according to the minimization of some objective functional [40]. With the control
theory viewpoint developed above, this leads us to model the shape evolution as an optimal control
problem settled on M , that we define hereafter.
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Induced optimal control problem on the shape space. We assume that the action of

Diff
max(ℓ,1)
0 (IRd) on M is smooth of order ℓ ∈ IN. Let (V, (·, ·)V ) be an RKHS of vector fields of

class Cℓ0 on IRd. Let K denote its reproducing kernel (as defined in Section 2.1). Let Y be another
Banach space. Most problems of shape analysis can be recast as follows.

Problem 1. Let q0 ∈ M , and let C : M × V → Y be a mapping such that v 7→ C(q, v) = Cqv is
linear for every q ∈M . Let g :M → IR be a function. We consider the problem of minimizing the
functional

J1(q, v) =
1

2

∫ 1

0

‖v(t)‖2V dt+ g(q(1)) (10)

over all (q(·), v(·)) ∈ W 1,1
q0

(0, 1;M) × L2(0, 1;V ) such that q̇(t) = ξq(t)v(t) and Cq(t)v(t) = 0 for
almost every t ∈ [0, 1].

In the problem above, q0 stands for an initial shape, and C stands for continuous constraints.
Recall that the infinitesimal action can be extended to the whole space Cℓ0(IR

d, IRd).
Note that if t 7→ v(t) is square-integrable then t 7→ q̇(t) is square-integrable as well. Indeed this

follows from the differential equation q̇(t) = ξq(t)v(t) and from Gronwall estimates. Therefore the
minimization runs over the set of all (q(·), v(·)) ∈ H1

q0
(0, 1;M)× L2(0, 1;V ).

Problem 1 is an infinite-dimensional optimal control problem settled on M , where the state
q(t) is a shape and the control v(·) is a time-dependent vector field. The constraints C can be
of different kinds, as illustrated further. A particular but important case of constraints consists
of kinetic constraints, i.e., constraints on the speed q̇ = ξqv of the state, which are of the form
Cq(t)ξq(t)v(t) = Cq(t)q̇(t) = 0. Pure state constraints, of the form C(q(t)) = 0 with a differentiable
map C :M → Y , are in particular equivalent to the kinetic constraints dCq(t).ξq(t)v(t) = 0.

Remark 2. Problem 1 is similar to what is called in [19] a Clebsch optimal control problem, with
the difference that the space of controls is only a subspace of the Lie algebra of the group.

To the best of our knowledge, except for very few studies (such as [43]), only unconstrained
problems have been studied so far (i.e., with C = 0). In contrast, the framework that we provide
here is very general and permits to model and solve far more general constrained shape deformation
problems.

Remark 3. Assume V is an RKHS of class C1
0 , and let v(·) ∈ L2(0, 1;V ). Then v induces a

unique deformation t 7→ ϕ(t) on IRd, and the curve t 7→ qv(t) = ϕ(t) · q0 satisfies q(0) = q0
and q̇v(t) = ξqv(t)v(t) for almost every t ∈ [0, 1]. As above, it follows from Gronwall’s lemma
that q ∈ H1

q0
(0, 1;M). Moreover, according to the Cauchy-Lipshitz theorem, if ℓ > 1 then q(·) is

the unique such element of H1
q0
(0, 1;M). Therefore, if ℓ > 1 then Problem 1 is equivalent to the

problem of minimizing the functional v 7→ J1(v, qv) over all v ∈ L2(0, 1;V ) such that Cqv(t)v(t) = 0
for almost every t ∈ [0, 1].

Remark 4. It is interesting to note that, since the control system q̇(t) = ξq(t)v(t) and the con-
straints Cq(t)v(t) = 0 are linear with respect to the control v(·), they define a rank-varying sub-
Riemannian structure on M (as defined in [2]). Moreover, solutions of Problem 1 are obviously
minimizing geodesics for this structure, since the integral part of the cost corresponds to the total
energy of the horizontal curve.

Concerning the existence of an optimal solution of Problem 1, we need the following definition.
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Definition 3. A state q of a shape space M of order ℓ is said to have compact support if for some

compact subset U of IRd, for some γ > 0 and for all (ϕ1, ϕ2) ∈ (Diff
max(ℓ,1)
0 (IRd))2, we have

‖ϕ1 · q − ϕ2 · q‖ 6 γ‖(ϕ1 − ϕ2)|U‖ℓ,

where (ϕ1 − ϕ2)|U denotes the restriction of ϕ1 − ϕ2 to U .

Except for Diff
max(ℓ,1)
0 (IRd) itself, every state of every shape space given so far in examples had

compact support.

Theorem 1. Assume that V is an RKHS of vector fields of class Cℓ+1 on IRd, that q 7→ Cq is
continuous, and that g is bounded below and lower semi-continuous. If q0 has compact support,
then Problem 1 has at least one solution.

In practice one does not usually have available a convenient, functional definition of the space V
of vector fields. The RKHS V is in general only known through its kernel K, as already mentioned
in Section 2.1 (and the kernel is often a Gaussian one). Hence Problem 1, formulated as such, is
not easily tractable since one might not have a good knowledge (say, a parametrization) of the
space V .

One can however derive, under a slight additional assumption, a different formulation of Prob-
lem 1 that may be more convenient and appropriate in view of practical issues. This is done in
the next section, in which our aim is to obtain an optimal control problem only depending on the
knowledge of the reproducing kernel K of the space V (and not directly on V itself), the solutions
of which can be lifted back to the group of diffeomorphisms.

Kernel formulation of the optimal control problem. For a given q ∈M , consider the trans-
pose ξ∗q : X∗ → V ∗ of the continuous linear mapping ξq : V → X. This means that for every u ∈ X∗

the element ξ∗qu ∈ V ∗ (sometimes called pullback) is defined by 〈ξ∗qu, v〉V ∗,V = 〈u, ξq(v)〉X∗,X , for
every v ∈ V . Besides, by definition of KV , there holds 〈ξ∗qu, v〉V ∗,V = (KV ξ

∗
qu, v)V . The mapping

(q, u) ∈M ×X∗ 7→ ξ∗qu ∈ V ∗ is often called a momentum map in control theory [28].
We start our discussion with the following remark. As seen in Example 2, we observe that, in

general, given q ∈ M the mapping ξq is far from being injective (i.e., one-to-one). Its null space
Null(ξq) can indeed be quite large, with many possible time-dependent vector fields v generating
the same solution of q(0) = q0 and q̇(t) = ξq(t)v(t) for almost every t ∈ [0, 1].

A usual way to address this overdetermination consists of selecting, at every time t, a v(t) that
has minimal norm subject to ξq(t)v(t) = q̇(t) (resulting in a least-squares problem). This is the
object of the following lemma.

Lemma 1. Let q ∈ M . Assume that Range(ξq) = ξq(V ) is closed. Then, for every v ∈ V there
exists u ∈ X∗ such that ξqv = ξqKV ξ

∗
qu. Moreover, the element KV ξ

∗
qu ∈ V is the one with

minimal norm over all elements v′ ∈ V such that ξqv
′ = ξqv.

Proof. Let v̂ denote the orthogonal projection of 0 on the space A = {v′ : ξqv
′ = ξqv}, i.e., the

element of A with minimal norm. Then v̂ is characterized by ξq v̂ = ξqv and v̂ ∈ Null(ξq)
⊥.

Using the Banach closed-range theorem, we have (Null(ξq))
⊥ = KV Range(ξ

∗
q ), so that there exists

u ∈ X∗ such that v̂ = KV ξ
∗
qu, and hence ξqv = ξqKV ξ

∗
qu.

Remark 5. Note that the latter assertion in the proof does not require Range(ξq) to be closed,
since we always have KV (Range(ξq)) ⊂ (Null(ξq)

⊥).
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Whether Range(ξq) = ξq(V ) is closed or not, this lemma and the previous discussion suggest
replacing the control v(t) in Problem 1 by u(t) ∈ X∗ such that v(t) = KV ξ

∗
q(t)u(t). Plugging this

expression into the system q̇(t) = ξq(t)v(t) leads to the new control system q̇(t) = Kq(t)u(t), where

Kq = ξqKV ξ
∗
q , (11)

for every q ∈M . The operator Kq : X
∗ → X is continuous and symmetric (i.e., 〈u2,Kqu1〉X∗,X =

〈u1,Kqu2〉X∗,X for all (u1, u2) ∈ (X∗)2), satisfies 〈u,Kqu〉X∗,X = ‖KV ξ
∗
qu‖

2
V for every u ∈ X

and thus is positive semi-definite, and (q, u) 7→ Kqu is as regular as (q, v) 7→ ξqv. Note that
Kq(X

∗) = ξq(V ) whenever ξq(V ) is closed.
This change of variable appears to be particularly relevant since the operator Kq is usually easy

to compute from the reproducing kernel KV of V , as shown in the following examples.

Example 3. Let M = X = C0(S, IRd) be the set of continuous mappings from a Riemannian
manifold S to IRd. The action of Diff0(IRd) is smooth of order 0, with ξqv = v ◦ q (see Example 2).

Let V be an RKHS of vector fields of class C1
0 on IRd, with reproducing kernel K. Every u ∈ X∗

can be identified with a vector-valued Radon measure on S. Then

〈ξ∗qu, v〉V ∗,V = 〈u, v ◦ q〉X∗,X =

∫

S

v(q(s))T du(s),

for every q ∈M and for every v ∈ V . In other words, one has ξ∗qu =
∫

S
du(s)⊗δq(s), and therefore,

by definition of the kernel, we have KV ξ
∗
qu =

∫

S
KV (du(s)⊗δq(s)) =

∫

S
K(·, q(s)) du(s). We finally

infer that

Kqu(t) =

∫

S

K(q(t), q(s)) du(s).

Example 4. LetX = (IRd)n andM = Lmkd(n) (as in Example 2). Then ξqv = (v(x1), . . . , v(xn)),
and every u = (u1, . . . , un) is identified with a vector of X by 〈u,w〉X∗,X =

∑n
j=1 u

T
j wj . Therefore,

we get ξ∗qu =
∑n
j=1 uj ⊗ δxj

, and KV ξ
∗
qu =

∑n
j=1K(xj , ·)uj . It follows that

Kqu =





n
∑

j=1

K(x1, xj)uj ,
n
∑

j=1

K(x2, xj)uj , . . . ,
n
∑

j=1

K(xn, xj)uj



 .

In other words, Kq can be identified with matrix of total size nd × nd and made of square block
matrices of size d, with the block (i, j) given by K(xi, xj).

Following the discussion above and the change of control variable v(t) = KV ξ
∗
q(t)u(t), we are

led to consider the following optimal control problem.

Problem 2. Let q0 ∈ M , and let C : M × V → Y be a mapping such that v 7→ C(q, v) = Cqv is
linear for every q ∈M . Let g :M → IR be a function. We consider the problem of minimizing the
functional

J2(q, u) =
1

2

∫ 1

0

〈u(t),Kq(t)u(t)〉X∗,Xdt+ g(q(1)) = E(q(t)) + g(q(1)) (12)

over all couples (q(·), u(·)), where u : [0, 1] → X∗ is a measurable function and q(·) ∈W 1,1
q0

(0, 1;M)
are such that q̇(t) = Kq(t)u(t) and Cq(t)KV ξ

∗
q(t)u(t) = 0 for almost every t ∈ [0, 1].

Note that, setting ℓ(q, v) = 1
2 〈v, v〉, the relation v = KV ξ

∗
qu can be recovered from the necessary

condition δℓ
δv

= ξ∗qu for minimizers in Clebsch optimal control (see [19]), obtained thanks to the
Pontryagin maximum principle. This suggests that Problems 1 and 2 may be equivalent in certain
cases. The precise relation between both problems is clarified in the following result.
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Proposition 3. Assume that Null(ξq) ⊂ Null(Cq) and that Range(ξq) = ξq(V ) is closed, for every
q ∈M . Then Problems 1 and 2 are equivalent in the sense that inf J1 = inf J2 over their respective
sets of constraints.

Moreover, if (q̄(·), ū(·)) is an optimal solution of Problem 2, then (q̄(·), v̄(·)) is an optimal
solution of Problem 1, with v̄(·) = KV ξ

∗
q̄(·)ū(·) and q̄(·) the corresponding curve defined by q̄(0) = q0

and ˙̄q(t) = Kq̄(t)ū(t) for almost every t ∈ [0, 1]. Conversely, if (q̄(·), v̄(·)) is an optimal solution
of Problem 1 then there exists a measurable function ū : [0, 1] → X∗ such that v̄(·) = KV ξ

∗
q̄(·)ū(·),

and ū(·) and (q̄(·), ū(·)) is an optimal solution of Problem 2.

Proof. First of all, if J2(q, u) is finite, then v(·) defined by v(t) = KV ξq(t)u(t) belongs to L
2(0, 1;V )

and therefore, using the differential equation q̇(t) = ξq(t)v(t) for almost every t and Gronwall’s
lemma, we infer that q ∈ H1

q0
(0, 1;M). The inequality inf J1 6 inf J2 follows obviously.

Let us prove the converse. Let ε > 0 arbitrary, and let v(·) ∈ L2(0, 1;V ) and q ∈ H1
q0
(0, 1;M) be

such that J1(q, v) 6 inf J1+ε, with q̇(t) = ξq(t)v(t) and Cq(t)v(t) = 0 for almost every t ∈ [0, 1]. We

can write v(t) = v1(t)+ v2(t) with v1(t) ∈ Null(ξq(t)) and v2(t) ∈ (Null(ξq(t)))
⊥ = Range(KV ξ

∗
q(t)),

for almost every t ∈ [0, 1], with v1(·) and v2(·) measurable functions, and obviously one has
∫ T

0
‖v2(t)‖

2
V dt 6

∫ T

0
‖v(t)‖2V dt. Then, choosing u(·) such that v2(·) = KV ξ

∗
q(·)u(·), it follows that

J2(u) = J1(v2) 6 J1(v) 6 inf J1 + ε. Therefore inf J2 6 inf J1. The rest is obvious.

Remark 6. Under the assumptions of Proposition 3 and of Theorem 1, Problem 2 has at least
one solution ū(·), there holds min J1 = min J2, and the minimizers of Problems 1 and 2 are in
one-to-one correspondance according to the above statement.

Remark 7. The assumption Null(ξq) ⊂ Null(Cq) is satisfied in the important case where the
constraints are kinetic, and is natural to be considered since it means that, in the problem of
overdetermination in v, the constraints can be passed to the quotient (see Lemma 1). Actually
for kinetic constraints we have the following interesting result (proved further, see Remark 20),
completing the discussion on the equivalence between both problems.

Proposition 4. Assume that V is an RKHS of vector fields of class at least Cℓ+1
0 on IRd, that the

constraints are kinetic, i.e., are of the form Cqξqv = 0, and that the mapping (q, w) 7→ Cqw is of
class C1. If Cqξq is surjective (onto) for every q ∈M , then for every optimal solution v̄ of Problem
1 there exists a measurable function ū : [0, 1] → X∗ such that v̄ = KV ξ

∗
q̄ ū, and ū is an optimal

solution of Problem 2.

Note that this result does not require the assumption that Range(ξq) = ξq(V ) be closed.

Remark 8. It may happen that Problems 1 and 2 do not coincide whenever Range(ξq) is not
closed. Actually, if the assumption that Range(ξq) is closed is not satisfied then it may happen
that the set of controls satisfying the constraints in Problem 2 are reduced to the zero control.

Let us provide a situation where this occurs. Let v(q) ∈ Range(KV ξ∗q ) \ Range(KV ξ
∗
q ) with

‖v(q)‖V = 1. In particular v(q) ∈ (Null(ξq))
⊥. Assume that Cq is defined as the orthogonal

projection onto (IRv(q) ⊕ Null(ξq))
⊥ = v(q)⊥ ∩ (Null(ξq))

⊥. Then Null(Cq) = IRv(q) ⊕ Null(ξq).
We claim that Null(CqKV ξ

∗
q ) = {0}. Indeed, let u ∈ X∗ be such that CqKV ξ

∗
qu = 0. Then on

the one part KV ξ
∗
qu ∈ Null(Cq), and on the other part, KV ξ

∗
qu ∈ Range(KV ξ

∗
q ) ⊂ (Null(ξq))

⊥.

Therefore KV ξ
∗
qu ∈ Null(Cq) ∩ (Null(ξq))

⊥ = IRv(q), but since v(q) /∈ Range(KV ξ
∗
q ), necessarily

u = 0.

2.3 Further comments: lifted shape spaces and multishapes

In this section we provide one last way to study shape spaces and describe two interesting and
important variants of shape spaces, namely lifted shape spaces and multishapes. We show that
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a slightly different optimal control problem can model the shape deformation problem in these
spaces.

Lifted shape spaces. Lifted shapes can be used to keep track of additional parameters when
studying the deformation of a shape. For example, when studying n landmarks (x1, . . . , xn) in IRd,
it can be interesting to keep track of how another point x is moved by the deformation.

Let M and M̂ be two shape spaces, open subsets of two Banach spaces X and X̂ respectively,
on which the group of diffeomorphisms of IRd acts smoothly with respective orders ℓ and ℓ̂. Let

V be an RKHS of vector fields in IRd of class C
max(ℓ,ℓ̂)
0 . We denote by ξq (respectively ξq̂) the

infinitesimal action of V on M (respectively M̂). We assume that there exists a C1 equivariant
submersion P : M̂ →M .

By equivariant, we mean that P (ϕ · q̂) = ϕ · P (q̂), for every diffeomorphism ϕ ∈ Diffmax(ℓ,ℓ̂)+1

and every q̂ ∈ M̂ . Note that this implies that dPq̂.ξq̂ = ξq and ξ∗q̂dP
∗
q̂ = ξ∗q .

For example, for n < n̂, the projection P : Lmkd(n̂) → Lmkd(n) defined by P (x1, . . . , xn̂) =
(x1, . . . , xn) is a C1 equivariant submersion. More generally, for a compact Riemannian manifold
Ŝ and a submanifold S ⊂ Ŝ, the restriction mapping P : Emb(Ŝ, IRd) → Emb(S, IRd) defined by
P (q) = q|S is a C1 equivariant submersion for the action by composition of Diff 1(IRd).

The constructions and results of Section 2.2 can be applied to this setting, and in particular
the deformation evolution induces a control system on M̂ , as investigated previously.

Remark 9. Let V be an RKHS of bounded vector fields of class C
max(ℓ,ℓ̂)+1
0 . Let g be a data

attachment function onM and let C be a mapping of constraints. We set ĝ = g◦P and Ĉq̂ = CP (q̂).
Then a time-dependent vector field v in V is a solution of Problem 1 for M with constraints C and
data attachment g if and only if it is also a solution of Problem 1 for M̂ with constraints Ĉ and
data attachment ĝ. This remark will be used for finite-dimensional approximations in Section 2.4.

One can however define a control system of a different form, by lifting the control applied on
the smaller shape space M to the bigger shape space M̂ .

The method goes as follows. Let q0 ∈ M and q̂0 ∈ P−1(q0). Consider a measurable map
u : [0, 1] → X∗ and the corresponding curve q(·) defined by q(0) = q0 and q̇(t) = Kq(t)u(t) for
almost every t ∈ [0, 1], where Kq = ξqKV ξ

∗
q . This curve is the same as the one induced by the

time-dependent vector field v(·) = KV ξ
∗
q(·)u(·). The deformation ϕ corresponding to the flow of v

defines on M̂ a new curve q̂(t) = ϕ(t) · q̂0 with speed

˙̂q(t) = ξq̂KV ξ
∗
q(t)u(t) = Kq̂(t)dP

∗
q̂(t)u(t),

with Kq̂ = ξq̂KV ξ
∗
q̂ . Note that P (q̂(t)) = q(t) for every t ∈ [0, 1]. We have thus obtained a new

class of control problems.

Problem 3. Let q̂0 ∈ M̂ , and let C : M̂ × V → Y be continuous and linear with respect to the
second variable, with Y a Banach space. Let g : M̂ → IR be a real function on M̂ . We consider
the problem of minimizing the functional

J3(q̂, u) =
1

2

∫ 1

0

〈u(t),KP (q̂(t))u(t)〉X∗,Xdt+ g(q̂(1))

over all (q̂(·), u(·)), where u : [0, 1] → X∗ is a measurable function and q̂(·) ∈ W 1,1
q̂0

(0, 1; M̂) are

such that ˙̂q(t) = Kq̂(t)dP
∗
q̂(t)u(t) and Cq̂(t)KV ξ

∗
P (q̂(t))u(t) = 0 for almost every t ∈ [0, 1].
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Note that, if g and C only depend on P (q̂) then the solutions u(t) of Problem 3 coincide with
the ones of Problem 2 on M .

Problem 3 can be reformulated back into an optimal control problem on V and on M̂ , similar
to Problem 1, by adding the constraints Dq̂v = 0 where Dq̂v is the orthogonal projection of v on
Null(ξP (q̂)).

Some examples of lifted shape spaces can be found in [43], and more recently in [18], where
controls are used from a small number of landmarks to match a large number of landmarks, with
additional state variables defining Gaussian volume elements. Another application of lifted shape
spaces will be mentioned in Section 2.4, where they will be used to approximate infinite-dimensional
shape spaces by finite-dimensional ones.

Multishapes. As mentioned in the introduction, shape analysis problems sometimes involve
collections of shapes that must be studied together, each of them with specific properties associated
with a different space of vector fields. These situations can be modeled as follows.

Consider some shape spaces M1, . . . ,Mk, open subsets of Banach spaces X1, . . . , Xk, respec-
tively, on which diffeomorphisms of IRd acts smoothly on each shape space Mi with order ℓi. Let
ki > 1, and consider V1, . . . , Vk, RKHS’s of vector fields of IRd respectively of class Cℓi+ki0 with
kernels K1, . . . ,Kk, as defined in Section 2.1. In such a model we thus get k control systems, of
the form q̇i(·) = ξi,qi(·)vi(·), with the controls vi(·) ∈ L2(0, 1;Vi), i = 1, . . . , k. The shape space of
a multi-shape is a space of the form M =M1 × · · · ×Mk. Let q0 = (q1,0, . . . , qk,0) ∈M . Similarly
to the previous section we consider the problem of minimizing the functional

k
∑

i=1

∫ 1

0

‖vi(t)‖
2
Vi
dt+ g(q1(1), . . . , qk(1)),

over all time-dependent vector fields vi(·) ∈ L2(0, 1;Vi), i = 1, . . . , k, and with qi(1) = ϕi(1) · qi,0
where ϕi is the flow generated by vi (note that, here, the problem is written without constraint).

As in Section 2.2, the kernel formulation of this optimal control problem consists of minimizing
the functional

1

2

∫ 1

0

k
∑

i=1

〈ui(t),Kqi(t),iui(t)〉X∗
i
,Xi

dt+ g(q(1)). (13)

over all measurable functions u(·) = (u1(·), . . . , uk(·)) ∈ L2(0, 1;X∗
1 × · · · ×X∗

k), where the curve
q(·) = (q1(·), . . . , qk(·)) : [0, 1] →M is the solution of q(0) = q0 and

q̇(t) = Kq(t)u(t) =
(

K1,q1(t)u1(t), . . . ,Kk,qk(t)uk(t)
)

, (14)

for almost every t ∈ [0, 1], with Ki,qi = ξi,qiKVi
ξ∗i,qi for i = 1, . . . , k.

Obviously, without any further consideration, studying this space essentially amounts to study-
ing each Mi separately, the only interaction possibly intervening from the final cost function g.
More interesting problems arise however when the shapes can interact with each other, and are sub-
ject to consistency constraints. For example, assume that one studies a cat shape, decomposed into
two parts for the body and the tail. Since these parts have very different properties, it makes sense
to consider them a priori as two distinct shapes S1 and S2, with shape spaces M1 = C0(S1, IR

3)
and M2 = C0(S2, IR

3), each of them being associated with RKHS’s V1 and V2 respectively. Then,
in order to take account for the tail being attached to the cat’s body, the contact point of the
body and the tail of the cat must belong to both shapes and be equal. In other words, if q1 ∈M1

represents the body and q2 ∈ M2 the tail, then there must hold q1(s1) = q2(s2) for some s1 ∈ S1

and s2 ∈ S2. This is a particular case of state constraints, i.e., constraints depending only on the
state q of the trajectory.

16



Considering a more complicated example, assume that two (or more) shapes are embedded
in a given background. Consider two states q1 and q2 in respective spaces M1 = C0(S1, IR

d)
and M2 = C0(S2, IR

d) of IRd. Assume that they represent the boundaries of two disjoint open
subsets U1 and U2 of IRd. We define a third space M3 = M1 ×M2, whose elements are of the
form q3 = (q13 , q

2
3). This shape space represents the boundary of the complement of U1 ∪ U2

(this complement being the background). Each of these three shape spaces is acted upon by the
diffeomorphisms of IRd. Consider for every Mi an RKHS Vi of vector fields. The total shape space
is then M = M1 ×M2 ×M3, an element of which is given by q = (q1, q2, q3) = (q1, q2, q

1
3 , q

2
3).

Note that ∂(U1 ∪ U2) = ∂(U1 ∪ U2)
c. However, since (q1, q2) represents the left-hand side of this

equality, and q3 = (q13 , q
1
3) the right-hand side, it only makes sense to impose the constraints

q1 = q13 and q2 = q23 . This model can be used for instance to study two different shapes or more
that are required not to overlap during the deformation. This is exactly what we need to study
sub-structures of the brain as mentioned in the introduction (see Figure 1).

In this example, one can even go further: the background does not need to completely folles
the movements of the shapes. We can for example let the boundaries slide on each another. This
imposes constraints on the speed of the shapes (and not just on the shapes themselves), of the
form CqKqu = 0. See Section 5 for additional details.

Multi-shapes are of great interest in computational anatomy and provide an important moti-
vation to study shape deformation under constraints.

2.4 Finite dimensional approximation of optimal controls

The purpose of this section is to show that at least one solution of Problem 1 can be approximated
by a sequence of solutions of a family of nested optimal control problems on finite-dimensional
shape spaces with finite-dimensional constraints. We assume throughout that ℓ > 1.

Let (Y n)n∈IN be a sequence of Banach spaces and (Cn)n∈IN be a sequence of continuous map-
pings Cn : M × V → Y n that are linear and continuous with respect to the second variable.
Let (gn)n∈IN be a sequence of continuous functions on M , bounded from below with a constant
independent of n. For every integer n, we consider the problem of minimizing the functional

Jn1 (v) =
1

2

∫ 1

0

‖v(t)‖2V dt+ gn(q(1)),

over all v(·) ∈ L2(0, 1;V ) such that Cnq(t)v(t) = 0 for almost every t ∈ [0, 1], where q(·) : [0, 1] →M

is the curve defined by q(0) = q0 and q̇(t) = ξq(t)v(t) for almost every t ∈ [0, 1]. It follows from
Theorem 1 that there exists an optimal solution vn(·) ∈ L2(0, 1;V ). We denote by qn(·) the
corresponding curve.

Proposition 5. Assume that V is an RKHS of vector fields of class Cℓ+1
0 on IRd and that the

sequence (Null(Cnq ))n∈IN is decreasing (in the sense of the inclusion) and satisfies

⋂

n∈IN

Null(Cnq ) = Null(Cq),

for every q ∈M . Assume that gn converges to g uniformly on every compact subset of M . Finally,
assume that q0 has compact support. Then the sequence (vn(·))n∈IN is bounded in L2(0, 1;V ), and
every cluster point of this sequence for the weak topology of L2(0, 1;V ) is an optimal solution of
Problem 1. More precisely, for every cluster point v̄(·) of (vn(·))n∈IN, there exists a subsequence
such that (vnj (·))j∈IN converges weakly to v̄(·) ∈ L2(0, 1;V ), the sequence (qnj (·))j∈IN of corre-
sponding curves converges uniformly to q̄(·), and J

nj

1 (vnj ) converges to min J1 = J1(v̄) as j tends
to +∞, and v̄(·) is a solution of Problem 1.
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Proof. The sequence (vn(·))n∈IN is bounded in L2(0, 1;V ) as a consequence of the fact that the
functions gn are uniformly bounded below. Let v̄(·) be a cluster point of this sequence for the weak
topology of L2(0, 1;V ). Assume that (vnj (·))j∈IN converges weakly to v̄(·) ∈ L2(0, 1;V ). Denoting
by q̄(·) the curve corresponding to v̄(·), the sequence (qnj (·))j∈IN converges uniformly to q̄(·) (see
Lemma 2). Using the property of decreasing inclusion, we have CN

q
nj (·)v

nj (·) = 0 for every integer

N and every integer j > N . Using the same arguments as in the proof of Theorem 1 (see Section

2.5), it follows that Cq̄(·)v̄(·) = 0. Finally, since
∫ 1

0
‖v̄(t)‖2V dt 6 lim inf

∫ 1

0
‖vn(t)‖2V dt, and since gn

converges uniformly to g on every compact subset of M , it follows that J1(v̄) 6 lim inf J
nj

1 (vnj ).
Since every v ∈ Null(Cq) belongs as well to Null(C

nj
q ), it follows that J

nj

1 (vnj ) 6 J
nj

1 (v), for
every time-dependent vector field v(·) ∈ L2(0, 1;V ) such that Cq(·)v(·) = 0, where q(·) : [0, 1] →M
is the curve corresponding to v(·). Since gn converges uniformly to g, one has J

nj

1 (v) → J1(v) as
n→ +∞. It follows that lim sup J

nj

1 (vnj ) 6 min J1.
We have proved that J1(v̄) 6 lim inf J

nj

1 (vnj ) 6 lim sup J
nj

1 (vnj ) 6 min J1, and therefore
J1(v̄) = min J1, that is, v̄(·) is an optimal solution of Problem 1, and J

nj

1 (vnj ) converges to
min J1 = J1(v̄) as j tends to +∞.

Application: approximation with finite dimensional shape spaces. Let S1 be the unit
circle of IR2, let ℓ > 1 be an integer, X = Cℓ(S1, IRd) and let M = Embℓ(S1, IRd) be the space of
parametrized simple closed curves of class Cℓ on IRd. We identify X with the space of all mappings
f ∈ Cℓ([0, 1], IRd) such that f(0) = f(1), f ′(0) = f ′(1), ..., f (ℓ)(0) = f (ℓ)(1). The action of the
group of diffeomorphisms of IRd on M , defined by composition, is smooth of order ℓ (see Section
2.2). Let q1 ∈M and c > 0 fixed. We define g by

g(q) = c

∫

S1

|q(t)− q1(t)|
2 dt,

for every q ∈ M . Consider pointwise kinetic constraints C : M × X → C0(S1, IRm), defined by
(Cq q̇)(s) = Fq(s)q̇(s) for every s ∈ S1, with F ∈ C0(IRd,Mm,d(IR)), where Mm,d(IR) is the set of
real matrices of size m× d.

Note that the multishapes constraints described in Section 2.3 are of this form.
Our objective is to approximate this optimal control problem with a sequence of optimal control

problems specified on the finite-dimensional shape spaces Lmkd(2
n).

For n ∈ IN, let ξn be the infinitesimal action of the group of diffeomorphisms on Lmkd(2
n), the

elements of which are denoted by qn = (xn1 , . . . , x
n
2n). Define on the associated control problem

the kinetic constraints C̃nqnξ
n
qn
v = (Fxn

1
v(xn1 ), . . . , Fxn

2n
v(xn2n)), and the data attachment function

g̃n(qn) =
c

2n

2n
∑

r=1

|xnr − q1(2
−nr)|.

Let vn(·) be an optimal control of Problem 1 for the above optimal control problem specified on
Lmkd(2

n).

Proposition 6. Every cluster point of the sequence (vn(·))n∈IN for the weak topology on L2(0, 1;V )
is a solution of Problem 1 specified on M = Embℓ(S1, IRd) with constraints and minimization
functional respectively given by C and g defined above.

Proof. Define the submersions Pn :M → Lmkd(2
n) by

Pn(q) = (q(2−n), . . . , q(2−nr), . . . , q(1)).

Let gn = g̃n ◦Pn and Cnq = C̃Pn(q)dPq. In other words, gn (resp. Cn) are the lifts of g̃n (resp. C̃n)
from Lmkd(2

n) toM through Pn. Using Remark 9 on lifted shape spaces, we infer that the optimal

18



control vn(·) of Problem 1 specified on the finite-dimensional space Lmkd(2
n) with constraints C̃n

and data attachment g̃n is also optimal for Problem 1 specified on the infinite dimensional set
M with constraints Cn and data attachment gn. Now, if v ∈ Null(Cn) for every integer n, then
Fq(s)v(q(s)) = 0 for every s = 2−nr with n ∈ IN and r ∈ {1, . . . , 2n}. The set of such s is dense in
[0, 1], and s 7→ Fq(s)v(q(s)) is continuous. Therefore Fq(s)v(q(s)) = 0 for every s ∈ [0, 1], that is,
Cq(·)ξq(·)v(·) = 0. Since the converse is immediate, we get Null(Cq(·)) =

⋂

n∈IN Null(Cnq(·)). Finally,

since q(·) is a closed curve of class at least Cℓ with ℓ > 1, it is easy to check that

gn(q) =
c

2n

2n
∑

r=1

|q(2−nr)− q1(2
−nr)|

converges to g, uniformly on every compact subset of M . Therefore, Proposition 5 can be applied
to the sequence (vn(·))n∈IN, which completes the proof.

Remark 10. The same argument works as well if we replace S1 with any compact Riemannian
manifold S, and applies to the vertices of increasingly finer triangulations of S.

2.5 Proof of Theorem 1

Let (vn(·))n∈IN be a sequence of L2(0, 1;V ) such that J1(vn) converges to its infimum. Let (ϕn)n∈IN

be the corresponding sequence of deformations and let (qn(·))n∈IN be the sequence of corresponding
curves (one has qn(t) = ϕn(t) · q0 thanks to Remark 3). Since g is bounded below, it follows that
the sequence (vn(·))n∈IN is bounded in L2(0, 1;V ). The following lemma is well known (see [42]),
but we provide a proof for the sake of completeness.

Lemma 2. There exist v̄(·) ∈ L2(0, 1;V ), corresponding to the deformation ϕ̄, and a sequence
(nj)j∈IN of integers such that (vnj

(·))j∈IN converges weakly to v̄(·) and such that, for every compact

subset U of IRd,
sup
t∈[0,1]

‖(ϕnj
(t, ·)− ϕ̄(t, ·))|U‖ℓ −→

j→+∞
0.

Proof of Lemma 2. Since the sequence (vn(·))n∈IN is bounded in the Hilbert space L2(0, 1;V ),
there exists a subsequence (vnj

(·))j∈IN converging weakly to some v̄ ∈ L2(0, 1;V ). Besides, using

(2) for i = ℓ + 1 and the Ascoli theorem, we infer that for every compact subset U of IRd, the
sequence (ϕnj

)j∈IN is contained in a compact subset of the space C0([0, 1], Cℓ0(U, IR
d)). Considering

a compact exhaustion of IRd and using a diagonal extraction argument, we can therefore extract a
subsequence (ϕnjk

)k∈IN with limit ϕ̄ such that, for any compact subset U of IRd,

sup
t∈[0,1]

‖(ϕnjk
(t, ·)− ϕ̄(t, ·))|U‖ℓ −→

k→+∞
0. (15)

To complete the proof, it remains to prove that ϕ̄ is the deformation induced by v̄(·). On the first
hand, we have limk→+∞ ϕnjk

(t, x) = ϕ̄(t, x), for every x ∈ IRd and every t ∈ [0, 1]. On the second
hand, one has, for every k ∈ IN,

∣

∣

∣

∣

ϕnjk
(t, x)− x−

∫ t

0

v̄ ◦ ϕ̄(s, x) ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0

(

vnjk
◦ ϕnjk

(s, x)− v̄ ◦ ϕ̄(s, x)
)

ds

∣

∣

∣

∣

6

∣

∣

∣

∣

∫ t

0

vnjk
◦ ϕnjk

(x)− vnjk
◦ ϕ̄(s, x) ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

vnjk
◦ ϕ̄(s, x)− v̄ ◦ ϕ̄(s, x) ds

∣

∣

∣

∣

.

19



Set C = supn∈IN

∫ 1

0
‖vn(t)‖1 dt, and define χ[0,t]δϕ̄(·,x) ∈ V ∗ by (χ[0,t]δϕ̄(·,x)|v)L2(0,1;V ) =

∫ t

0
v ◦

ϕ̄(s, x) ds. Then,

∣

∣

∣

∣

ϕnjk
(t, x)− x−

∫ t

0

v̄ ◦ ϕ̄(s, x) ds

∣

∣

∣

∣

6 C sup
s∈[0,t]

|ϕnjk
(s, x)− ϕ̄(s, x)|

+
∣

∣

∣(χ[0,t]δϕ̄(·,x)|vnjk
− v̄)L2(0,1;V )

∣

∣

∣ ,

which converges to 0 as j tends to +∞ thanks to (15) and to the weak convergence vnjk
(·) to v̄(·).

We thus conclude that ϕ̄(t, x) = x+
∫ t

0
v̄ ◦ ϕ̄(s, x) ds, which completes the proof.

Setting q̄(t) = ϕ̄(t) · q0 for every t ∈ [0, 1], one has ˙̄q(t) = ξq̄(t)v̄(t) for almost every t ∈ [0, 1],
and it follows from the above lemma and from the fact that q0 has compact support that

sup
t∈[0,1]

‖q̄(t)− qnj
(t)‖X −→

j→+∞
0.

The operator v(·) 7→ Cq̄(·)v(·) is linear and continuous on L2(0, 1;V ), so it is also weakly
continuous [16]. We infer that the sequence Cqnj

(·)vnj
(·) converges weakly to Cq̄(·)v̄(·) in L

2(0, 1;Y ).

Since Cqnj
(·)vnj

(·) = 0 for every j ∈ IN, it follows that Cq̄(·)v̄(·) = 0. In other words, the time-

dependent vector field v̄(·) satisfies the constraints.
It remains to prove that v̄(·) is indeed optimal. From the weak convergence of the sequence

(vnj
(·))j∈IN to v̄(·) in L2(0, 1;V ), we infer that

∫ 1

0

‖v̄(t)‖2V dt 6 lim inf
j→+∞

∫ 1

0

‖vnj
(t)‖2V dt.

Besides, since g is lower continuous, lim infj→+∞ g(qnj
(1)) > g(q̄(1)). Since J1(vnj

) converges to
inf J1, it follows that J1(v̄) = inf J1.

3 Constrained geodesic equations in shape spaces

In this section, we derive first-order necessary conditions for optimality in Problem 1. We extend
the well-known Pontryagin maximum principle (PMP) from optimal control theory to our infinite-
dimensional framework, under the assumption that the constraints are surjective. This allows us to
derive the constrained geodesic equations for shape spaces, and we show how they can be reduced
to simple Hamiltonian dynamics on the cotangent space of the shape space.

3.1 First-order optimality conditions: PMP in shape spaces

We address the Pontyagin maximum principle in a slightly extended framework, considering a more
general control system and a more general minimization functional than in Problem 1.

Let V be a Hilbert space, and let X and Y be Banach spaces. Let M be an open subset of
X. Let ξ : M × V → X and C : M × V → Y be mappings of class C1. Let L : M × V → IR and
g :M → IR be functions of class C1. We assume that there exist continuous functions γ0 : IR → IR
and γ1 : X → IR such that γ0(0) = 0 and

‖dLq′,v′ − dLq,v‖X∗×V ∗ 6 γ0(‖q
′ − q‖X) + γ1(q − q′)‖v′ − v‖V , (16)

for all (q, q′) ∈M2 and all (v, v′) ∈ V 2.
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Let q0 ∈M . We consider the optimal control problem of minimizing the functional

J(q, v) =

∫ 1

0

L(q(t), v(t)) dt+ g(q(1)) (17)

over all (q(·), v(·)) ∈ H1
q0
(0, 1;M) × L2(0, 1;V ) such that q̇(t) = ξq(t)v(t) and Cq(t)v(t) = 0 for

almost every t ∈ [0, 1]. We define the Hamiltonian H :M ×X∗ × V × Y ∗ → IR by

H(q, p, v, λ) = 〈p, ξqv〉X∗,X − L(q, v)− 〈λ,Cqv〉Y ∗,Y . (18)

It is a function of class C1. Using the canonical injection X →֒ X∗∗, we have ∂pH = ξqv.

Remark 11. The estimate (16) on L is exactly what is required to ensure that the mapping

(q, v) 7→
∫ 1

0
L(q(t), v(t)) dt be well defined and Fréchet differentiable for every (q, v) ∈ H1

q0
(0, 1;M)×

L2(0, 1;V ). Indeed, the estimate L(q(t), v(t)) 6 L(q(t), 0) + γ1(q(t), q(t))‖v(t)‖
2
V implies the in-

tegrability property. The differentiability is an immediate consequence of the following estimate,
obtained by combining (16) with the mean value theorem: for every t ∈ [0, 1], and for some
st ∈ [0, 1], one has

|L(q(t) + δq(t), v(t) + δv(t))− L(q(t), v(t)− dLq(t),v(t)(δq(t), δv(t))|

6

(

γ0(‖δq(t)‖X) + γ1(stδq(t))‖δv(t)‖
)

(‖δq(t)‖X + ‖δv(t)‖V ).

Theorem 2. Assume that the linear operator Cq(t) : V → Y is surjective for every q ∈ M . Let
(q(·), v(·)) ∈ H1

q0
(0, 1;X)×L2(0, 1;V ) be an optimal solution of the above optimal control problem.

Then there exist p(·) ∈ H1(0, 1;X∗) and λ(·) ∈ L2(0, 1;Y ∗) such that p(1) + dgq(1) = 0 and

q̇(t) = ∂pH(q(t), p(t), v(t), λ(t)),

ṗ(t) = −∂qH(q(t), p(t), v(t), λ(t)),

∂vH(q(t), p(t), v(t), λ(t)) = 0,

(19)

for almost every t ∈ [0, 1].

Remark 12. This theorem is the extension of the usual PMP to our specific infinite-dimensional
setting. Any quadruple q(·), p(·), v(·), λ(·) solution of the above equations is called an extremal.
This is a ”weak” maximum principle, in the sense that we derive the condition ∂vH along any
extremal, instead of the stronger maximization condition

H(q(t), p(t), v(t), λ(t)) = max
w∈Null(Cq(t))

H(q(t), p(t), w, λ(t))

for almost every t ∈ [0, 1]. Note however that, in the case of shape spaces, v 7→ H(q, p, v) is strictly
concave and hence both conditions are equivalent.

Remark 13. It is interesting to note that, if we set V = Hℓ(IRd, IRd) with ℓ large enough, and
if L(q, v) = 1

2

∫

IRd |v(x)|2dx and Cqv = div v, then the extremal equations given in Theorem 2
coincide with the incompressible Euler equation. In other words, we recover the well-known fact
that every divergence-free time-dependent vector field minimizing its L2 norm (in t and x) must
satisfy the incompressible Euler equation (see [5]).

Remark 14. Note that the surjectivity assumption is a strong one in infinite dimension. It is
usually not satisfied in the case of shape spaces when Y is infinite dimensional. For instance,
consider the shape spaces M = C0(S, IRd), with S a smooth compact Riemannian manifold. Let
V be an RKHS of vector fields of class C1

0 , acting on M as described in Section 2.2. Let T
be a submanifold of S of class C1. Set Y = C0(T, IRd), and consider the kinetic constraints
C :M × V → Y defined by Cqv = v ◦ q|T . If q is differentiable along T , then no nondifferentiable
map f ∈ Y is in Range(Cq).
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Remark 15. It is possible to replace Cq with the orthogonal projection on Null(Cq)
⊥, which is

automatically surjective. However in this case the constraints become fiber-valued, and for the
proof of our theorem to remain valid, one needs to assume that there exists a Hilbert space V1 such
that, for every q0 ∈M , there exists a neighborhood U of q0 inM such that

⋃

q∈U Null(Cq) ∼ U×V1.

Remark 16. An important consequence of the surjectivity of Cq is that the norm on Y is equivalent
to the Hilbert norm induced from V by Cq, for every q ∈M . The operator CqKV C

∗
q : Y ∗ → Y is

the isometry associated with this norm. In particular Y must be reflexive, and hence L2(0, 1;Y ∗) =
L2(0, 1;Y )∗ (whereas we only have an inclusion for general Banach spaces).

Remark 17. Theorem 2 withstands several generalizations. For instance it remains valid whenever
we consider nonlinear constraints C(q, v) = 0 and a general Lagrangian L of class C1, with the
following minor modifications.

• We must restrict ourselves to essentially bounded controls v ∈ L∞(0, 1;V ) (instead of square-
integrable controls). However, the estimate (16) on L is no longer required and we only need
to assume that L is of class C1.

• The assumption “Cq surjective” must be replaced with “∂vC(q, v)” surjective for every
(q, v) ∈M × V .

• q(·) ∈W 1,∞(0, 1;X), p(·) ∈W 1,∞(0, 1;X∗), and λ(·) ∈ L∞(0, 1;Y ∗).

The proof is similar to that of Theorem 2, although the regularity of the Lagrange multipliers p(·)
and λ(·) is slightly more difficult to obtain.

Before proving Theorem 2, it can be noted that many versions of the PMP can be found in the
existing literature for infinite-dimensional optimal control problems – for instance, with dynamics
consisting of partial differential equations, and however, most of the time, without constraint on
the state. Versions of the PMP with state constraints can also be found in the literature (see the
survey [23]), most of the time in finite dimension, and, for the very few of them existing in infinite
dimension, under the additional assumption that the constraints are of finite codimension. To the
best of our knowledge, no version does exist that would cover our specific framework, concerning
shape spaces, group actions, with an infinite number of constraints on the acting diffeomorphisms.
The proof that we provide hereafter contains some subtleties such as Lemma 4, and hence Theorem
2 is a nontrivial extension of the usual PMP.

Proof of Theorem 2. We define the mapping Γ : H1
q0
(0, 1;M)×L2(0, 1;V ) → L2(0, 1;X)×L2(0, 1;Y )

by Γ(q, v) = (Γ1(q, v),Γ2(q, v)) with Γ1(q, v)(t) = q̇(t) − ξq(t)v(t) and Γ2(q, v)(t) = Cq(t)v(t) for
almost every t ∈ [0, 1]. The mapping Γ stands for the constraints imposed to the unknowns of the
optimal control problem.

The functional J : H1
q0
(0, 1;M)×L2(0, 1;V ) → IR and the mapping Γ are of class C1, and their

respective differentials at some point (q, v) are given by

dJ(q,v).(δq, δv) =

∫ 1

0

(〈∂qL(q(t), v(t)), δq(t)〉X∗,X + 〈∂vL(q(t), v(t)), δv(t)〉V ∗,V ) dt

+ 〈dgq(1), δq(1)〉X∗,X ,

for all (δq, δv) ∈ H1
0 (0, 1;X)× L2(0, 1;V ), and dΓ(q,v) = (dΓ1(q,v), dΓ2(q,v)) with

(dΓ1(q,v).(δq, δv))(t) = δ̇q(t)− ∂qξq(t)v(t).δq(t)− ξq(t)δv(t),

(dΓ2(q,v).(δq, δv))(t) = ∂qCq(t)v(t).δq(t) + Cq(t)δv(t),

for almost every t ∈ [0, 1].
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Lemma 3. For every (q, v) ∈ H1
q0
(0, 1;M) × L2(0, 1;V ), the linear continuous mapping dΓ(q,v) :

H1
0 (0, 1;X)×L2(0, 1;V ) → L2(0, 1;X)×L2(0, 1;Y ) is surjective. Moreover the mapping ∂qΓ1(q,v) :

H1
0 (0, 1;M) → L2(0, 1;X) is an isomorphism.

Proof. Let (q, v) ∈ H1
q0
(0, 1;M) × L2(0, 1;V ) and (a, b) ∈ L2(0, 1;X) × L2(0, 1;Y ). Let us prove

that there exists (δq, δv) ∈ H1
0 (0, 1;X)× L2(0, 1;V ) such that

a(t) = δ̇q(t)− ∂qξq(t)v(t).δq(t)− ξq(t)δv(t), (20)

b(t) = ∂qCq(t)v(t).δq(t) + Cq(t)δv(t), (21)

for almost every t ∈ [0, 1].
For every q̃ ∈ M , Cq̃ : V → Y is a surjective linear continuous mapping. It follows that

Cq̃|(Null(Cq̃))⊥ : (Null(Cq̃))
⊥ → Y is an isomorphism (note that V = Null(Cq̃) ⊕ (Null(Cq̃))

⊥ since

V is Hilbert). We set Aq̃ = (Cq̃|(Null(Cq̃))⊥)
−1 = KV C

∗
q̃ (Cq̃KV C

∗
q̃ )

−1. Note that q̃ 7→ Aq̃ is of class

C1 in a neighbourhood of q([0, 1]).
Assume for the moment that δq(·) is known. Then we choose δv(·) defined by δv(t) =

Aq(t)
(

b(t)− ∂qCq(t).δq(t)
)

for almost every t ∈ [0, 1], so that (21) is satisfied. Plugging this ex-
pression into (20) yields

δ̇q(t)− ∂qξq(t)v(t).δq(t)− ξq(t)Aq(t)
(

b(t)− ∂qCq(t)v(t).δq(t)
)

= a(t),

for almost every t ∈ [0, 1]. This is a well-posed linear differential equation with square-integrable
coefficients in the Banach space X, which has a unique solution δq ∈ H1

0 (0, 1;X) such that δq(0) =
0. This proves the statement.

Proving that the mapping ∂qΓ1(q,v) : H
1
0 (0, 1;M) → L2(0, 1;X), defined by (∂qΓ1(q,v).δq)(t) =

δ̇q(t) − ∂qξq(t)v(t).δq(t) for almost every t ∈ [0, 1], is an isomorphism follows the same argument,
by Cauchy uniqueness.

Let (q, v) ∈ H1
q0
(0, 1;M) × L2(0, 1;V ) be an optimal solution of the optimal control problem.

In other words, (q, v) is a minimizer of the problem of minimizing the functional J over the set of
constraints Γ−1({0}) (which is a C∞ manifold as a consequence of Lemma 3 and of the implicit
function theorem). Since dΓ(q,v) is surjective (note that this fact is essential since we are in infinite
dimension), it follows from [27, Theorem 4.1] that there exists a nontrivial Lagrange multiplier
(p, λ) ∈ L2(0, 1;X)∗ × L2(0, 1;Y )∗ such that dJ(q,v) + (dΓ(q,v))

∗(p, λ) = 0. Moreover since Y is
reflexive one has L2(0, 1;Y )∗ = L2([0, 1], Y ∗), and hence we can identify λ with a square-integrable
Y ∗-valued measurable mapping, so that the Lagrange multipliers relation yields

0 =
〈

dJ(q,v) + (dΓ(q,v))
∗(p, λ), (δq, δv)

〉

=
〈

p, δ̇q
〉

L2(0,1;X)∗,L2(0,1;X)
−
〈

p, ∂qξqv.δq
〉

L2(0,1;X)∗,L2(0,1;X)
−
〈

p, ξqδv
〉

L2(0,1;X)∗,L2(0,1;X)

+

∫ 1

0

〈

∂qL(q(t), v(t)) + (∂qCq(t)v(t))
∗λ(t), δq(t)

〉

X∗,X
dt

+

∫ 1

0

〈

∂vL(q(t), v(t)) + C∗
q(t)λ(t), δv(t)

〉

V ∗,V
dt+

〈

dgq(1), δq(1)
〉

X∗,X
,

(22)

for all (p, λ) ∈ L2(0, 1;X)∗ × L2([0, 1], Y ∗) and all (δq, δv) ∈ H1
0 (0, 1;M)× L2(0, 1;V ). Note that

the space L2(0, 1;X)∗ can be different from L2(0, 1;X∗) (unless X∗ satisfies the Radon-Nikodym
property, but there is no reason to consider such a Banach space X), and hence a priori p cannot
be obviously identified with a square-integrable X∗-valued measurable mapping. Anyway, in the
next lemma we show that this identification is possible, due to a hidden regularity property in
(22).
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Lemma 4. We can identify p with an element of L2([0, 1], X∗), so that

〈

p, r
〉

L2(0,1;X∗),L2(0,1;X)
=

∫ 1

0

〈

p(t), r(t)
〉

X∗,X
dt,

for every r ∈ L2(0, 1;X).

Proof of Lemma 4. For every r ∈ L2(0, 1;X), we define δq ∈ H1
0 (0, 1;X) by δq(s) =

∫ s

0
r(t) dt for

every s ∈ [0, 1] (Bochner integral in the Banach space X), so that r = δ̇q. Defining α ∈ L2(0, 1;X)∗

by
〈

α, f
〉

L2(0,1;X)∗,L2(0,1;X)
=
〈

p, ∂qξqv.f
〉

L2(0,1;X)∗,L2(0,1;X)

−

∫ 1

0

〈

∂qL(q(t), v(t)) + (∂qCq(t)v(t))
∗λ(t), f(t)

〉

X∗,X
dt,

(23)

for every f ∈ L2(0, 1;X), and taking δv = 0 in (22), we get
〈

p, r
〉

L2(0,1;X)∗,L2(0,1;X)
=
〈

α, δq
〉

L2(0,1;X)∗,L2(0,1;X)
−
〈

dgq(1), δq(1)
〉

X∗,X
. (24)

Let us express δq in another way with respect to r. By definition, one has δq(s) =
∫ s

0
r(t) dt

for every s ∈ [0, 1], and this can be also written as δq(s) =
∫ 1

0
χ[t,1](s)r(t) dt, with χ[t,1](s) = 1

whenever s ∈ [t, 1] and 0 otherwise. In other words, one has δq =
∫ 1

0
χ[t,1]r(t) dt (Bochner integral).

For every t ∈ [0, 1], we define the operator At : X → L2(0, 1;X) by Atx = χ[t,1]x. It is clearly

linear and continuous. Then, we have δq =
∫ 1

0
At(r(t)) dt, and therefore, using (24),

〈

p, r
〉

L2(0,1;X)∗,L2(0,1;X)
=
〈

α,

∫ 1

0

At(r(t)) dt
〉

L2(0,1;X)∗,L2(0,1;X)
−
〈

dgq(1),

∫ 1

0

r(t) dt
〉

X∗,X
.

Now, interchanging the Bochner integrals and the linear forms, we infer that

〈

p, r
〉

L2(0,1;X)∗,L2(0,1;X)
=

∫ 1

0

〈

α,At(r(t))
〉

L2(0,1;X)∗,L2(0,1;X)
dt−

∫ 1

0

〈

dgq(1), r(t)
〉

X∗,X
dt,

and then, using the adjoint A∗
t : L

2(0, 1;X)∗ → X∗, we get

〈

p, r
〉

L2(0,1;X)∗,L2(0,1;X)
=

∫ 1

0

〈

A∗
tα− dgq(1), r(t)

〉

X∗,X
dt.

Since this identity holds true for every r ∈ L2(0, 1;X), it follows that p can be identified with an
element of L2(0, 1;X∗), still denoted by p, with p(t) = A∗

tα− dgq(1) for almost every t ∈ [0, 1].

Still using the notation introduced in the proof of Lemma 4, now that we know that p ∈
L2(0, 1;X∗), we infer from (23) that α can as well be identified with an element of L2([0, 1], X∗),
with

α(t) = (∂qξq(t)v(t))
∗p(t)− ∂qL(q(t), v(t))− (∂qCq(t)v(t))

∗λ(t),

for almost every t ∈ [0, 1]. Note that α(t) = ∂qH(q(t), p(t), v(t), λ(t)), where the Hamiltonian H is
defined by (18).

Since α ∈ L2(0, 1;X∗), we have, for every x ∈ X,

〈A∗
tα, x〉X∗,X =

〈

α, χ[t,1]x
〉

L2(0,1,X∗),L2(0,1;X)
=

∫ 1

0

〈α(s), χ[t,1](s)x〉X∗,X ds

=

∫ 1

t

〈α(s), x〉X∗,X ds =
〈

∫ 1

t

α(s) ds, x
〉

X∗,X
,
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and therefore A∗
tα =

∫ 1

t
α(s) ds for every t ∈ [0, 1]. It follows that p(t) = A∗

tα−dgq(1) =
∫ 1

t
α(s) ds−

dgq(1), and hence, that p ∈ H1(0, 1;X∗) and that p(·) satisfies the differential equation ṗ(t) =
−α(t) = −∂qH(q(t), p(t), v(t), λ(t)) for almost every t ∈ [0, 1] and p(1) + dgq(1) = 0.

Finally, taking δq = 0 in (22) yields

∫ 1

0

〈

∂vL(q(t), v(t)) + C∗
q(t)λ(t)− ξ∗q(t)p(t), δv(t)

〉

)V ∗,V dt = 0,

for every δv ∈ L2(0, 1;X), and hence ∂vL(q(t), v(t)) + C∗
q(t)λ(t) − ξ∗q(t)p(t) = 0 for almost every

t ∈ [0, 1], which exactly means that ∂vH(q(t), p(t), v(t), λ(t)) = 0. The theorem is proved.

3.2 The geodesic equations in a shape space

We use the notations introduced in Section 2.2, and consider a shape space M of order ℓ ∈ IN, V
an RKHS of vector fields of class Cℓ+1

0 on IRd, and we set L(q, v) = 1
2‖v‖

2
V . We assume that C and

g are at least of class C1 and that Cq : V → Y is surjective for every q ∈M .
In this context ξ is of class C1. Let us apply Theorem 2. We have ∂vH(q, p, v, λ) = ξ∗qp −

C∗
qλ − (v, ·)V , and the condition ∂vH(q, p, v, λ) = 0 is equivalent to v = KV (ξ

∗
qp − C∗

qλ). Then
we have ∂pH = ξqv = ξqKV (ξ

∗
qp − C∗

qλ) = Kqp − ξqKV C
∗
qλ, where Kq = ξqKV ξ

∗
q is defined by

(11). Besides, Cqv = CqKV ξ
∗
qp − CqKV C

∗
qλ = 0 if and only if CqKV C

∗
qλ = CqKV ξ

∗
qp. Since Cq

is surjective, it follows that CqKV C
∗
q is invertible, and hence λ = λq,p = (CqKV C

∗
q )

−1CqKV ξ
∗
qp.

The mapping (q, p) 7→ λq,p defined as such is of class C1 and is linear in p. In particular, v = vq,p =
KV (ξ

∗
qp − C∗

qλq,p) is a function of class C1 of q and p and is linear in p. We have obtained the
following result.

Theorem 3 (Geodesic equations in shape spaces). Let (q(·), v(·)) ∈ H1
q0
(0, 1;M)× L2(0, 1;V ) be

a solution of Problem 1. There exists p(·) ∈ H1(0, 1;X∗) such that

v(t) = vq(t),p(t) = KV

(

ξ∗q(t)p(t)− C∗
q(t)λ(t)

)

,

for almost every t ∈ [0, 1], and p(·) satisfies p(1) + dgq(1) = 0 and the geodesic equations

q̇(t) = Kq(t)p(t)− ξq(t)KV C
∗
q(t)λ(t),

ṗ(t) = −∂q
〈

p(t), ξq(t)v(t)
〉

X∗,X
+ ∂q

〈

λ(t), Cq(t)v(t)
〉

Y ∗,Y
,

(25)

for almost every t ∈ [0, 1], with

λ(t) = λq(t),p(t) = (Cq(t)KV C
∗
q(t))

−1Cq(t)KV ξ
∗
q(t)p(t).

Moreover the mapping t 7→ 1
2‖v(t)‖

2 is constant, and one has

J(v) =
1

2
‖v(0)‖2V + g(q(1)).

Remark 18. It is interesting to note that, using an integration by parts, one can prove that curves
q(·), for which such p(·) and λ(·) exist, are actually geodesics (i.e., critical points of the energy)
with respect to the sub-Riemannian structure on M mentioned in Remark 4.
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Remark 19. Defining the so-called reduced Hamiltonian h :M ×X∗ → IR by

h(q, p) = H(q, p, vq,p, λq,p),

we have a priori ∂qh = ∂qH + ∂vH(q, p, vq,p, λq,p) ◦ ∂q(vq,p) + ∂λH(q, p, vq,p, λq,p) ◦ ∂q(λq,p). But
since λq,p and vq,p are such that ∂vH(q, p, vq,p, λq,p) = 0 and Cqvq,p = ∂λH(q, p, vq,p, λq,p) = 0,
it follows that ∂qh(q, p) = ∂qH(q, p, vq,p, λq,p). Similarly, we have ∂ph(q, p) = ∂pH(q, p, vq,p, λq,p).
Therefore, in Theorem 3, the geodesics are the solutions of the Hamiltonian system

q̇(t) = ∂ph(q(t), p(t)), ṗ(t) = −∂qh(q(t), p(t)).

Corollary 1. Assume that the mappings C and ξ are of class C2. Then h is of class C2 as
well, and for every (q0, p0) ∈ M × X∗, there exists ε > 0 and there exists a unique solution
(q, p) : [0, ǫ] →M ×X∗ of the geodesic equations (25) such that (q(0), p(0)) = (q0, p0).

Note that for most of shape spaces (at least, for all shape spaces given as examples in this
paper), the mapping ξ is of class C2 whenever V is an RKHS of vector fields of class Cℓ+2.

Example 5. A geodesic (q(t), p(t)) = (x1(t), . . . , xn(t), p1(t), . . . , pn(t)) on the landmark space
Lmkd(n) must satisfy the equations

ẋi(t) =

n
∑

j=1

K(xi(t), xj(t))pj(t), ṗj(t) = −
1

2

n
∑

j=1

∂xi

(

pi(t)
TK(xi(t), xj(t))pj(t)

)

,

where K is the kernel of V .

Remark 20. Assume that the constraints are kinetic, i.e., are of the form Cqξqv = 0 with Cq :
X → Y . Then q̇(t) = Kq(t)(p(t) − C∗

q(t)λ(t)) and λq,p = (CqKqC
∗
q )

−1CqKqp. Note that even
if Kq is not invertible, the assumption that Cqξq is surjective means that CqKqC

∗
q is invertible.

In particular, minimizing controls take the form KV ξ
∗
qu, with u ∈ L2(0, 1;X∗). This proves the

contents of Proposition 4 (see Section 2.2).

Remark 21. Let M (resp., M ′), open subset of a Banach space X (resp., X ′), be a shape space
of order ℓ (resp. of order ℓ′ 6 ℓ). Assume that there is a dense and continuous inclusion X →֒ X ′,
such that M →֒ M ′ is equivariant (in particular we have X ′∗ →֒ X∗). For every q0 ∈ M ⊂ M ′,
there are more geodesics emanating from q0 on M than on M ′ (indeed it suffices to consider initial
momenta p0 ∈ X∗ \X ′∗). These curves are not solutions of the geodesic equations on M ′, and are
an example of so-called abnormal extremals [1, 35]. Note that they are however not solutions of
Problem 1 specified on X ′, since Theorem 2 implies that such solutions are projections of geodesics
having an initial momentum in X ′∗.

An example where this situation is encountered is the following. Let S be a compact Riemannian
manifold. Consider X = Cℓ+1(S, IRd) and X ′ = Cℓ(S, IRd), with actions defined in Definition 2. If
p(0) is a ℓ+1-th order distribution, then the geodesic equations on X with initial momentum p(0)
yield an abnormal geodesic in X ′.

Remark 22. Following Remark 21, if the data attachment function g : X → IR+ can be smoothly
extended to a larger space X ′, then the initial momentum of any solution of Problem 1 is actually
in X ′∗ ⊂ X∗.

For example, we set g(q) =
∫

S
|q(s)− qtarget(s)|

2 ds, for some qtarget ∈ X, with X = Cℓ(S, IRd)

and S a compact Riemannian manifold. Let X ′ = L2(S, IRd). Then the momentum p : [0, 1] → X∗

associated with a solution of Problem 1 (whose existence follows from Theorem 3) takes its values
in X ′∗ = L2(S, IRd).
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The case of pure state constraints. Let us consider pure state constraints, i.e., constraints of
the form C(q) = 0 with C :M → Y . Recall that, if C is of class C1, then they can be transformed
into the mixed constraints dCq.q̇ = dCq.ξqv = 0. In this particular case, the geodesic equations
take a slightly different form.

Proposition 7. Assume that C :M → Y is of class C3, and that dCq.ξq : V → Y is surjective for
every q ∈M . Consider Problem 1 with the pure state constraints C(q) = 0. If v(·) ∈ L2(0, 1;V ) is
a solution of Problem 1, associated with the curve q(·) : [0, 1] →M , then there exists p̃ : [0, 1] → X∗

such that

q̇(t) = Kq(t)p̃(t), ˙̃p(t) = −
1

2
∂q〈p̃(t),Kq(t)p̃(t)〉X∗,X + ∂q〈λ̃q(t),p̃(t), C(q(t))〉Y ∗,Y ,

for almost every t ∈ [0, 1], with

λ̃q,p̃ = (dCqKqdC
∗
q )

−1

(

1

2
dCq.Kq∂q〈p̃, Kqp̃〉X∗,X − d2Cq.(Kq p̃, Kq p̃)− dCq. (∂q(Kq p̃).Kq p̃)

)

.

Moreover one has dCq0 .Kq0 p̃0 = 0 and dgq(1) + p̃(1) = dC∗
q(1)ν for some ν ∈ Y ∗.

Note that all functions involved are of class C1. Therefore, for a given initial condition
(q0, p̃0) ∈ T ∗

q0
M with dCq0 .Kq0p0 = 0, there exists a unique geodesic emanating from q0 with

initial momentum p̃0.

Proof. The proof just consists in considering λ̃(t) = λ̇(t) and p̃ = p − dC∗
q .λ, where p and λ are

given by Theorem 3, and then in differentiating C(q(t)) = 0 twice with respect to time.

Remark 23. The mappings p̃ and λ̃ can also be obtained independently of Theorem 3 as Lagrange
multipliers for the mapping of constraints Γ(q, v) = (q̇ − ξqv, C(q)), using the same method as in
the proof of Theorem 2, under the assumptions that C : X → Y is of class C2 and dCq.ξq is
surjective for every q ∈M .

4 Algorithmic procedures

In this section we derive some algorithms in order to compute the solutions of the optimal control
problem considered throughout. We first consider problems without constraint in Section 4.1, and
then with constraints in Section 4.2.

4.1 Problems without constraints

Shape deformation analysis problems without constraint have already been studied in [9, 10, 11,
13, 17, 20, 21, 26, 29, 30, 34, 36] with slightly different methods, in different and specific contexts.
With our previously developed general framework, we are now going to recover methods that are
well known in numerical shape analysis, but with a more general point of view allowing us to
generalize the existing approaches.

Gradient Descent. We adopt the notations, the framework and the assumptions used in Section
3.1, but without constraint. For q0 ∈ M fixed, we consider the optimal control problem of mini-
mizing the functional J defined by (17) over all (q(·), v(·)) ∈ H1

q0
(0, 1;M) × L2(0, 1;V ) such that

q̇(t) = ξq(t)v(t) for almost every t ∈ [0, 1]. The Hamiltonian of the problem then does not involve the
variable λ, and is the function H :M ×X∗×V → IR defined by H(q, p, v) = 〈p, ξqv〉X∗,X−L(q, v).
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We assume throughout that g ∈ C1(X, IR), that ξ : M × V → X is of class C2, is a linear
mapping in v, and that L ∈ C2(X × V, IR) satisfies the estimate (16).

As in the proof of Theorem 2, we define the mapping Γ : H1
q0
(0, 1;M)×L2(0, 1;V ) → L2(0, 1;X)

by Γ(q, v)(t) = q̇(t)−ξq(t)v(t) for almost every t ∈ [0, 1]. The objective is to minimize the functional
J over the set E = Γ−1({0}).

According to Lemma 3, the mapping ∂qΓ(q,v) is an isomorphism for all (q, v) ∈ E. Therefore,
the implicit function theorem implies that E is the graph of the mapping v 7→ qv which to a control
v ∈ L2(0, 1;V ) associates the curve qv ∈ H1

q0
(0, 1;X) solution of q̇v(t) = ξqv(t)v(t) for almost every

t ∈ [0, 1] and qv(0) = q0. Moreover this mapping is, like Γ, of class C2.
Then, as it was already explained in Remark 3 in the case where L(q, v) = 1

2‖v‖
2
V , minimizing

J over E is then equivalent to minimizing the functional J1(v) = J(qv, v) over L
2(0, 1;V ).

Thanks to these preliminary remarks, the computation of the gradient of J|E then provides in
turn a gradient descent algorithm.

Proposition 8. The differential of J1 is given by

dJ1v.δv = −

∫ 1

0

∂vH(qv(t), p(t), v(t)).δv(t) dt,

for every δv ∈ L2(0, 1;V ), where p ∈ H1([0, 1], X∗) is the solution of ṗ(t) = −∂qH(qv(t), p(t), v(t))
for almost every t ∈ [0, 1] and p(1) + dgqv(1) = 0. In particular we have

∇J1(v)(t) = −KV ∂vH(qv(t), p(t), v(t)),

for almost every t ∈ [0, 1].

Remark 24. This result still holds true for Lagrangians L that do not satisfy (16), replacing
L2(0, 1;V ) with L∞(0, 1;V ). The gradient is computed with respect to the pre-Hilbert scalar
product inherited from L2.

Proof. Let v ∈ L2(0, 1;V ) be arbitrary. For every δv ∈ L2(0, 1;V ), we have dJ1v.δv = dJ(qv,v).(δq, δv),
with δq = dqv.δv. Note that (δq, δv) ∈ T(qv,v)E (the tangent space of the manifold E at (qv, v)),
since E is the graph of the mapping v → qv. Since E = Γ−1({0}), we have 〈dΓ∗

(qv,v)
p, (δq, δv)〉 = 0

for every p ∈ L2(0, 1;X)∗. Let us find some particular p such that 〈dJ1(qv,v) + dΓ∗
(qv,v)

p, (δq, δv)〉
only depends on δv.

Let p ∈ H1([0, 1], X∗) be the solution of ṗ(t) = −∂qH(qv(t), p(t), v(t)) for almost every t ∈ [0, 1]
and p(1) + dgqv(1) = 0. Using the computations done in the proof of Theorem 2, we get

〈dJ1(qv,v) + dΓ∗
(qv,v)

p, (δq, δv)〉 =

∫ 1

0

(

〈p(t), δ̇q(t)〉X∗,X − 〈∂qH(qv(t), p(t), v(t)), δq(t)〉X∗,X

− 〈∂vH(qv(t), p(t), v(t)), δv(t)〉V ∗,V

)

dt+ dgqv(1).δqv(1).

Integrating by parts and using the relations δq(0) = 0 and p(1) + dgqv(1) = 0, we obtain

〈dJ1(qv,v) + dΓ∗
(qv,v)

p, (δq, δv)〉 = −

∫ 1

0

∂vH(qv(t), p(t), v(t)).δv(t) dt

Since 〈dΓ∗
(qv,v)

p, (δq, δv)〉 = 0, the proposition follows.

In the case of shape spaces, which form our main interest here, we have L(q, v) = 1
2‖v‖

2
V , and

then ∂vH(q, p, v) = ξ∗qp− (v, ·)V and KV ∂vH(q, p, v) = KV ξ
∗
qp− v. It follows that

∇J1(v) = v −KV ξ
∗
qv
p.
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In particular, if v = KV ξ
∗
qu for some u ∈ L2([0, 1], X∗), then

v − h∇J1(v) = Kvξ
∗
q (u− h(u− p)),

for every h ∈ IR. Therefore, applying a gradient descent algorithm does not change this form.
It is then important to notice that this provides as well a gradient descent algorithm for solving
Problem 2 (the kernel formulation of Problem 1) without constraint, and this in spite of the fact
that L2([0, 1], X∗) is not necessarily a Hilbert space. In this case, if p ∈ H1([0, 1], X∗) is the
solution of ṗ(t) = −∂qH(qv(t), p(t), v(t)) for almost every t ∈ [0, 1] and p(1) + dgqv(1) = 0, then
u−p is the gradient of the functional J2 defined by (12) with respect to the symmetric nonnegative

bilinear form Bq(u1, u2) =
∫ 1

0
〈u1(t),Kq(t)u2(t)〉X∗,X dt.

This gives a first algorithm to compute unconstrained minimizers in a shape space. We next
provide a second method using the space of geodesics.

Gradient descent on geodesics: minimization through shooting. Since the tools are
quite technical, in order to simplify the exposition we assume that the shape space M is finite
dimensional, i.e., that X = IRn for some n ∈ IN. The dual bracket 〈p, w〉X∗,X is then identified
with the canonical Euclidean product pTw, and Kq = ξqKV ξ

∗
q : X∗ → X is identified with a n×n

positive semi-definite symmetric matrix. Theorem 3 and Corollary 1 (see Section 3.2) imply that
the minimizers of the functional J1 defined by (10) coincide with those of the functional

Ĵ1(p0) =
1

2
pT0Kq0p0 + g(q(1)), (26)

where v = KV ξ
∗
qp and (q(·), p(·)) is the geodesic solution of the Hamiltonian system q̇(t) =

∂ph(q(t), p(t)), ṗ(t) = −∂qh(q(t), p(t)), for almost every t ∈ [0, 1], with (q(0), p(0)) = (q0, p0).
Here, h is the reduced Hamiltonian (see Remark 19) and is given by h(q, p) = 1

2 〈p, ξqKV ξ
∗
qp〉X∗,X =

1
2 〈p,Kqp〉X∗,X . Therefore, computing a gradient of Ĵ1 for some appropriate bilinear symmetric non-
negative product provides in turn another algorithm for minimizing the functional J1. For example,
if the inner product that we consider is the canonical one, then ∇Ĵ1(p0) = Kq0p0+∇(g ◦q(1))(p0).
The term ∇(g ◦ q(1))(p0) is computed thanks to the following well-known result.

Lemma 5. Let n ∈ IN, let U be an open subset of IRn, let f : U → IRn be a complete smooth vector
field on U , let G be the function of class C1 defined on U by G(q0) = g(q(1)), where g is a function
on U of class C1 and q : [0, 1] → IRn is the solution of q̇(t) = f(q(t)) for almost every t ∈ [0, 1] and
q(0) = q0. Then ∇G(q0) = Z(1) where Z : [0, 1] → IRn is the solution of Ż(t) = dfTq(1−t)Z(t) for

almost every t ∈ [0, 1] and Z(0) = ∇g(q(1)).

In our case, we have U = M × IRn and f(q, p) = (∇ph,−∇qh) = (Kqp,−
1
2∇q(p

TKqp)). Note
that we used the Euclidean gradient instead of the derivatives. This is still true thanks to the
identification made between linear forms and vectors at the beginning of the section. We get
∇Ĵ1(p0) = Kq0p0 + α(1), where Z(·) = (z(·), α(·)) is the solution of Ż(t) = dfTq(1−t),p(1−t)Z(t) for

almost every t ∈ [0, 1] and Z(0) = (z(0), α(0)) = (∇g(q(1)), 0).
In numerical implementations, terms of the form dfTw, with f a vector field and w a vector,

require a long computational time since every partial derivative of f has to be computed. In our
context however, using the fact that the vector field f(q, p) is Hamiltonian, the computations can
be simplified in a substantial way. Indeed, using the commutation of partial derivatives, we get

dfT(q,p)Z =

(

∇q(f(q, p), Z)
∇p(f(q, p), Z)

)

=

(

∇q(∇ph
T z −∇qh

Tα)
∇p(∇ph

T z −∇qh
Tα)

)

=

(

∂p(∇qh).z − ∂q(∇qh).α)
∂p(∇ph).z − ∂q(∇ph).α)

)

.

29



Replacing h with its expression, we get

dfT(q,p)Z =

(

∇q(p
TKqz)−

1
2∂q(∇q(p

TKqp)).α
Kqz − ∂q(Kqp).α

)

.

Therefore, instead of computing d(∇q(p
TKqp))

Tα, which requires the computation of all partial
derivatives of ∇q(p

TKq), it is required to compute only one of them, namely the one with respect
to α. Let us sum up the result in the following proposition.

Proposition 9. We have ∇Ĵ1(p0) = Kq0p0 + α(1), where (z(·), α(·)) is the solution of

ż(t) = ∇q(p(1− t)TKq(1−t)z(t))−
1

2
∂q(∇q(p(1− t)TKq(1−t)p(1− t))).α(t),

α̇(t) = Kq(1−t)z(t)− ∂q(Kq(1−t)p(1− t)).α(t)

with (z(0), α(0)) = (∇g(q(1)), 0), and (q(t), p(t)) satisfies the geodesic equations q̇(t) = Kq(t)p(t)

and ṗ(t) = − 1
2∇q(p(t)

TKq(t)p(t)) for almost every t ∈ [0, 1], with q(0) = q0 and p(0) = p0.

A gradient descent algorithm can then be used in order to minimize Ĵ1 and thus J1.

4.2 Problems with constraints

In this section, we derive several different methods devoted to solve numerically constrained optimal
control problems on shape spaces. To avoid using overly technical notation in their whole generality,
we restrict ourselves to the finite-dimensional case. The methods can however be easily adapted
to infinite-dimensional shape spaces. We use the notation, the framework and the assumptions of
Section 2.2.

Let X = IRn and let M be an open subset of X. For every q ∈ M , we identify Kq with a
n × n symmetric positive semi-definite real matrix. Throughout the section, we focus on kinetic
constraints and we assume that we are in the conditions of Proposition 4, so that these constraints
take the form CqKqu = 0. Note that, according to Proposition 3, in this case Problems 1 and 2 are
equivalent. Hence in this section we focus on Problem 2, and thanks to the identifications above
the functional J2 defined by (12) can be written as

J2(u) =
1

2

∫ 1

0

u(t)TKq(t)u(t) dt+ g(q(1)).

Note (and recall) that pure state constraints, of the form C(q) = 0, are treated as well since, as
already mentioned, they are equivalent to the kinetic constraints dCq.Kqu = 0.

The augmented Lagrangian method. This method consists of minimizing iteratively uncon-
strained functionals in which the constraints have been penalized. Although pure state constraints
are equivalent to kinetic constraints, in this approach they can also be treated directly. The method
goes as follows. In the optimal control problem under consideration, we denote by λ : [0, 1] → IRk

the Lagrange multiplier associated with the kinetic constraints CqKqu = 0 (its existence is ensured
by Theorem 2). We define the augmented cost function

JA(u, λ1, λ2, µ) =

∫ 1

0

LA(q(t), u(t), λ(t), µ) dt+ g(q(1)),

where LA, called augmented Lagrangian, is defined by

LA(q, u, λ, µ) = L(q, u)− λTCqKqu+
1

2µ
|CqKqu|

2,
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with, here, L(q, u) = 1
2u

TKqu. Let q0 ∈ M fixed. Choose an initial control u0 (for example,
u0 = 0), an initial function λ0 (for example, λ0 = 0), and an initial constant µ0 > 0. At step ℓ,
assume that we have obtained a control uℓ generating the curve qℓ, a function λℓ : [0, 1] → IRk,
and a constant µℓ > 0. The iteration ℓ → ℓ + 1 is defined as follows. First, minimizing the
unconstrained functional u 7→ JA(u, λℓ, µℓ) over L

2(0, 1; IRn) yields a new control uℓ+1, generating
the curve qℓ+1 (see further in this section for an appropriate minimization method). Second, λ is
updated according to

λℓ+1 = λℓ −
1

µℓ
Cqℓ+1

Kqℓ+1
uℓ+1.

Finally, we choose µℓ+1 ∈ (0, µℓ] (many variants are possible in order to update this penalization
parameter, as is well-known in numerical optimization).

Under some appropriate assumptions, as long as µℓ is smaller than some constant β > 0, uℓ
converges to a control u∗ which is a constrained extremum of J2. Note that it is not required
to assume that µℓ converge to 0. More precisely we infer from [25, Chapter 3] the following
convergence result.

Proposition 10 (Convergence of the augmented Lagrangian method). Assume that all involved
mappings are least of class C2 and that CqKq is surjective for every q ∈ M . Let u∗ be an optimal
solution of Problem 2 and let q∗ be its associated curve. Let λ∗ be the Lagrange multiplier (given
by Theorem 2) associated with the constraints. We assume that there exist c > 0 and µ > 0 such
that

(∂2uJA)(u∗,λ∗,µ).(δu, δu) > c‖δu‖2L2(0,1;IRn), (27)

for every δu ∈ L2(0, 1; IRn). Then there exists a neighborhood of u∗ in L2(0, 1; IRn) such that,
for every initial control u0 in this neighborhood, the sequence (uℓ)ℓ∈IN built according to the above
algorithm converges to u∗, and the sequence (λℓ)ℓ∈IN converges to λ∗, as ℓ tends to +∞.

Remark 25. Assumption (27) may be hard to check for shape spaces. As is well-known in optimal
control theory, this coercivity assumption of the bilinear form (∂2uJA)(u∗,λ∗,µ) is actually equivalent
to the nonexistence of conjugate points of the optimal curve q∗ on [0, 1] (see [14, 15] for this theory
and algorithms of computation). In practice, computing conjugate points is a priori easy since it
just consists of testing the vanishing of some determinants; however in our context the dimension
n is expected to be large and then the computation may become difficult numerically.

Remark 26. Pure state constraints C(q) = 0 can either be treated in the above context by
replacing CqKq with dCq.Kq, or can as well be treated directly by replacing CqKq with C(q) in
the algorithm above.

Any of the methods described in Section 4.1 can be used in order to minimize the functional JA
with respect to u. For completeness let us compute the gradient in u of JA at the point (u, λ, µ).

Lemma 6. There holds

∇uJA(u, λ, µ) = u+ CTq λ+
1

µ
CTq CqKqu− p,

where p(·) is the solution of

ṗ(t) = −∂q(p(t)
TKq(t)u(t)) + ∂qLA(q(t), u(t), λ(t), µ)

= ∂q

(

(

u(t)

2
− p(t)

)T

Kq(t)u(t)

)

+ λ(t)T∂qCq(t)u(t) +
1

2µ
∂q

(

u(t)TKq(t)C
T
q(t)Cq(t)Kq(t)u(t)

)

for almost every t ∈ [0, 1] and p(1) + dgq(1) = 0.
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Remark 27. For pure state constraints C(q) = 0, there simply holds ∇uJA = u − p and the
differential equation in p is

ṗ(t) = ∂q

(

(

u(t)

2
− p(t)

)T

Kq(t)u(t)

)

+ λ(t)T dCq(t) +
1

µ
C(q(t))T dCq(t).

Proof of Lemma 6. We use Proposition 8 with L(q, u, t) = LA(q, u, λ(t), µ), with λ and µ fixed (it
is indeed easy to check that this proposition still holds true when the Lagrangian also depends
smoothly on t). The differential of JA with respect to u is then given by

d(JA)u.δu =

∫ 1

0

(

∂uLA(q(t), u(t), λ(t), µ)− p(t)TKq(t)

)

δu(t) dt, (28)

where p(·) is the solution of ṗ(t) = −∂q(p(t)
TKq(t)u(t)) + ∂qLA(q(t), u(t), λ(t), µ) for almost every

t ∈ [0, 1] and p(1) + dgq(1) = 0. To get the result, it then suffices to identify the differential
d(JA)u with the gradient ∇JA(u) with respect to the inner product on L2(0, 1;Rn) given by

(u1, u2)L2(0,1;Rn) =
∫ 1

0
u1(t)

TKq(t)u2(t) dt.

The advantage of the augmented Lagrangian method is that, at every step, each gradient is
“easy” to compute (at least as easy as in the unconstrained case). The problem is that, as in any
penalization method, a lot of iterations are in general required in order to get a good approximation
of the optimal solution, satisfying approximately the constraints with enough accuracy.

The next method we propose tackles the constraints without penalization.

Constrained minimization through shooting. We adapt the usual shooting method used in
optimal control (see, e.g., [35]) to our context. For (q, p) ∈ M ×X∗ = M × IRn, we define λq,p as
in Theorem 3 by

λq,p = (CqKqCq)
−1CqKqp.

We also denote πqp = p− CTq λq,p. In particular, vq,p = Kqπqp.

Remark 28. A quick computation shows that πqp is the orthogonal projection of p onto Null(Cq)
for the inner product induced by Kq.

According to Theorem 3, Corollary 1 and Remark 20 (see Section 3.2), the minimizers of J2 have
to be sought among the geodesics (q(·), p(·)) solutions of (25), and moreover p(0) is a minimizer of
the functional

Ĵ2(p0) =
1

2
‖vq0,p0‖

2
V + g(q(1)) =

1

2
pT0 πq0Kq0πq0p0 + g(q(1)).

The geodesic equations (25) now take the form

q̇(t) = ∂ph(q(t), p(t)) = Kq(t)πq(t)p(t),

ṗ(t) = −∂qh(q(t), p(t)) = −
1

2
p(t)TπTq(t)(∇qKq(t))πq(t)p(t) + λTq(t),p(t)(∇qCq(t))Kq(t)πq(t)p(t),

where h is the reduced Hamiltonian (see Remark 19). It follows from Proposition 9 that ∇Ĵ2(p0) =
πTq0Kq0πq0p0 + α(1), where Z(·) = (z(·), α(·)) is the solution of

ż(t) = ∂p(∇qh(q(1− t), p(1− t))).z(t)− ∂q(∇qh(q(1− t), p(1− t))).α(t)

α̇(t) = ∂p(∇ph(q(1− t), p(1− t))).z(t)− ∂q(∇ph(q(1− t), p(1− t))).α(t)
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with (z(0), α(0)) = (∇g(q(1)), 0). Replacing ∇qh and ∇ph by their expression, we get

ż(t) = p(1− t)TπTq(1−t)(∇qKq(1−t))πq(1−t)z(t)− λTq(1−t),p(1−t)(∇qCq(1−t))Kq(1−t)πq(1−t)z(t)

− ∂q

(1

2
p(1− t)TπTq(1−t)(∇qKq(1−t))πq(1−t)p(1− t)

− λTq(1−t),p(1−t)(∇qCq(1−t))Kq(1−t)πq(1−t)p(1− t)
)

.α(t)

α̇(t) = Kq(1−t)πq(1−t)z(t)− ∂q(Kq(1−t)πq(1−t)p(1− t)).α(t))

In practice, the derivatives appearing in these equations can be efficiently approximated using finite
differences.

This algorithm of constrained minimization through shooting has several advantages compared
with the previous augmented Lagrangian method. The first is that, thanks to the geodesic re-
duction, the functional Ĵ2 is defined on a finite-dimensional space (at least whenever the shape
space itself is finite dimensional) and hence ∇Ĵ2(p0) is computed on a finite-dimensional space,
whereas in the augmented Lagrangian method ∇uJA was computed on the infinite-dimensional
space L2(0, 1; IRn).

A second advantage is that, since we are dealing with constrained geodesics, all resulting curves
satisfy the constraints with a good numerical accuracy, whereas in the augmented Lagrangian
method a large number of iterations was necessary for the constraints to be satisfied with an
acceptable numerical accuracy.

This substantial gain is however counterbalanced by the computation of λq(t),p(t), which requires
solving of a linear equation at every time t ∈ [0, 1] along the curve (indeed, recall that λq,p =
(CqKqC

∗
q )

−1CqKqp). The difficulty here is not just that this step is time-consuming, but rather
the fact that the linear system may be ill-conditioned, which indicates that this step may require
a more careful treatment. One possible way to overcome this difficulty is to solve this system with
methods inspired from quasi-Newton algorithms. This requires however a particular study that is
beyond the scope of the present article (see [3] for results and algorithms).

5 Numerical examples

5.1 Matching with constant total volume

In this first example we consider a very simple constraint, namely, a constant total volume. Con-
sider S = Sd−1, the unit sphere in IRd, and let M = Emb1(S, IRd) be the shape space, acted upon
with order 1 by Diff(IRd). Consider as in [40] the RKHS V of smooth vector fields given by the

Gaussian kernel K with positive scale σ defined by K(x, y) = e−
|x−y|2

σ2 Id. An embedding q ∈M of
the sphere is the boundary of an open subset U(q) with total volume given by Vol(U(q)) =

∫

S
q∗ω,

where ω is a (d− 1)-form such that dω = dx1 ∧ · · · ∧ dxd. Let q0 be an initial point and let q1 be
a target such that Vol(U(q0)) = Vol(U(q1)). We impose as a constraint to the deformation q(·) to
be of constant total volume, that is, Vol(U(q(t))) = Vol(U(q0)). The data attachment function is
defined by g(q) = d(q, q1)

2, with d a distance between submanifolds (see [41] for examples of such
distances).

For the numerical implementation, we take d = 2 (thus S = S1) and M is a space of curves,
which is discretized as landmarks q = (x1, . . . , xn) ∈ Lmk2(n). The volume of a curve is ap-
proximately equal to the volume of the polygon P (q) with vertices xi, given by Vol(P (q)) =
1
2 (x1y2 − y2x1 + · · ·+ xny1 − ynx1).

If one does not take into account a constant volume constraint, a minimizing flow matching
a circle on a translated circle usually tends to shrink it along the way (see Figure 2(a)). If the
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volume is required to remain constant then the circle looks more like it were translated towards
the target, though the diffeomorphism itself does not look like a translation (see Figure 2(b)).

(a) Matching trajectories without constraints. (b) Matching trajectories with constant volume.

Figure 2: Matching trajectories.

The implementation of the shooting method developed in Section 4.2 leads to the diffeomor-
phism represented on Figure 3.

(a) Initial condition (in blue) and target (in red). (b) Matching.

Figure 3: Constant volume experiment.

5.2 Multishape matching

We consider the multishape problem described in Section 2.3. We define the shape spacesM1, . . . ,Mk,
byMj = Emb(Sj , IR

d) for every j ∈ {1, . . . , k−1} andMk =M1×· · ·×Mk−1 (background space).
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For every j ∈ {1, . . . , k} we consider a reproducing kernel Ki and a reduced operator Kq,j for every
q ∈Mj .

In the following numerical simulations, each qj is a curve in IR2, so that S1 = · · · = Sk = S1,
the unit circle. The function g appearing in the functional (13) is defined by

g(q1, . . . , qk) =

k−1
∑

j=1

(

d(qj , q
(j))2 + d(qjk, q

(j))2
)

,

where qk = (q1k, . . . , q
k−1
k ) and q(1), . . . , q(k−1) are given target curves. The distance d is a distance

between curves (see [41] for examples of such distances). We consider two types of compatibility
constraints between homologous curves qj and qjk: either the identity (or stitched) constraint

qj = qjk, or the identity up to reparametrization (or sliding) constraint qjk = qj ◦ f for some (time-
dependent) diffeomorphism f of S1. Note that, since the curves have the same initial condition,
the latter constraint is equivalent to imposing that q̇jk − q̇j ◦ f is tangent to qjk, which can also be
written as

(vk(t, q
j
k)− vj(t, q

j
k)) · ν

j
k = 0,

where vj = Kjξ
∗
qj
uj and νjk is normal to qjk. In the numerical implementation, the curves are

discretized into polygonal lines, and the discretization of the control system (14) and of the min-
imization functional (13) is done by reduction to landmark space, as described in section 2.4.
The discretization of the constraint in the identity case is straightforward. For the identity up to
reparametrization (or sliding) constraint, the discretization is slightly more complicated and can
be done in two ways. A first way is to add a new state variable νjk which evolves while remaining

normal to qjk, according to

ν̇jk = −dvjk(q
j
k)
T νjk,

which can be written as a function of the control uk and of the derivatives of Kk (this is an
example of lifted state space, as discussed in Section 2.3). A second way, which is computationally
simpler and that we use in our experiments, avoids introducing a new state variable and uses
finite-difference approximations. For every j = 1, . . . , k − 1, and every line segment ℓ = [z−ℓ , z

+
ℓ ]

in qjk (represented as a polygonal line), we simply use the constraint νℓ · (vj(ℓ)− vk(ℓ)) = 0, where
νℓ is the unit vector perpendicular of z+ℓ − z−ℓ and vj(ℓ) = 1

2 (vj(z
−
ℓ ) + vj(z

+
ℓ )). Note that the

vertices z−ℓ and z+ℓ are already part of the state variables that are obtained after discretizing the
background boundaries qk.

With these choices, the discretized functional and its associated gradient for the augmented
Lagrangian method are obtained with a rather straightforward – albeit lengthy – computation. In
Figure 4, we provide an example comparing the two constraints. In this example, we take k = 2
and use the same radial kernel K1 = K2 for the two shapes, letting K1(x, y) = γ(|x− y|/σ1), with

γ(t) = (1 + t+ 2t2/5 + t3/15)e−t.

The background kernel is K3(x, y) = γ(|x − y|/σ3), with σ1 = 1 and σ3 = 0.1. The desired
transformation, as depicted in Figure 4, moves a curve with elliptical shape upwards, and a flower-
shaped curve downwards, each curve being, in addition, subject to a small deformation. The
compared curves have a diameter of order 1.

The solutions obtained using the stitched and sliding constraints are provided in Figures 5(a)
and 5(b), in which we have also drawn a deformed grid representing the diffeomorphisms induced
by the vector fields v1, v2 and v3 in their relevant regions. The consequence of the difference
between the kernel widths inside and outside the curves on the regularity of the deformation is
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Figure 4: Multishape experiment: initial (blue) and target (red) sets of curves.

obvious in both experiments. One can also note differences in the deformation inside between the
stitched and sliding cases, the second case being more regular thanks to the relaxed continuity
constraints at the boundaries. Finally, we mention the fact that the numerical method that we
illustrate here can be easily generalized to triangulated surfaces instead of polygonal lines.

This example, for which in curve contains a little more than 300 points, was run on a mac pro
workstation with two 2.66 mhz quad-core intel processors, with python code combining fortran with
openmp calls for the most computationally intensive parts. For stitched constraints, each gradient
descent step took around 1.7s, while using on average 7 processors in parallel, with an approximate
total computation to of 30 min. Sliding constraints are more demanding computationally. They
require around 5s per gradient iteration, with a 3 hour total computation time.

(a) Stitched constraints. (b) Sliding constraints.

Figure 5: Multishape experiment.
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Simultaneous study of several shapes in images of the brain. We now return to the bran
structures depicted in Figure 1.

(a) Initial shapes. (b) Target shapes.

Figure 6: Matching several shapes at once

We apply the same method as above to match these three shapes onto the three corresponding
target shapes of Figure 1(b) using stitching constraints. This requires four diffeomorphisms: one
for each shape and one for the background. We use the reproducing kernelsKi(x, y) = γ(|x−y|/σi),
i = 1, . . . , 4, with σ1 = σ2 = σ3 = 10mm for the shapes and σ4 = 1mm. An augmented Lagrangian
method yields the deformed shapes of Figure 6(b).

We see that our approach solves all problems mentioned in the introduction: while the shapes
cannot overlap, two of them end up quite close, and the deformation of each shape is evidently
less severe than that of the background, which fits the physical facts much better than what would
happen if we would use a single diffeomorphism for the whole multi-shape.

6 Conclusion and open problems

The purpose of this paper was to develop a very general framework for the analysis of shape
deformations, along with practical methods to find an optimal deformation in that framework. The
point of view of control theory gives powerful tools to attain this goal. This allows in particular
for the treatment of constrained deformation, which had not been done before.

While our example focused on curve matching, and may seem somewhat academic compared
to typical problems in computational anatomy, they provide a good illustration of the impact of
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adding constraints in shape registration problems and their results are easy to interpret. Numerical
methods and experimental results on brain structures for the more challenging problem of matching
multiple surfaces are described in [4], to which we refer the interested reader.

Now that a concrete setting has been fixed, many new developments can be expected. First of
all, the minimization algorithms in the case of constrained shapes are quite slow for a very high
number of constraints. Moreover, we did not study any of the geometric aspects of shape defor-
mation spaces. For example, we only briefly mentioned the infinite-dimensional sub-Riemannian
structure that the RKHS induces on both groups of diffeomorphism and shape spaces. Sub-
Riemannian geometry in infinite dimension and codimension is still a very open subject with very
few results. The sub-Riemannian geometry in this paper is particularly difficult and interesting to
study because the horizontal spaces may not be closed in the ambient space. A key difference with
finite dimension is that some geodesics might exist that are neither normal nor abnormal.

More general control problems can be designed. One can, for example, use a second-order
approach, with a control system taking the form

q̇ = ∂pH(q, p), ṗ = −∂qH(q, p) + f(q, u)

in which the original state is lifted to the cotangent space (q → (q, p)), and the new control is
u. These models have been introduced for shapes in [38], with f(q, u) = u, providing a way to
interpolate smoothly between multiple shapes. We are currently exploring applications of this
approach to model muscle-like motions, with external forces constrained to being collinear to the
fibers.

Another extension to consider is that of inequality constraints, both linear and nonlinear.
Such a generalization would have many applications. For example, one might wish to impose
an upper bound on the Euclidean norm of the deformation vector field v along the shape. Let
us take M = C0(S2, IRd), the space of closed continuous surfaces in IRd, and let us impose the
constraints sups∈S2 |v(q(s))| 6 1. From what is known in the finite-dimensional case (see [23]), it
is reasonable to expect that, for the corresponding Pontryagin maximum principle, Hamiltonian
equations are similar to those of Theorem 2, with the particularity that, at almost every time t,
the Lagrange multiplier λ(t) ∈ C0(S2, IR)∗ = M(S2) actually belongs to the space of nonnegative
Radon measures on S2 whose support is contained in {s ∈ S2 | |v(t, q(t)(s))| = 1}. In other words,
as a Radon measure, λ(t)(s) > 0 for every s ∈ S2 and λ(t)(s) > 0 whenever |v(t, q(t)(s))| = 1.
Proving that statement is certainly not that easy. Adapting the surjectivity assumption for the
constraints seems problematic. A fortiori, extending the result to a more general setting such as
that of Theorem 2 seems challenging. Note however that, in practice, one often works with finite-
dimensional models and then these constraints are discretized into a finite number of inequality
constraints. Such problems have been extensively studied in finite dimension (see, e.g., [23, 35]).

Another glaring issue comes from the assumption of the surjectivity of the constraints in The-
orem 2. Indeed, in most practical cases, such as multishapes in Section 2.3, this assumption fails.
In finite dimension, problems can occur when the rank of Cq changes with q. They are usually
solved by taking higher-order derivatives of Cq on the sets on which it is not maximal. This does
not seem easily possible with Banach spaces. Another problem comes from the incompatibility of
topologies between the Hilbert space V and the Banach space Y in which the constraints are val-
ued: Cq may not have a closed range, in which case we could find ”missing” Lagrange multipliers.
If Cq(V ) were constant, this could be solved simply by restricting Y to Cq(V ) equipped with the
Hilbert topology induced by Cq and V , but since it is not constant, this might be impossible. It
would be very interesting, both for control theory in general and for shape deformation analysis in
particular, to find a way to address this problem.
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[5] V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses
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[16] H. Brézis, Functional analysis, Sobolev spaces and partial differential equations, Universitext,
Springer, New York, 2011.

[17] P. Dupuis, U. Grenander, M.I. Miller, Variational problems on flows of diffeomorphisms for
image matching, Quart. Appl. Math. 56 (1998), no. 3, 587–600.

39



[18] S. Durrleman, S. Allassonnière, S. Joshi, Sparse Adaptive Parameterization of Variability in
Image Ensembles, Int. J. of Computer Vision, Springer Verlag (Germany), 101 (2013), no. 1,
161–183.

[19] F. Gay-Balmaz, T. Ratiu, Clebsch optimal control formulation in mechanics, J. Geom. Mec.
3 (2011), no. 1, 47–79.
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