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SHAPE DEFORMATION AND OPTIMAL CONTROL

Sylvain Arguillère1, Emmanuel Trélat2, Alain Trouvé3 and Laurent Younès4

Abstract. Shape deformation analysis is concerned with determining a deformation of a given shape
into another one, which is optimal for a certain cost. We provide the main ideas for a new general
approach to shape deformation analysis, using the framework of optimal control theory.

This point of view can be made independent from the parametrization of the shape, and allows to
model general constrained shape analysis problems. The use of a infinite dimensional variant of the con-
strained Pontryagin Maximum Principle characterizes the optimal solutions of the shape deformation
problem in a very general way.

Résumé. L’analyse des déformations consiste à déterminer une transformation d’une forme donnée
en une autre, optimale pour un certain coût. Nous donnons ici les idées principales pour une nouvelle
approche générale pour cette analyse à l’aide de la théorie du contrôle optimal.

Ce point de vue peut être pris de manière à ne pas dépendre de la paramétrisation de la forme, et
permet également de modéliser des contraintes dans les problèmes d’analyse de déformations. Nous
utilisons une variante en dimension infinie (cadre naturel de l’analyse des déformations) du principe
du maximum de Pontryagin avec contraintes permettant de caractériser de façon très générale les
déformations optimales recherchées.

Introduction

The mathematical analysis of shapes has become a subject of growing interest in the past few decades, and
has motivated the development of efficient image acquisition and segmentation methods, with applications to
many domains, including computational anatomy and object recognition.

The general purpose of shape analysis is to compare two (or more) shapes embedded in a space IRd in a way
that takes into account their geometric properties, or how ”similar” they look. In Shape deformation analysis,
a cost for every possible deformation of a shape is considered, and the problem is to find the deformation which
minimizes this cost.

Taking a hint from fluid dynamics, we will consider deformations given by flows of diffeomorphisms generated
by time-dependent vector fields (see [6, 15, 16]): deformations of the whole space, like diffeomorphisms, induce
deformations of the shape itself.

1 Université Pierre et Marie Curie (Univ. Paris 6), CNRS UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
(sylvain.arguillere@upmc.fr).
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3 Ecole Normale Supérieure de Cachan, Centre de Mathématiques et Leurs Applications, CMLA, 61 av. du Pdt Wilson, F-94235
Cachan Cedex, France (trouve@cmla.ens-cachan.fr).
4 Johns Hopkins University, Center for Imaging Science, Department of Applied Mathematics and Statistics, Clark 324C, 3400
N. Charles st. Baltimore, MD 21218, USA (laurent.younes@jhu.edu).

c© EDP Sciences, SMAI 2014

Article published online by EDP Sciences and available at http://www.esaim-proc.org or http://dx.doi.org/10.1051/proc/201445031

http://publications.edpsciences.org/
http://www.esaim-proc.org
http://dx.doi.org/10.1051/proc/201445031


ESAIM: PROCEEDINGS AND SURVEYS 301

This framework has led to the development of a family of registration algorithms called Large Deformation
Diffeomorphic Metric Mapping (LDDMM), in which the correspondence between two shapes comes from the
minimization of an objective functional that is the sum of two terms (see [4, 5, 9, 11, 12]). The first term is the
total kinetic energy of the deformation (the L2-norm of the vector field in the case of fluid dynamics, though
ours will usually be different). The second term is a data attachment penalizing the difference between the
deformed shape and a target.

This framework allows one to use tools from Riemannian geometry (see [17]), along with classical results
from the theory of Lie groups equipped with right-invariant metrics (see [2,3,8,10,18]). However, our approach
uses control theory, in particular optimal control (see preliminary ideas in [17]).

While accounting for some of the geometric information in the shape, like singularities, it does not consider
other intrinsic properties of the studied shape, which can also depend on the nature of the object modeled by
the shape: one may wish the total volume of the shape to remain constant (water balloon), or the movement to
occur only along certain directions (fibers in a muscle). It is therefore important to be able to add constraints
to the problem.

The purpose of this paper is to summarize and report on the authors’s results in [1]. Since shape analysis
has a natural setting in infinite dimension (indeed, the shape space is typically the space of all submanifolds in

IRd), we will need to derive an appropriate infinite dimensional variant of the Pontryagin Maximum Principle
(or PMP) with an infinite number of equality constraints.

1. The point of view of optimal control for shape deformation

In this paper, a shape space M is a space of continuous maps from a smooth compact Riemannian manifold
S into an Eucliddean space IRd. The elements of M are states of the shape, denoted by q : S → IRd. For
example, if S is the unit circle then M is the set of all parametrized continuous closed curves in IRd. When S
has dimension 0, it is a finite union of points {s1, . . . , sn}. In this case, M = (IRd)n is finite dimensional. This is
the most important case for practical applications, and it is frequently used to approximate infinite dimensional
problems.

Deformation through the group action of diffeomorphisms. The group of diffeomorphisms has a left
action on the shape space by composition: for ϕ ∈ Diff(IRd) and q ∈M = C0(S, IRd), we have ϕ · q = ϕ ◦ q. The
map q 7→ ϕ · q is of class C` whenever ϕ is of class C`.

A deformation of IRd is a one-parameter family of diffeomorphisms (ϕ(t))t∈[0,1] with ϕ(0) = IdIRd . Such a
deformation produces a deformation q : [0, 1]→M of an initial shape q0 by letting q(t) = ϕ(t) ◦ q0.

A classical problem of shape deformation is to find an ”optimal” deformation of an initial state q0 into a
final state close to a target q1. More precisely, we will want to minimize a function of the form E(ϕ) + g(q(1)),

over all deformations ϕ = (ϕ(t))t∈[0,1] of IRd. Here, E is a functionnal representing the kinetic energy of the
deformation, q(1) = ϕ(1) ◦ q0 is the final state, and g is a data attachment measuring how close the final state
is from the target q1. To define E, we take a hint from fluid mechanics and use Euler-Lagrange coordinates.

Induced control system. Let v be a bounded vector field of class C1. The infinitesimal action of v on a state
q ∈ M , denoted ξqv, is defined as the composition ξqv = v ◦ q. It is also the velocity vector at 0 of the curve
t 7→ ϕv(t) · q, where ϕv(t, ·) is the flow of v.

Example 1. An interesting case is when S = (s1, . . . , sn) is a zero-dimensional manifold and

M = Lmkd(n) = (IRd)n

is the (so-called) space of n landmarks in IRd. For q = (x1, . . . , xn), the action of a diffeomorphism ϕ is given

by ϕ · q = (ϕ(x1), . . . , ϕ(xn)). For a bounded vector field v of class C1 on IRd, the infinitesimal action of v at q
is given by ξq(v) = (v(x1), . . . , v(xn)).
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Most deformations can be ”parametrized” as flows of time-dependent vector fields

v = (v(t))t∈[0,1].

Moreover, if ϕ is the flow associated to v, we get

q̇(t) =
d

dt
(ϕ(t) ◦ q0) = v(t) ◦ (ϕ(t) · q0) = v(t) ◦ q(t).

Therefore, we get the following control system on M

q(0) = q0, q̇(t) = v(t) ◦ q(t), a.e. t ∈ [0, 1].

Usually, one takes v to be at least in L1([0, 1], C1b ([0, 1], IRd)), i.e. time-dependent bounded vector fields of class
C1, integrable with respect to time, which ensures the existence of a flow.

The energy E of a deformation can then be defined directly on the control. For this, we restrict ourselves
to vector fields belonging to some Hilbert space V of bounded vector fields of class C1, such as a Sobolev space
Hk(IRd, IRd) with k big enough. The total energy of a time-dependent vector field v is then defined by

E(v) =

∫ 1

0

‖v(t)‖2 dt.

Remark 1. It is possible to take more general energy, though one usually focuses on positive definite bilinear
forms.

Mixed constraints can then be added to this system, defined by some C : M × V → Y , Y a Banach space.
We will only consider constraints linear with respect to the control (i.e. v). We will denote C(q, v) = Cqv to
emphasize this last point.

We finally get our optimal control formulation of the shape deformation problem.

Problem 1. Let q0 ∈ M , and let C : M × V → Y be a mapping such that v 7→ C(q, v) = Cqv is linear for
every q ∈M . Let g : M → IR be a function. We consider the problem of minimizing the functional

J1(v) =
1

2

∫ 1

0

‖v(t)‖2V dt+ g(q(1))

over all time-dependent vector fields v(·) ∈ L2(0, 1;V ) such that Cq(t)v(t) = 0 for every t ∈ [0, 1], where
q(·) : [0, 1]→M is the curve defined by q(0) = q0 and q̇(t) = ξq(t)v(t) for almost every t ∈ [0, 1].

Remark 2. The problem could be posed for more general (i.e. non-linear) constraints C(q, v) = 0. We focused
on linear constraints because such constraints often have a clearer geometric meaning.

2. Existence and properties of optimal controls

In this section, we give sufficient conditions for the existence of a solution to Problem 1, and first-order
necessary conditions for optimality, on the basis of the well-known Pontryagin Maximum Principle (PMP,
see [7,13]) in optimal control theory. The extension to our infinite dimensional framework is however nontrivial.
This allows us to derive the constrained geodesic equations for shape spaces.

Throughout the section, we adopt the framework and the notations defined in Section 1. Let M be the shape
space of a compact smooth Riemannian manifold S. Let V be a Hilbert space of bounded vector fields of class
C1 on IRd, and Y be a Banach space. Let C : M × V → Y be a mapping such that v 7→ C(q, v) = Cqv is linear
for every q ∈M . Let g : M → IR be a function.
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Existence of an optimal control. Our first theorem establishes the existence of solutions to Problem 1 under
minimal assumptions.

Theorem 1. If q 7→ Cq and g are continuous, if g is bounded from below, and if V has a continuous inclusion
in the space of C1 bounded vector fields with bounded derivatives, then Problem 1 has at least one solution.

This is a consequence of Ascoli’s Theorem, combined with the usual proof for the existence of optimal control
in finite dimensions (see [14]).

First-order optimality conditions. In this section, we state first-order necessary conditions for optimality
in Problem 1 by extending the Pontryagin Maximum Principle to our setting.

For this, we need to define the hamiltonian H : M ×M∗ × V × Y ∗ → IR of the problem by

H(q, p, v, λ) = 〈p, ξqv〉M∗,M −
1

2
‖v‖2V − 〈λ,Cqv〉Y ∗,Y .

Theorem 2. Assume that g and C are of class C1, and that V has a continuous inclusion in the space of C1
bounded vector fields with bounded derivatives.

If v 7→ Cqv is surjective for all q ∈ M , then for any optimal control v ∈ L2(0, 1;V ), there exist p ∈
H1(0, 1;M∗) and λ ∈ L2(0, 1;Y ∗) such that p(1) + dgq(1) = 0 and

q̇(t) = ∂pH(q(t), p(t), v(t), λ(t)),

ṗ(t) = −∂qH(q(t), p(t), v(t), λ(t)),

0 = ∂vH(q(t), p(t), v(t), λ(t)),

for almost every t ∈ [0, 1].

The proof follows from the application of the infinite dimensional constrained extremum theorem combined
with a careful analysis of the Lagrange multipliers.

Remark 3. The theorem should hold true for non-linear equality constraints C(q, v) = 0, with the assumption
that ∂vCq,v is surjective for every (q, v) ∈ M × V , but one must then consider controls in L∞(0, 1;V ) instead
of L2.

Remark 4. Note that the surjectivity assumption is a strong one in infinite dimension. It is usually not satisfied
in the case of shape spaces when Y is infinite dimensional.

Remark 5. This is a ”weak” maximum principle: we derive the condition ∂vH = 0 along any extremal, instead
of the usual (stronger) maximization condition. However, in the case of shape spaces, v 7→ H(q, p, v, λ) is strictly
concave and hence both conditions are equivalent.

Remark 6. Taking the energy to be the L2-norm on vector fields of IRd instead of the norm on V , letting
Cqv = div v, and applying the theorem gives the usual incompressible Euler equations of fluid mechanics (see [2]).

The Geodesic Equations on a Shape Space. A careful analysis of the equations of the PMP allows us to
express v and λ as functions of q and p, with

vq,p = KV

(
ξ∗qp− C∗qλ

)
and

λq,p = λq,p = (CqKV C
∗
q )−1CqKV ξ

∗
qp.

Here, ξ∗q : M∗ → V ∗ is the pull-back induced by ξq and KV is the inverse of the isometry V → V ∗ given by
v 7→ 〈v, ·〉V . Also note that Cq being surjective implies that CqKV C

∗
q is indeed invertible.
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This allows us to define the reduced Hamiltonian h : M ×M∗ → IR as

h(q, p) = H(q, p, vq,p, λq,p),

and prove that optimal trajectories satisfy the usual Hamiltonian equations [3].

Proposition 1. (Geodesic Equations in Shape Spaces) If the assumptions of Theorem 2 are satisfied,
then for any trajectory q : [0, 1] → M of a solution v of Problem 1, there is a map p ∈ H1(0, 1;M∗) such that
p(1) + dgq(1) = 0 and for a.e. t ∈ [0, 1] and (q, p) satisfies the equations{

q̇(t) = ∂ph(q(t), p(t)),

ṗ(t) = −∂qh(q(t), p(t)).
(1)

Such a couple (q, p) is called a geodesic. Moreover, t 7→ 1
2‖v(t)‖2 is constant. In particular, the total cost J1(v)

of the trajectory is given by

J1(v) =
1

2
‖v(0)‖2V + g(q(1)).

This gives a minimization algorithm, called minimization by shooting. Indeed, assume that C and all vector
fields in V are of class C2. Then an initial momentum p0 ∈ M∗ gives a unique geodesic (q, p) from the initial
state q0. Now, if q is an optimal trajectory if and only if it minimizes the reduced cost

J2(p0) =
1

2
‖vq0,p0‖2V + g(q(1)).

This can be done using a gradient descent for a particular inner product.

3. Examples of Matching

Constant Total Volume. For our first example, we consider a very simple constraint. Consider S = S1 the
unit circle in IR2, and let M = C1(S, IRd) be our shape space. Note that we took a smaller shape space here,
but our results still work, although with slightly stronger hypotheses (mainly, V must have bounded derivatives
of order 2 for theorems 1 and 2, and bounded derivatives of order 3 for existence and unicity of solutions to the
geodesic equations).

Assume the initial state q0(s) = (x(s), y(s)) is a simple closed curve of class C1. This property is conserved
through deformation by diffeomorphism.

Such a curve is the boundary of an open subset U(q) with total area given by V ol(U(q)) =
∫
S
x(s)dy(s). Now,

define a target q1 such that V ol(U(q0)) = V ol(U(q1)). We take the constraints V ol(U(q(t))) = V ol(U(q0)) for
every t ∈ [0, 1].

We will consider V , a reproducing kernel Hilbert space of smooth vector fields given by the Gaussian kernel
with positive scale σ (see [17] for definitions).

For numerical applications, we will take d = 2, so S = S1 and M is a space of curves, which will be discretized
as landmarks q = (x1, . . . , xn) ∈ Lmk2(n). In this case, the volume of a curve is approximately equal to the
volume of the polygon P (q) with vertices (xi), given by

V ol(P (q)) =
1

2
(x1y2 − y2x1 + · · ·+ xny1 − ynx1).

Then, the shooting algorithm can be applied, giving the diffeomorphism shown in Figure 1.
Usually, a minimizing flow matching a circle on a translated circle will shrink it along the way. However,

since we required the volume to be constant, the circle will look more like it is translated toward the target,
though the diffeomorphism itself does not look like a tranlastion. Both trajectories are presented in Figure 2.
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Figure 1. Constant volume experiment, left: initial (blue) and target (red), matching (right).

Figure 2. Matching trajectories without constraints (left) and with constant volume (right).

Multishape Matching. We now consider the multishape problem. In this situation, we consider shape spaces
M1,M2, with M1 = M2 = C0(S1,R2) and a background space M3 = M1 ×M2. Elements of M3 are couples

q3 = (q13 , q
2
3), with qj3 ∈Mj , j = 1, 2.

We take an initial state q0 = (q1, q2, q3) satisfying q13 = q1, and q23 = q2.
To each j ∈ {1, 2, 3} is associated a Hilbert space Vj of vector fields, with total control space the Hilbert

space V1 × V2 × V3.
We will consider two types of compatibility constraints between homologous curves qj and qj3, namely

(1) Identity (or stitched) constraint: qj = qj3
(2) Identity up to reparametrization (or sliding) constraint: qj3 = qj ◦ f for some (time-dependent) diffeo-

morphism of S1.

Note that, since the curves have the same initial condition, the last constraint is equivalent to assuming that
q̇j3 − q̇j ◦ f is tangent to qj3, i.e., taking controls (v1, v2, v3),

(v3(t, qj3)− vj(t, q3)j) · νj3 = 0
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for all t, where νj3 is the normal vector to qj3.
For the numerical computations, the curves are discretized into polygonal lines, and the discretization of

control equations and objective functions are done by reduction to landmarks space. The discretization of the
constraint in the identity case is straightforward. For each j = 1, 2 and each line segment ` = [z−` , z

+
` ] in q3,j

(represented as a polygonal line), we simply use the constraint

ν` · (vj(`)− v3(`)) = 0

where ν` is the unit normal to ` (unit vector perpendicular of z+` − z
−
` ) and

vj(`) =
1

2
(vj(z

−
` ) + vj(z

+
` )).

Note that the vertices z−` and z+` are already part of the state variables that are obtained after discretizing the
background boundaries q3.

Given these choices, we can apply a minimization algorithm. In Figure 3, we provide an example comparing
the two constraints. The desired transformation, as depicted in Figure 3, moves a curve with elliptical shape
upward, and a flower-shaped curve downward, each curve being subject to a small deformation. The solutions
obtained using the stitched and sliding constraints are provided in Figure 4, in which we have also drawn a
deformed grid, representing the diffeomorphisms induced by the vector fields v1, v2 and v3 in their relevant
regions.

Figure 3. Multishape Experiment: Initial (blue) and target (red) sets of curves.
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fluides parfaits, Ann. Inst. Fourier 16 (1966), fasc. 1, 319–361.
[3] V. Arnold, Mathematical methods of classical mechanics, Graduate Texts in Mathematics 60, Springer-Verlag, New York,

1989.

[4] B. Avants, J.C. Gee, Geodesic estimation for large deformation anatomical shape averaging and interpolation, Neuroimage
23 (2004), S139–S150.
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