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Abstract
One important problem in computational structural biology is protein designability, that is, why
protein sequences are not random strings of amino acids but instead show regular patterns that encode
protein structures. Many previous studies that have attempted to solve the problem have relied upon
reduced models of proteins. In particular, the 2D square and the 3D cubic lattices together with
reduced amino acid alphabet models have been examined extensively and have lead to interesting
results that shed some light on evolutionary relationship among proteins. Here we perform
designability studies on the 2D square lattice and explore the effects of variable overall shapes on
protein designability using a binary hydrophobic-polar (HP) amino acid alphabet. Because we rely
on a simple energy function that counts the total number of H-H interactions between non-sequential
residues, we restrict our studies to protein shapes that have the same number of residues and also a
constant number of non-bonded contacts. We have found that there is a marked difference in the
designability between various protein shapes, with some of them accounting for a significantly larger
share of the total foldable sequences.

Introduction
Despite recent advances in experimental techniques and computational models for studying
proteins, reduced models still enjoy considerable interest and applicability for studying
fundamental features and characteristics of protein structure, function, and dynamics. Globular
proteins normally have compact structures with amino acids tightly packed inside protein cores,
due in large part to the segregation between hydrophobic and polar residues. Additionally,
amino acids in proteins are covalently linked, forming sequences usually containing between
tens to hundreds of residues. The simplest mathematical models that mimic the linear nature
of the protein sequence, its tight packing in the native state and the exclusion volume effect
are compact self-avoiding walks on lattices (1-18). The compact self-avoiding walk requires
that each of the lattice points must be visited once and only once. Multiple visits are not allowed
because of the excluded volume condition, and unvisited sites (cavities) are not allowed by the
requirement of the compactness of the walk. In mathematics such walks are often called
Hamiltonian paths (or Hamilton paths). A compact self-avoiding walk that begins and ends at
the same site is called a Hamiltonian circuit.

The native conformations of globular proteins are compact and unique. The essence of
comprehending protein folding is to find, for a given sequence of amino acids, the most
energetically favorable conformation. Random search methods frequently fail to identify the
single unique form; whereas complete enumerations, whenever feasible, are better suited to
and preferable for this task.

In past studies of protein designability, amino acid sequences were threaded onto all possible
compact conformations of a given shape and for each threading the total energy of the fold was
computed based on a specified energy function (19-35). If there is a conformation that has a
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total energy lower than all other conformations, we assume that the sequence will fold to that
specific conformation. If many different sequences fold to the same conformation we consider
this conformation to be highly designable, and thus possibly easily unfoldable (36,37). There
are also conformations with few or even no sequences folding to them, so these have low
designability, or are even completely non-designable. Additionally, many sequences do not
fold uniquely; and frequently different structures can sometimes have the same lowest energy.
We may however expect that such degeneracies will be reduced if a simple 2 letter (HP) amino
acid alphabet were replaced by a more complex one (38). Past studies of such simple model
have lead nonetheless to interesting results that shed some light on evolutionary relationship
among proteins (39-42).

Previous studies that examined protein designability were mostly focused on conformations
within regular lattice shapes in 2D and 3D, such as the 6×6 square or the 3×3×3 cube. Results
of these studies imply the existence of few highly designable conformations among many that
are less or non-designable. These results obtained for lattice proteins also suggest that, as for
real proteins, designable conformations tend to exhibit symmetries. These findings show that
a simple lattice model can demonstrate important traits observed for real proteins.

In an effort to further extend this model and provide greater detail regarding the structural
features of protein designability, we are investigating many different shapes on the 2D square
lattice. All these shapes are constrained to have both the same number of nodes (residues) and
additionally the same number of non-bonded close contacts. However, lattice conformations
confined by these shapes vary in their symmetries, surface characteristics, and radii of gyration.
We find for a given shape differences in both the number of highly designable conformations
and the total number of sequences that fold. In addition, we measure the depth of the energy
well for each foldable sequence (i.e. the energy gap between the native structure and closest
non-native structures) but observe only small differences in the average energy gap and average
folding energy per shape class.

Methods
In an effort to extend the model to more irregular (than squares or rectangles) shapes that might
more accurately mimic irregularities encountered in real proteins, we are enumerating all
possible conformations within various shapes embedded in the 2D square lattice. We have
performed computations for lattice proteins composed of 24 residues (nodes). The most
compact shapes are the 4×6 rectangle and the 5×5 square without one of its corners (see Fig.
1A). The square lattice restricted by those shapes contains 38 edges, and because the
polypeptide chain takes up 23 of these edges, this leaves 15 remaining edges for non-bonded
interactions (contacts). All other shapes allow for less than 15 non-bonded contacts. In addition
to studying the two most compact shapes shown in Fig. 1A, we also study various possible
lattice protein shapes having 14 non-bonded contacts. This allows us to consider a larger variety
of more irregular protein shapes than the two maximally compact ones. Restricting ourselves
to only the most compact shapes (Fig. 1A) that allow for conformations with 15 non-bonded
nearest neighbor interactions could lead to a significant oversimplification of the designability
problem, and might prevent us from a more thorough examination of the relation between
protein designability and shape. The shapes that allow for 14 non-bonded contacts that are
studied in the present work are shown in Figure 1B. Protein shapes in Figs 1A and 1B are
identified by numbers in the figure, and additionally the total numbers of different compact
conformations for each shape are given there.

We should note that the set of 12 shapes shown in Fig. 1B is not exhaustive, minor topological
changes produce other different shapes without changing the number of vertices and edges.
For example, removing two nodes (and three edges) from the upper left side of shape no.4 and
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pasting them at any other possible locations on the surface produces a new shape with 24
residues and 14 non-bonded contacts. We should note, however, that there are many shapes
that are excluded for parity reasons. The square lattice (and similarly the cubic lattice) has
parity or even/odd characteristics, resulting from a chessboard-like structure. The allowed steps
of a walk on such a lattice must connect two nodes of different parity. Because of this, the
numbers of ‘white’ and ‘black’ nodes (in a chessboard terminology) must be equal for
Hamiltonian circuits or may differ by zero or one for Hamiltonian walks. Shapes for which the
absolute value of this difference is larger than one are not allowed. Fig. 2 shows an example
of a shape that is excluded because for parity reasons; it contains 11 ‘white’ nodes and 13
‘black’ nodes and therefore Hamiltonian paths (or circuits) within such a fully occupied shape
are not possible.

We tried to compute the number of shapes that are relatively compact by being contained within
the 5×6 lattice that are the most designable. We calculate the total number of shapes with 24
residues and 14 non-bonded contacts that fit within a 5×6 rectangle on the 2D square lattice.
After excluding shapes that are impossible for parity reasons and after further exclusion of
shapes related by symmetry we find 92 different shapes that satisfy the 5×6 constraint. Because
of limited computational resources we have not performed designability studied for all these
shapes, and instead limited ourselves to sets shown in Figs 1A and 1B. Although the set of
shapes in Fig. 1B is not complete, we feel that it is nonetheless adequate for the present protein
designability studies and that a more complete set would add little to our findings. The set of
shapes in Fig 1B contains several elongated shapes (#6, #7, #8 and #9) that do not actually fit
within the 5×6 lattice; our computations have shown (see next section) that such elongated
shapes are however not of high designability.

The set of shapes in Fig 1A is complete, in that there are no other shapes comprised of 24 nodes
(residues) having 15 non-bonded contacts. However, such a limited number of shapes hinders
a thorough investigation of the relationship between the shape and designability. The total
number of all possible conformations for the two shapes in Fig. 1A is 3997.

The total number of conformations in all the different shapes in Fig. 1B is 14,579 (obtained
by summing over the individual numbers of conformations for each shape). Because we study
proteins with 24 residues and we are using the binary hydrophobic-polar (HP) alphabet, this
amount to having 224(˜3.2×107) different possible sequences (for chains having two
distinguishable ends: C-terminal and N-terminal), each of which is threaded onto all available
conformations. There are many possible energy functions even for the binary alphabet, and
here we use the simplest one where each H-H non-bonded contact is given an energy score of
-1.0 while all other contacts (H-P and P-P) are scored as 0. That is, EHH= −1.0,EHP = 0.0,
EPP = 0.0 in arbitrary units of energy. There is much evidence that suggests that hydrophobic
interactions are the driving force in protein folding, and therefore this simple energy model
captures well the essence of hydrophobic energetics in folding of real proteins.

Results
We calculate the total number of sequences that fold to each conformation with energy lower
than for all other compact conformations within all shapes. Similar to previous studies, we find
that there are few conformations with many sequences folding to them (i.e. highly designable
conformations), and many more conformations with few or even no sequences folding to them
(less designable conformations). In Fig. 3 we have shown the relationship between the number
of sequences (Ns) and the logarithm (log10) of the number of conformations. We can see a
sharp reduction in the number of conformations as the number of folding sequences increases.
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In addition to this general result, we also found that certain shapes were much more accessible
to designable conformations than others. The total numbers of sequences that folded to
conformations confined within each shape are given in Table 1A-B. It is remarkable to observe
a large diversity (differing by many orders of magnitude) in numbers of sequences folding to
each shape, given that all these shapes have the same fixed numbers of vertices and edges.

Such diversity could be partially explained by differences in total numbers of compact
conformations for each shape. It is plausible to expect that shapes that accommodate more
compact conformations might have more sequences folding to them. Because of this possibility
we have normalized the number of sequences folding to a particular shape by the total number
of compact conformations allowed for such shape. Such normalized numbers of sequences
folding to a given shape are shown in the last column in Table 1A and B. The normalized
numbers still show range from 2.0 for the shape # 6 to 760 for the shape # 12. The low value
(2.0) for the shape # 6 is easy to explain by its being the most elongated shape, but the unusual
high designability propensity of shape # 12 is difficult to explain. There is a similar correlation
for the two shapes with 15 non-bonded contacts, but, owing to there being only two shapes, it
is difficult to draw any definitive conclusions from this evidence.

To better elucidate some of the features of the shapes that could account for the differences in
designability, we have calculated the radius of gyration and the total number of corners (both
inner and outer) for each shape. The mean square radius of gyration < Rg

2 >  for each shape
was computed by using the formula:

< R g
2 > = 1

N 2 Σ
i<j

N
(ri − r j)

2 1

where N is the number of nodes (N = 24) , and ri is the position of the i-th node.

We have plotted the logarithms of the total numbers of sequences folding to particular shapes
and the normalized numbers (normalized by the total number of compact conformations
available for a given shape) against the mean square radius of gyration and the total number
of inner and outer corners for each shape. We have studied the dependence on the total number
of corners in attempting to find out how the surface characteristics of proteins influence their
designability. Upon a closer examination of this problem we come to the conclusion that having
corners, especially outer ones, enables energetically favorable contacts between two
hydrophobic (H) residues that would not be possible for shapes without such corners. The
results are shown in Figs. 4 and 5. Figure 4A shows the dependence between the mean square
radius of gyration of a given shape and the logarithm of the total number of sequences folding
to that shape. Fig. 4B shows a similar plot for total numbers of sequences normalized by the
total number of compact conformations for each shape. It can be easily seen from these graphs
that there is a strong correlation between the radius of gyration of a given shape and the
logarithm of the total number of sequences folding to a particular shape. This correlation is
stronger in Fig. 4B when the numbers of sequences folding to a given shape are normalized
by the total number of compact conformations available for that shape. Fig. 5 show a similar
plot of the total number of corners (both inner and outer ones) for each shape. There is a strong
correlation between the total number of corners for a given shape and the total number of
sequences folding to that shape (not shown). Similarly as in the case with the radius of gyration,
the correlation increases when we normalize the total number of sequences folding to a given
shape by the total number of compact conformations for that shape.

We have thoroughly examined the most designable conformations and, similar to previous
studies, we detect symmetries and regular secondary structure elements associated with
structures of high designability. The most designable conformations for both sets of
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experiments are shown inFigure 6. There are 3269 and 4752different sequences that fold to
these most designable structures. The conformation A inFig. 6belongs to the shape # 12, which
is not unexpected since this shape has the highest normalized number of sequences folding to
it and hence the highest density of designable conformations. The conformation B in Fig.
6belongs to shape #1 in Fig. 1A, which is similarly densely populated with designable
conformations. It is interesting that the most designable structures reveal pronounced
secondary structure characteristics. It is however difficult to discern whether it is a valid
representation of structural features of real proteins or an artifact resulting from the 2D square
lattice representation of proteins.

We also tried to correlate shape classes with the energy difference between the conformations
with the lowest energy and next lowest energy conformation. However because of the simple
energy model used in our computations, for the vast majority of cases there was an energy
difference of one (in arbitrary units of energy), i.e. the minimal possible separation between
the two energy states. We have examined the average total energy, which equals the total
number of H-H contacts, for all designable conformations for each shape and found only very
small variations among different shapes (data not shown).

Discussion
We have generated all possible compact conformations for a variety of shapes embedded in
the 2D square lattice and have performed systematic designability studies of all these
conformations. We found that the different shapes vary markedly from one another in their
designability propensity, with the total number of sequences folding to these shapes ranging
from ˜1500 to over 1,000,000. These significant differences persist even if we normalize
numbers of folding sequences by the total number of possible compact conformations for each
shape. We have tried to find features of the shapes that could account for this considerable
difference, and have found a correlation between the mean square radius of gyration of the
shape and the total number of different HP sequences folding to a given shape. This correlation
is somewhat stronger after the normalization of the total number of sequences folding to a
given shape by the total number of possible compact conformations within this shape. The
correlation with the surface characteristics of the shapes measured by the total number of outer
and inner corners is also strong, even in the case where we use total number of sequences.
However, this correlation may in fact be attributable to the particular chessboard-like nature
of the 2D square lattice.

It seems possible that the differences in designability propensity between various shapes relate
to the density of conformations for those shapes. Real globular proteins have dense, compact
structures and we expect similar features for lattice protein models. We have explicitly tried
to account for this compactness by limiting shapes that were studied to be only the most
compact ones. Additionally we have compared shapes that have the same number of nodes (N
= 24) and the same number of non-bonded contacts (15 contacts for two of the most compact
shapes, and 14 contacts for 12 other slightly less compact shapes). A simple HP model that we
use favors compact conformations in which the total number of H-H contacts are maximized,
and, assuming that contacts add to the thermodynamic stability of a macromolecule, the
maximization of energetically favorable H-H contacts maximizes protein stability. We may
ask if there are other reasons for protein compactness. A correlation between protein
designability within a given shape and the radius of gyration of this shape that we found in the
present study leads us to a suggestion that perhaps proteins have evolved to minimize this value
in addition to maximizing of the number of the H-H contacts. The high correlation we have
found between surface features and designability may in fact suggest that proteins have evolved
surfaces of optimal roughness, possibly because this lends itself to maximal compactness of
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the structure. However, further studies are required to rule out the possibility that our results
might be artifacts of lattice used.

Similarly as in previous studies, we have found that there are relatively few highly designable
conformations while the majority of compact structures generated on the square lattice are
either completely non-designable or lowly designable. We have also found that most HP
sequences fail to fold to a single conformation with the lowest energy. In addition, the most
designable conformations tend to show some symmetry within the constraints allowed by the
particular shape.

Recent studies (43,44) have elucidated a structural determinant of protein designability for real
proteins, different traces of powers of the contact matrix. These different traces correspond
roughly to the average number of contacts per residue and suggest that structures with larger
average number of contacts per residue are more designable. A correlation has been found
between this structural determinant of designability and the size of a protein family, accounting
for the evolutionary age of the family (44). It has also been discovered that proteins in
thermophilic organisms, which presumably have been selected for higher thermodynamic
stability, are on average more designable than those of non-thermophilic organisms (45). Our
lattice protein study suggests the possibility of a correlation between protein designability and
the radius of gyration (when average number of contacts per residue is used) as well as surface
features in real proteins. We will attempt to examine this problem in further detail in the future
work.
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Figure 1.
1A. The two most compact shapes comprising of 24 nodes on the square lattice, that
accommodate lattice protein conformations having 15 non-bonded contacts. The shape index
and the total number of all possible protein conformations for each shape are indicated.
1B. Twelve different shapes composed of 24 nodes on the square nodes, which accommodate
lattice protein conformations having 14 non-bonded internal contacts. The shape index and the
total number of all possible protein conformations are shown for each shape.
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Figure 2.
A shape that is impossible to fill completely with a Hamiltonian path or a circuit. Black and
white nodes illustrate chessboard-like feature of the square lattice. Growing a chain will leave
unoccupied nodes in all cases.
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Figure 3.
The logarithm of the number of conformations plotted as the function of the total number of
sequences (NS) folding to a given conformation. (A) and (B) refer to the two different shape
classes, with 15 and 14 non-bonded contacts respectively.
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Figure 4.
Correlation between the logarithm of the total number of sequences folding to a given shape
and the mean square radius of gyration of this shape (A) . In the second plot (B) the number
of sequences is normalized by the total number of possible compact conformations within a
given shape. A linear function fits well for both plots. px,y refers to the correlation coefficient,
which is negative because there tend to be fewer sequences folding to shapes as the radius of
gyration increases.
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Figure 5.
Correlation between the logarithm of the total number of sequences folding to a given shape
(A) and the total number of inner and outer corners for this shape. (B) shows the same
correlation of surface features against the total sequences normalized by the total number of
possible compact conformations for a given shape.
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Figure 6.
A-B The most designable conformation among all the shapes studied. There are 3269 different
H-P sequences folding to A and 4752 sequences folding to B. A & B correspond to the shapes
with 14 and 15 non-bonded contacts, respectively.

Peto et al. Page 14

J Phys Condens Matter. Author manuscript; available in PMC 2007 December 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Peto et al. Page 15

Table 1A
Total and normalized numbers of sequences folding to a specific shape, corresponding to shapes with 14 non-
bonded contacts.

Shape Class Number of sequences folding to each shape class Normalized number of conformations
1 88894 133.1
2 58495 504.3
3 201636 119.3
4 166541 127.1
5 55176 24.2
6 1563 2.0
7 99712 157.8
8 37686 17.9
9 166657 141.2
10 238385 150.5
11 381639 416.6
12 1000177 760.0
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Table 2B
Total and normalized numbers of sequences folding to a specific shape, corresponding to shapes with 15 non-
bonded contacts.

Shape Class Number of sequences folding to each shape class Normalized number of conformations
1 2438869 1112.6
2 536184 297.1
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