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Abstract

Summary: Chemical mapping experiments allow for nucleotide resolution assessment of RNA

structure. We demonstrate that different strategies of integrating probing data with thermo-

dynamics-based RNA secondary structure prediction algorithms can be implemented by means of

soft constraints. This amounts to incorporating suitable pseudo-energies into the standard energy

model for RNA secondary structures. As a showcase application for this new feature of the

ViennaRNA Package we compare three distinct, previously published strategies to utilize SHAPE

reactivities for structure prediction. The new tool is benchmarked on a set of RNAs with known

reference structure.

Availability and implementation: The capability for SHAPE directed RNA folding is part of the

upcoming release of the ViennaRNA Package 2.2, for which a preliminary release is already freely

available at http://www.tbi.univie.ac.at/RNA.

Contact: michael.wolfinger@univie.ac.at

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Beyond its role as information carrier from genome to proteome,

RNA is a key player in genome regulation and contributes to a wide

variety of cellular tasks. The spatial structure of RNA plays an

important role in this context because it critically influences the inter-

action of RNAs with proteins and with nucleic acids. Knowledge of

RNA structure is therefore crucial for understanding various biolo-

gical processes. Chemical and enzymatic probing methods provide in-

formation concerning the flexibility and accessibility at nucleotide

resolution. They are based on the observation that RNA can be select-

ively modified by small organic molecules, metal ions or RNAse en-

zymes, resulting in formation of an adduct between the RNA and the

small compound or RNA cleavage. Subsequent primer extension

mediated by RT enzymes typically terminates at the modified sites.

The resulting cDNA fragments thus inform directly on the RNA

structure by identifying, depending on the particular reagent, paired

or unpaired sequence positions. For a recent overview of such (high-

throughput) probing methods we refer to Mortimer et al. (2014).

As chemical probing is becoming a frequently used technology to

determining RNA structure experimentally, there is increasing

demand for efficient and accurate computational methods to incorp-

orate probing data into secondary structure prediction tools.

Efficient dynamic programming algorithms, as implemented in the

ViennaRNA Package (Lorenz et al., 2011), typically yield excellent

prediction results for short sequences, but accuracy decreases to be-

tween 40 and 70% for long RNA sequences. This discrepancy is

mainly caused by imperfect thermodynamic parameters and the in-

herent limitations of the secondary structure model, such as tertiary

interactions, pseudoknots, ligand binding or kinetics traps. To alle-

viate the gap in available computational tools we have extended the
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ViennaRNA Package by a flexible framework to incorporate all

those soft constraints that are compatible with the RNA folding

grammar; here we use this to handle position-wise data as they arise

from chemical probing experiments.

2 Methods

In contrast to hard constraints (Mathews et al., 2004), which restrict

the folding space on the level of the generating function, soft

constraints leave the structure ensemble intact. They rather guide

the folding process by adding position-, or motif-specific pseudo-

energy contributions to the free energy contributions of certain loop

motifs. This amounts to a distortion of the equilibrium ensemble of

structure in favour of those that are consistent with experimental

data. Mismatching motifs are penalized by positive contributions,

while structure patterns where prediction and experiment agree with

each other receive a ‘bonus’ in form of a negative pseudo-energy.

Bonus energies are an old idea in RNA folding algorithms (see

Supplementary Material).

Current methods for guided secondary structure prediction by

means of soft constraints mainly focus on the incorporation of

SHAPE reactivity data. For that purpose, three algorithms are avail-

able that aim to transform normalized SHAPE reactivity data into

meaningful pseudo-energy terms. The first method published uses a

simple linear ansatz to derive pseudo-energies for individual nucleo-

tides that take part in a stacked helix conformation (Deigan et al.,

2009). All remaining structural conformations are not modified in

this model. A more consistent model that considers pseudo-energy

guided free energy modifications in all loop types was introduced by

Zarringhalam et al. (2012). Here, the authors first convert the pro-

vided SHAPE reactivity data for each nucleotide into a probability

to be unpaired. Subsequently, the resulting probabilities are used to

derive two nucleotide-wise pseudo-energy weights, one for contexts

where the nucleotide is considerd unpaired, and the other for situ-

ations where it is involved in a base pair. A third, distinct approach

on incorporating SHAPE reactivity data to guide secondary struc-

ture prediction was suggested by Washietl et al. (2012). Here, the

authors phrase the choice of the bonus energies as an optimization

problem that aims to find a perturbation vector of pseudo-energies

that minimizes the discrepancy between the observed and predicted

probabilities to see particular nucleotides unpaired. At the same

time, the perturbation should be as small as possible. The tradeoff

between the two goals is naturally defined by the relative uncertain-

ties inherent in the SHAPE measurements and the energy model,

respectively. A detailed description of the three conversion methods

is given in the Supplementary Material.

2.1 Implementation
All three methods outlined earlier have been implemented into the

ViennaRNA Package, and are available via the API of the

ViennaRNA Library and the command line interface of RNAfold.

The required changes to the folding recursions and technical details of

handling both hard and soft constraints in ViennaRNA will be

described elsewhere in full detail. The key feature for our purposes is

the consistent incorporation of a user defined position dependent en-

ergy contribution for each nucleotide that remains unpaired. The novel

standalone tool RNApvmin dynamically estimates a vector of pseudo-

energies that minimize model adjustments and discrepancies between

observed and predicted pairing probabilities. The resulting perturb-

ation vector can then be used to guide structure prediction with

RNAfold. By accepting either SHAPE reactivity data, probabilities to

be unpaired, or bonus energies directly, RNAfold allows to incorpor-

ate alternative ways of computing bonus energies, e.g. along the lines

of Eddy (2014), or the application to other types of probing data. The

novel soft constraint feature introduces a variety of parameters which

need to be chosen carefully. We refer to the Supplementary material

for a detailed summary of their default values. Guided structure pre-

diction has also been included into the ViennaRNA Websuite

(Gruber et al., 2008), available at http://rna.tbi.univie.ac.at.

3 Results

We applied the methods to a benchmark set with known reference

structures (Hajdin et al., 2013). This test set contains 24 triples of

sequences, their corresponding SHAPE data, and reference struc-

tures, either derived from X-ray crystallography experiments or pre-

dicted by comparative sequence analysis. The use of SHAPE data

driven soft constraints leads to improved prediction results for many

RNAs. This is clearly visible in the predictions for our benchmark

data set (see Fig. 1, and Supplementary Material). However, for

some of the RNAs within our benchmark data the additional

pseudo-energy terms impair prediction results. This may be due to

two factors. First, experimental data always comes with a certain

inaccuracy. Second, the underlying energy model excludes pseudo-

knotted structures, which are present in approximately half of the

benchmarked RNAs. Additionally, pseudoknot interactions are re-

flected in the SHAPE data itself.

Incorporation of probing data not only affects the minimum free

energy structure, but also the entire ensemble of structures.

Consequently, the predicted pairing probabilities are shifted towards

the observed reactivity pattern. However, the effect is less distinct in

the model of Washietl et al. (2012) (see Supplementary Fig. S11).

While Deigan’s method has the best average performance on our

data, neither approach consistently outperforms the others.

In addition to the benchmark data, we use an artificially de-

signed theophylline sensing riboswitch to compare the three SHAPE

conversion methods with a prediction that directly includes ligand

binding free energy of the aptamer (see Supplementary Material S5).
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Fig. 1. Secondary structure prediction of Escherichia coli 5S rRNA from our

benchmark data set. (A) Structure reference, (B) prediction by RNAfold with

default parameters and (C) prediction by RNAfold with guiding pseudo-

energies obtained from SHAPE reactivity data using RNApvmin. Structure

plots created using the forna Web server (Kerpedjiev et al., 2015). White

nucleotides correspond to missing SHAPE reactivity data
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