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Abstract

The traditional shape-from-shading problem, with a sin-

gle light source and Lambertian reflectance, is challenging

since the constraints implied by the illumination are not

sufficient to specify local orientation. Photometric stereo

algorithms, a variant of shape-from-shading, simplify the

problem by controlling the illumination to obtain additional

constraints. In this paper, we demonstrate that many natu-

ral lighting environments already have sufficient variability

to constrain local shape. We describe a novel optimization

scheme that exploits this variability to estimate surface nor-

mals from a single image of a diffuse object in natural illu-

mination. We demonstrate the effectiveness of our method

on both simulated and real images.

1. Introduction

The problem of estimating shape from shading has a long

history in computer vision. While there are many tech-

niques, most seem to follow one of two basic approaches:

classical shape-from-shading (SFS) or photometric stereo.

Classical SFS, first formalized by Horn [10], typically as-

sumes a single image with known illumination and re-

flectance conditions (often point light sources and Lam-

bertian reflectance). Photometric stereo, first described by

Woodham [22], uses multiple images with controlled illu-

mination. Both approaches have a long lineage of publica-

tions that relax or change the basic assumptions, but a fun-

damental distinction is the number of lighting conditions:

one for SFS and multiple for photometric stereo.

While progress is made every year on SFS, even with

strong assumptions on the imaging conditions, the problem

is notoriously difficult to solve [24]. For example, consider

the shape reconstructions shown in Fig. 1(a). These were

computed by two algorithms from a recent survey paper [6]

using the image of the Mozart bust as input (upper left of

Fig. 1(a)). Shape-from-shading algorithms typically per-

form well on simple inputs but have difficulty on more com-

plex inputs. The root of the difficulty is local ambiguity—

the fact that multiple surface orientations can lead to the

same observed intensity. This ambiguity and its effect on

local shape representation has been studied in both human

and computer vision [4, 11, 14].

Woodham observed that the ambiguity in determining lo-

cal surface orientation from intensity measurements is re-

moved by varying the direction of illumination between

successive images [22]. This technique is called photomet-

ric stereo. With three images, the problem of estimating

orientations from intensities, assuming constant albedo, is

simplified to the point that the mapping can be stored in a

lookup table [23]. As an example, in Fig. 1(b) we show

a simulated three-color photometric stereo rendering of the

Mozart bust along with renderings of the estimated surface,

which is indistinguishable from the ground truth.

The assumptions of classical SFS (i.e., distant point

source and Lambertian reflectance) are imposed in order to

make the problem mathematically tractable. However, we

argue that these assumptions actually complicate the prob-

lem and that the inherent complexity of natural illumination

is beneficial for shape estimation. In effect, the color varia-

tion in natural illumination is a form of photometric stereo.

We exploit this property with a novel optimization scheme

that can estimate surface normals from a single image.

Our technique assumes a known reflectance map, which

implies in practice that we must calibrate against a sphere

with the same BRDF and in the same illumination as the

object of interest. This is restrictive, but it is less restrictive

than the assumptions of many SFS and PS algorithms. In all

three techniques (ours, SFS, and PS), the BRDF is assumed

to be known, either by assumption or by measurement. In

SFS, the lighting is typically assumed to be simple (e.g.,

point source) and from a known direction. In PS, the light-

ing is designed and controlled. Our technique is the only

approach that uses natural illumination that is both com-

plex and uncontrolled. Natural illumination provides a new

constraint for SFS and we demonstrate the benefit of this

constraint on both synthetic and real images.

2. Related work

We briefly review recent and related work on shape-

from-shading and photometric stereo. For a broad overview
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Figure 1. Three approaches to shape reconstruction from shaded images. Along the top row, we show the Mozart bust and a diffuse sphere

in three illumination conditions: (a) a point light source, (b) RGB photometric stereo (three point lights), and (c) natural illumination

(rendered using an environment map). Along the bottom row, we show results of shape reconstruction algorithms: (a) standard shape-

from-shading algorithms by Daniel and Durou [6] (DD) and Tsai and Shah (TS) [21], (b) photometric stereo [22], and (c) our algorithm

that assumes natural illumination.

of problems that have been explored, we refer the reader to

surveys and recent journal papers [2, 6, 17, 24].

Work on shape-from-shading has focused on a variety of

different themes over the last forty years. There have been

many iterative techniques and numerical schemes for solv-

ing partial differential equations [12], theoretical analyses

of ambiguity of solutions under various assumptions [14],

and variations on the imaging and reflectance models, such

as perspective projection, non-Lambertian reflectance, and

local illumination [13, 17].

Of the works that consider the question of uniqueness

and ambiguity, most have considered restricted versions of

the problem, such as illumination from the camera direc-

tion [14], or images of simple shapes [11]. In general,

uniqueness is rare in shape-from-shading and if both light-

ing and albedo are unknown, a family of surfaces exist that

can generate the same image [4]. Although uniqueness is

rare, we demonstrate empirically that the reduction in am-

biguity due to natural illumination is sufficient to find con-

vincing estimates of shape from a single image.

Our approach to shape-from-shading exploits lighting

variability to reduce ambiguity in surface orientation, an

idea closely related to photometric stereo [22]. Our method

is not meant to compete with photometric stereo, however,

since PS methods are active. They typically use controlled

illumination, while our method assumes uncontrolled natu-

ral illumination.

Although most photometric stereo techniques assume

controlled lighting, Basri et al. explored photometric stereo

of Lambertian surfaces in arbitrary lighting and were able

to reconstruct surfaces using 32 to 64 images with unknown

lighting [2]. We employ a similar mathematical framework

and show that we can estimate shape in an uncontrolled, but

calibrated, lighting environment from a single image.

3. Methods

We model the relationship between the observed im-

age intensity and surface orientation through the brightness

equation, first proposed by Horn [10]:

I(x) = s(n(x)) . (1)

The observed intensity at pixel x is the result of a shad-

ing function s (or reflectance map) applied to the surface

normal n at pixel x. There are several assumptions in this

model: distant lighting, spatially invariant reflectance, con-

stant albedo, no local illumination effects such as cast shad-

ows or interreflections, and a fixed viewpoint.

While lighting can be arbitrarily complex, the appear-

ance of a diffuse object can be described by a low-

dimensional model [3, 19]. Informally, the Lambertian re-

flectance function acts as a low-pass filter on the lighting

environment, thus only low-frequency lighting components

contribute to appearance. Under these assumptions, the

shading function s for Lambertian reflectance can be mod-

eled as a quadratic function of the surface normal [18]:

s(n) = nTAn+ bTn+ c . (2)

Note that the quadratic term helps the model account for

attached shadows. An example of an object rendered ac-

cording to this model is shown in the inset of Fig. 2(a).
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Figure 2. Local ambiguity in estimating a surface normal from shading information. (a) Under a single point light source, the intensity at

a point on a surface can be determined by a family of surface normals. The error plot shows the error of estimating the intensity from all

normals on the sphere—the normals along dark band all have the same minimal error. (b) With three light sources, as in photometric stereo,

there is a single location of minimal error and no ambiguity. (c) Under natural illumination, the ambiguous region is more localized than

with the point light source. The problem of estimating shape in natural illumination should be simpler than in classical shape-from-shading.

3.1. Local ambiguity

Given an intensity measurement I(x) at position x, a

SFS algorithm needs to recover the surface normal (or

height) at position x. With only local information, the prob-

lem can be modeled as the minimization of an error func-

tion:

E(n) = ‖f(n)‖2 = ‖s(n)− I(x)‖2 . (3)

As a visualization, we measure the error according to Eqn. 3

at all surface normals1 (points on a sphere) using the re-

flectance map for the object in Fig. 2(a). For the chosen

point x (dot on the surface of the object), the error function

shows a large (dark) region of ambiguity; such ambiguities

are well-known in SFS [10].

In general, photometric stereo techniques use L light-

ing conditions rather than one. Mathematically, the shading

function s can be represented as a vector-valued function of

the surface normal:

s(n) =







s1(n)
...

sL(n)






=







nTA1n+ bT
1 n+ c1

...

nTALn+ bT
Ln+ cL






. (4)

Continuing with our example, we render the same object

using simulated three-color photometric stereo, Fig. 2(b).

We also show the error function, Eqn. 3, across all surface

normals for matching the color vector I(x) at position x.

Note that there is now a single global minimum, removing

the ambiguity seen in Fig. 2(a). This is, of course, the mo-

tivation for photometric stereo [22].

In natural lighting environments, the shading function is

the same as Eqn. 4 with L = 3 since we assume three color

channels. In Fig. 2(c), we show a Lambertian object ren-

dered in the Grace Cathedral lighting environment. We also

show the error function from the same position x as the pre-

vious plots. The reduction in size of the ambiguous region

1In practice, the space of surface normals could be restricted by con-

sidering visibility from the camera.

in Fig. 2(c) as compared to Fig. 2(a) demonstrates that the

variability in this natural lighting environment provides ad-

ditional constraints for shape estimation.

3.2. Nonlinear optimization

Given an observed color vector, we minimize the error

function, Eqn. 3, with respect to the surface normal n. Since

our shading function is quadratic in n, this is a nonlinear

least-squares problem that can be minimized with an itera-

tive technique, such as the Gauss-Newton method. Suppose

at the i-th iteration, the estimate of the surface normal that

minimizes Eqn. 3 is ni. The Gauss-Newton method com-

putes an update vector h that satisfies the following equa-

tion:

J(ni)
TJ(ni)h = −J(ni)

T f(ni) , (5)

where J(ni) is the Jacobian matrix (i.e., the matrix of par-

tial derivatives) of the function f at the current estimate ni:

J(ni) =
∂f

∂ni

=







2nT
i A1 + bT

1

...

2nT
i AL + bT

L






. (6)

The update vector h satisfying Eqn. 5 is added to the current

estimate: ni+1 = ni + h.

However, there are two problems with using a standard

Gauss-Newton iteration to minimize Eqn. 3. While the sur-

face normals n are being represented in R3, they are actu-

ally unit vectors that are constrained to the surface of the

sphere. The update vector h may move the current estimate

away from the surface of the sphere and this deviation will

need to be corrected before the next iteration. This process

increases the number of iterations until convergence.

We solve this problem by defining a local frame around

the initial surface normal estimate n0. The frame is param-

eterized by coordinates u and v, such that surface normals

near n0 are defined by the following function:

n(u, v) = R0

[

u v r
]T

, (7)
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where r =
√
1− u2 − v2 and R0 is a rotation matrix such

that R−1
0 maps the initial estimate n0 to

[

0 0 1
]T

.

Within the local frame, the shading function in Eqn. 2

can be expressed in terms of coordinates u and v through

Eqn. 7. The Jacobian with respect to coordinates u and v is

obtained by the chain rule:

[

∂J

∂u

∂J

∂v

]

=
∂f

∂n
R0





1 0
0 1

−u/r −v/r



 . (8)

Note that the particular coordinate frame is only defined

for the hemisphere about the original surface normal esti-

mate n0 and that the Jacobian will be undefined if u2+v2 >
1. Therefore, we reset the frame according to the current

surface normal estimate once u2 + v2 ≥ 1/2.

Additionally, the Jacobian matrix J becomes ill-

conditioned as the lighting variation between the color

channels decreases. As a result, the Gauss-Newton iteration

converges slowly or may even fail to converge. To address

this problem, we use a variant of the Gauss-Newton scheme

known as Powell’s dog-leg [16]. This method is less sensi-

tive to the conditioning of the Jacobian matrix J .

3.3. Local refinement

Due to image noise and local ambiguity, a surface nor-

mal cannot be reliably estimated from a single pixel. In

this section, we describe a novel optimization scheme that

combines local refinement via nonlinear least-squares with

a multi-scale propagation technique.

The local refinement stage is a modification of the iter-

ative technique described in the previous section. Rather

than optimize a single surface normal, we optimize a patch

of k adjacent surface normals, n1 to nk. The modified error

function is:

E(n1, . . . ,nk) = ‖g(n1, . . . ,nk)‖2, (9)

where:

g(n1, . . . ,nk) =















f(n1)
...

f(nk)
λ1c1(n1, . . . ,nk)
λ2c2(n1, . . . ,nk)















. (10)

The functions c1 and c2 are two different constraints on the

surface normals: integrability and smoothness.

The integrability constraint reflects the fact that the sur-

face normals are not an arbitrary vector field—they are local

orientations of an unknown surface. We enforce integrabil-

ity through a penalty on the curl within the patch. In the

local frame, at patch coordinate (i, j), the curl can be ap-

proximated as cy − cx with:

cy = r11 (ui+1,j − ui,j) + r12 (vi+1,j − vi,j) ,

cx = r21 (ui,j+1 − ui,j) + r22 (vi,j+1 − vi,j) (11)

where rij is the entry of the rotation matrix, R0 at row i and

column j. The full integrability constraint c1 is a vector-

valued function with the curl for each surface normal, n1

to nk, in separate rows.

The smoothness constraint is derived from a generic

viewpoint principle [8]: when no change is observed across

a region in the image, we assume the underlying sur-

face does not change. In other words, we consider it un-

likely for the surface and illumination to change in opposite

ways such that no intensity variation is visible. Therefore,

our smoothness constraint penalizes surface variation along

contours of minimal image change (i.e., along isophotes).

Constraints implied by isophotes, and how they influence

human perception of shape, have been explored by other

authors [7]. Here we show how isophotes can be used as

constraints within our optimization.

In Sec. 3.5 we describe a simple method for computing

isophotes on shaded images of objects with constant albedo.

Assume that method gives θ as the local orientation of shad-

ing for this patch. We constrain the surface variation by ap-

plying a second-derivative of Gaussian filter, G2
θ, oriented

in direction θ. This filter is defined by a linear combination

of three base filters, G2a, G2b and G2c. Due to space con-

siderations, we omit the formulas, which can be found in

Table III of [9].

The second-derivative of Gaussian filter responds more

strongly to variation along the direction θ than along the

orthogonal direction. We use this property as a constraint

across the patch:

c2 =

[ ∑

i,j G2
θ(i, j)u(i, j)

∑

i,j G2
θ(i, j) v(i, j)

]

. (12)

The constraints c1 and c2 are weighted by scalars λ1 and

λ2 in Eqn. 10. We find that convergence is robust across the

range 0.01 to 0.5 for both parameters.

The local refinement stage is run for a small number of

iterations, typically 5 to 10, for each patch. In the next sec-

tion, we describe how the local estimates from each patch

are propagated to adjacent patches and then across scales.

3.4. Multi­scale propagation

The propagation stage uses surface normal estimates

from neighboring patches to provide initial estimates for

the current patch. Our approach borrows ideas from patch-

based image processing (e.g., [1]) and applies them within

a continuous optimization framework.

We build a pyramid from the input image and begin pro-

cessing at the lowest scale, from the upper left pixel to the

lower right. For each pixel, we consider the surrounding

patch of surface normals and perform local refinement on

the patch, as described in Sec. 3.3. Next, we consider the

patch centered one pixel to the left and use it as an initial
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condition for the refinement at the current location. We re-

peat the refinement a third time starting with the patch cen-

tered one pixel above the current location. At this point

we have three refined patches that explain the image data.

To choose the best patch, we consider a region around the

patch, which we call the local context.

The local context P is a larger region that encloses the

current patch. We define the context error as:

T (P ) = E(P ) + ω1E1(P ) + ω2E2(P ) , (13)

where E is the shading error, Eqn. 9, and E1 and E2 are

the integrability and curl constraints evaluated over the local

context. The scalars ω1 and ω2 weigh the contributions of

the constraints to the error function.

Discretized surface normals often have small but non-

zero curl and imposing a penalty on these values can pre-

vent the normals from attaining the correct shape. Instead,

we put the curl constraint within a smooth step function, a

sigmoid, that only penalizes large values. Thus, the integra-

bility term E1 of the context error is:

E1(P ) =
∑

p,q∈P

1

1 + exp (−α(|py − qx| − τ))
, (14)

where the parameter α controls the rise of the sigmoid and

τ controls the location where the sigmoid crosses 0.5. The

variables p and q are the estimates of surface gradient in the

region, p = nx/nz and q = ny/nz , and py and qx denote

the partial derivatives of these values. We approximate the

partial derivatives with forward differences.

The smoothness constraint uses a second-derivative of

Gaussian filter that is sized to cover the local context. We

choose the L1 norm to be more robust to large values, since

the context error does not need to be differentiable:

E2(P ) =
∑

k

∣

∣

∣

∣

∣

∣

∑

i,j

G2
θ(i, j)nk(i, j)

∣

∣

∣

∣

∣

∣

, (15)

where nk is an individual component of the surface normal.

The patch that minimizes the context error, Eqn. 13 is

selected as the local estimate and then the next patch is pro-

cessed. On odd iterations, we traverse the image backwards,

similar to [1].

At the end of a fixed number of iterations, we upsample

the current estimate and process the next scale. The algo-

rithm continues until the finest level of the pyramid has been

processed. Since we are processing within an image pyra-

mid, we can also take advantage of multigrid techniques to

speed up convergence [5]. We find that the w-cycle, i.e.,

coarse-to-fine passes beginning at every scale, is particu-

larly effective.

Our initial condition for the iteration is a random array of

unit-length vectors, with the z-component fixed to be pos-

itive. This initial condition will have very large values for

the two constraints E1 and E2 and the optimization can get

quickly stuck in a local minimum if the parameters ω1 and

ω2 are too large. But in cases of high image noise, we want

the parameters to be large to prevent unwanted surface vari-

ation. We have found that increasing ω1 and ω2 each itera-

tion, from 0 to their specified values effectively solves both

problems.

3.5. Local orientation

We measure the local orientation of intensity variation

using the structure tensor. The structure tensor can be com-

puted from three component images:

Gx=gσ ⋆ I2x , Gxy=gσ ⋆ (IxIy) , Gy=gσ ⋆ I2y (16)

where Ix and Iy are the x and y gradients of the image I ,

gσ is a Gaussian kernel with standard deviation σ and the

symbol ‘⋆’ denotes convolution.

Let Ĉ = (Gx−Gy)/(Gx+Gy) and Ŝ = (2Gxy)(Gx+

Gy). The local orientation is θ = 1

2
tan−1(Ŝ/Ĉ).

Image gradients at the finest scale are sensitive to noise

and therefore the local orientation can be difficult to esti-

mate, especially in flat regions. To improve the estimate,

we blend the component images, Eqn. 16, with upsampled

components from the previous scale, G′

i = Gi +Gi−1. By

this process, the finest scale obtains pooled estimates from

all the previous scales.

4. Results

We evaluate our algorithm on both synthetic and real im-

ages. The parameters of the algorithm were kept constant

across all experiments. We used 3 × 3 patches in a 5 × 5
context, 3 pyramid levels, 5 iterations per level, local re-

finement weights λ1 = 1.0 and λ2 = 0.01, context error

weights ω1 = 1.0 and ω2 = 0.1.

Our optimization algorithm assumes that a model of the

lighting environment is known. For both the real and syn-

thetic images, we fit the model using a diffuse calibration

sphere. Since the shading function, Eqn. 2, is linear in the

lighting environment coefficients, we use the known sur-

face normals of the sphere to solve for the coefficients using

least-squares.

4.1. Synthetic images

To help us develop and test our algorithm, we found it

useful to work with a set of synthetic images. Our test

set consists of 100 images that are generated by render-

ing 10 shapes in 10 different lighting environments using

a physically-based renderer, pbrt [15]. The 10 shapes are

shown across the top row of Fig. 3. Our shapes have varying
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Shapes:

Lighting environments:

Figure 3. Our test set consists of 100 images, 10 shapes rendered in each of 10 lighting environments. Top: The 10 random shapes rendered

in the same lighting environment. Bottom: One shape rendered in each of the 10 lighting environments.

levels of complexity, including large smooth regions, con-

cave regions, self-occlusions, large depth discontinuities,

creases and protrusions. To encourage future work on this

problem, we have made our dataset available online.2

The 10 lighting environments are represented in the bot-

tom of Fig. 3, by rendering one of the shapes in each light-

ing environment. We used the following lighting environ-

ments: Grace Cathedral, Eucalyptus Grove, Uffizi Gallery,

Galileo’s Tomb, Ennis-Brown Dining Room, Pisa Court-

yard, Doge’s Palace, Inside Tunnel Machine, At the Win-

dow, and Distant Evening Sun. The light probes used for

rendering are available online.3

To ensure that the rendering model conformed exactly to

our assumptions (i.e., no cast shadows or interreflections),

we rendered calibration spheres and fit the lighting envi-

ronment model to the spheres. Before optimization we add

Gaussian random noise with standard deviation 0.001 to

avoid the existence of an exact numerical solution. This

amount of noise for our synthetic images (at 256 pixels

across) is comparable to 2% noise in our real images, be-

fore downsampling.

For each of the 100 rendered images, we have image

masks and ground-truth surface normals (rotated into the

camera coordinate system). The image masks identify the

background pixels, which are not considered in the opti-

mization or evaluation. To evaluate performance, we com-

pute the angular error between the ground-truth surface nor-

mal and the estimated surface normal. Across all surface

normals from all 100 images, 90% have an angular error

lower than 10 degrees.

To enable comparisons with previous work, we tested

our algorithm on two standard surfaces: the Mozart bust

and the analytic “vase” [24]. We rendered these surfaces in

all 10 lighting environments at an image size of 256 × 256
pixels. Across all 10 Mozart images, 86% of the surface

2http://people.csail.mit.edu/kimo/blobs
3http://ict.debevec.org/˜debevec/Probes and http:

//dativ.at/lightprobes

normals have an angular error lower than 10 degrees. For

the vase images, 94% of the normals are within 10 degrees

from ground truth.

We also reconstructed depth by integrating the surface

normals. We used the L1 Poisson approach, via itera-

tively reweighted least squares to minimize the influence

of noisy estimates [20]. Since we use Neumann boundary

constraints (i.e., we do not specify any known depth values),

the reconstructed surface will have an overall depth ambi-

guity. We resolve the ambiguity by computing an offset δ
that best aligns the depth estimate to the ground-truth:

A(δ) =
∑

x∈Ω

∣

∣z(x) + δ − ẑ(x)
∣

∣ , (17)

where Ω is a mask identifying foreground pixels, z(x) is

the estimated depth and ẑ(x) is the ground-truth depth at

position x.

In Fig. 4 and Fig. 5, we show reconstructions of both

objects under two different illumination conditions, Distant

Evening Sun and Inside Tunnel Machine. For the vase im-

ages, the RMS errors are 0.55 and 0.62 pixels for upper and

lower results. For the Mozart images, the RMS errors are

2.7 and 1.1 pixels for the upper and lower results.

4.2. Real images

To evaluate the performance of our algorithm in a more

realistic setting, we captured images of objects in natural

lighting environments. Since our algorithm does not ac-

count for reflectance variation, the objects and calibration

target were painted with a diffuse paint. We used an 18-

megapixel Canon EOS 550D camera equipped with a 100-

mm lens. The camera was mounted on a tripod and set

to capture in RAW mode. The illumination of the scene

was not modified in any way (i.e., no additional lights).

The RAW images were converted to a 16-bit format using

Adobe Photoshop. For each image, we also created binary

image masks by tracing the boundary of the objects in the

image.
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Figure 4. (a) Two renderings of the analytic vase, [24]. (b) Ren-

derings of the reconstructed surface. The RMS error on the depth

estimate is 0.55 pixels for the upper result and 0.62 pixels for the

lower result. (c) 1D profiles of the center scanline of each esti-

mated depth map, compared to the ground truth.

(a) image (b) estimated surface (c) profile
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Figure 5. (a) Two renderings of the Mozart bust. (b) Renderings

of the estimated surface. The RMS error is 2.7 pixels for the up-

per result and 1.1 pixels for the lower result. (c) 1D profiles of

the center scanline of each estimated depth map, compared to the

ground truth.

In Fig. 7, we show the result of our optimization on three

objects in the same scene. The objects were photographed

in an office with natural light from a window and fluorescent

lighting overhead. The inset plots for the real images show

the calibration target and the inset plots in the normal maps

show a visualization of surface normals on the sphere. In

Fig. 6, we show a close-up view of the y-component of the

surface normal for each object in Fig. 7. Our optimization

achieves a high level of detail from a single image.

Fig. 8 shows the images of the calibration target and a toy

frog. The objects were photographed in a hallway with re-

cessed lighting overhead and painted walls. We fit a model

of the lighting environment to the calibration target then ran

our algorithm to estimate the normal map. We integrated

the normals using our L1 Poisson solver to obtain a depth

estimate. To improve the visualization we clipped depth

values below the 1st and above 99th percentiles. We render

the estimated surface from two different viewpoints.

We find that our optimization algorithm performs well

Figure 6. Surface normal detail. Close-up views of the y-

component of the estimated surface normal for the objects in Fig 7.

Our algorithm is able to reconstruct a high level of detail from a

single image.

when the lighting environment is sufficiently rich to con-

strain the solution space, but can fail under modest amounts

of image noise if the lighting is similar to a single light

source. Under this lighting condition, the Jacobian of the

error function, Eqn. 6, will be rank deficient. The optimiza-

tion will still produce a surface, but it is generally flat along

the isophote directions.

5. Conclusion

Shape estimation is difficult when the illumination con-

sists of a single light direction. The difficulty stems from the

local ambiguity between the intensity value and the range

of surface orientations that could have produced that value.

But under natural illumination, this ambiguity is often re-

duced. Based on this observation, we have described an

algorithm that can estimate the surface normals of a diffuse

object, with constant albedo, from a single image under un-

controlled but known illumination.
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