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Abstract 

This paper shows that symmetry is essential to shape from contour and indicates problems with 

existing measures~, based on energy and information. 

The paper is divided into two parts : The first part establishes the importance of shape from 

contour using symmetry from a computational theoretic viewpoint. The second part proposes 

algorithmic solutions to the problem of symmetry finding. 

We have omitted all proofs and some parts from this paper due to lack of space. They may be 

found in [1]. It also contains some more references on shape from contour, reflectional and rotational 

symmetry. We encourage you to read it. 

1 Introduction 

1.1 Shape from contour 

Shape from contour is the interpretation of a single line drawing as the projection of a three 

dimensional entity. Following Levitt [22], we model a line drawing or a binary digital image L as a 

two dimensional point set S. A pixel belongs to S if it is part of L. Then for a line d~awing with 

n pixels, 

s = { ( c ,  adli = 1,..., n }  (1) 

where (c/, d/) is the (known) x-y position of the ithpixel. The shape from contour problem is to 

solve for a three dimensional point set S ~ such that 

*partially supported by the Croucher Foundation 

(2) 
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where ui is the unknown parameter and (t~, t~, t~) is the known projection vector (assuming 

parallel projection), such that some measure of simplicity is extremized. 

There have been two streams of research on shape from contour : "top down" and "bottom up". 

1.2 Top  d o w n  v i s ion  

Roberts [3], in his seminal work, considered shape from contour as discovering a set of model 

instances whose projection gives rise to the input line drawing. This research program was extended 

significantly by Pentland [4, 5]. It consists of three steps. (1) It finds a parameterized model that 

spans all geometrical objects in the world. (2) It uses a generate-and-test strategy to predict all 

possible appearances of the objects. (3) It compares the given appearance and finds the best 

matching model parameters. There are two main difficulties : Firstly, the parameterized models 

require too many parameters. For example, a superquadric with (restricted) bending and tapering 

requires 14 parameters ( [5], p. 614 ). Not withstanding this, the superquadric has difficulties 

representing some Simple shapes, eg. the hexagonal prism. More general parameterized models 

are needed. The hyperquadrics [6], which includes the superquadrics as a special case, needs many 

more parameters, however. Secondly, complex nonc0nvex solids should be represented by more 

than one parameterized model. This gives rise to a "part-whole" problem : Local best model match 

needs not be global best. ( See Mackworth's conterexamples to Roberts' program in [7] ). The top 

down approach does not appear computationally feasible if we have no knowledge about the visual 

environment. 

1.3 B o t t o m  up  v i s ion  

Marr [8] and others proposed a radically different approach. These researchers envisage that shape 

from contour may be accomplished without the use of models. Insteads, it is achieved through some 

primarily data driven process involving only information processing and physical principles. Shape 

from contour is cast as a quest for finding a shape metria Ideally, the metric should allow us to 

tell which of any two shapes are more complex. Shape from contour is then the problem of finding 

the backprojection that extremizes the shape metric. Under this research paradigm, many shape 

measures have been reported in the past decade. Almost all of them (1) use some form of energy 

or information as their basis and (2) assume that the given drawing has been "labelled" 1. One of 

the main aims of this paper is to show that (1) is misguided. Moreover, it is well known that it is 

extremely difficult to label a line drawing in general. So far, "labelling" has been successful only in 

thesimple domains ( polyhedra and simple curved solids ) with stringent assumptions ( "perfect" 

line drawing, etc ). This leads one to suspect whether labelling is a neccessary step. As will be 

shown in the rest of this paper, we may do away with labelli]lg altogether if we use the more naive 

but intuitive concept of symmetry. 

1We are not aware of any shape from contour work (including Kanade's) that does not depend on a labelled 
drawing. Stevens [9] described a method which uses lines of curvature to infer shape. The problem is that the lines 
are not given. Tsuji and Xu [10] reported a method to construct a net of similiar lines from a drawing. However, 
their method is heuristic and depends on first labelling the image into "connect" and "occlude" edges. The recent 
work on symmetries by Ulupinar and Nevatia [11] also implicitly assamed a labelled drawing ( for example, see their 
shared boundary constraint ). The works of Wltkin [12] and Kanatani [13], however, have the potential of being 
labelling independent 
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1.4 Middle out vision 

We believe that shape from contour is neither top down nor bottom up. In natural images as welt as 

in line drawings, there are some invariants. These invariants have three dimensional implications. 

Perception of shape from contour proceeds by identifying these invariants. The perception is the 

result of selecting a backprojection which best preserves the invariants. One of the aims of this paper 

is to show that the (parallel) projection of reflectional and rotational symmetries form invariants that 

are robust End may be detected in a highly parallel fashion. Moreover, the amount of effort required 

to detect these invariants ( 2 and 3 degrees of freedom respectively ) are very small compared with 

that required to detect parameterized models. These invariants are very useful at inferring the 

three dimensional shape as well as predicting the hidden and occluded parts, tn this paper, we shall 

present the theoretical results in support of our contention. 

This theory echos nicely with the direct perception idea of Gibson [14]. The idea of using 

invariants has been suggested by Ballard, who proposed that % major function of the perceptual 

system is to compute collections of invariants at different levels of abstraction" (pg. 89, [15]) and 

applied it to the recognition of polyhedra. 

It is important to realize that this paradigm is not bottom up vision in another guise. The 

theory does not limit ourselves to general invariants from images. Invariants may also arise from 

specific models ( eg. the relative spatial dispositions of two projected model lines [16]). In fact, 

recent works on model-based vision has begun to explore these invariants [15-20]. This paper would 

however concentrate on image invariants, which are more generally applicable. Theorists have long 

recognized that both bottom up and top down vision are part of a whole theory. Middle out vision 

attempts to unify both paradigms through the common notion of invariants. 

P a r t  I 

Symmetries 

2 S y m m e t r i e s  a n d  s h a p e  f r om c o n t o u r  

2.1 A symmetry measure 

Symmetry is a prolific phenomenon in the world [21]. It may be defined in terms of three linear 

transformations in n-dimensional Euclidean space E ~ : reflection, rotation and translation. For- 

mally, a subset S of E" is symmetric with respect to a linear transformation T if T(S)  = S. We shall 

concentrate on reflectional and rotational symmetries. A reflectional symmetry has a reflectional 

plane, for which the left half space is a mirror image of the right half. A rotational symmetry has an 

axis of rotation A and an angle of rotation 0. A rotation of 0 about A will give an identical figure. 

Trivially, a rotation of 0 ° will produce an identical figure. We shall count this as one rotational 

symmetry. Let k be the sum of the number of reflectional symmetries and rotational symmetries. 

Then because a figure has at least one trivial rotational symmetry, k > 0. A sphere is reflectionally 

symmetric about all reflectional planes passing through the center and rotationally symmetric about 
alI axes passing through the center. Hence for a sphere, k = oc. 

This measure was originally proposed by Levitt [22]. 
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Human beings perceive a three dimensional object as the putting together of "perceptual parts" 

[4]. Suppose S' is decomposed into m "parts" S~,..., S~ ( m > 1 ). Let k(S~) be the sum of the 

reflectional and rotational invariance in S~. We wish to have as few parts as possible. However, the 

more points S~ includes, the lower is k(S~). A compromise is needed between the number of parts 

and the k of each part. Levitt [22] achieved this by minimizing 

m 

E =  ~ k ' ( r e > l )  (3) 
E i = l  (S~) - 

where m is the number of parts. This measure is used by Levitt to decompose an 2-dimensional 

point set into a few salient subsets. Some good decomposition results have been obtained by Levitt. 

In this paper, we shall use (3) to solve shape from contour problems. 

2.2 I n t e r p r e t i n g  s k e w e d  s y m m e t r y  a s  r e a l  s y m m e t r y  

A "skewed symmetry" is a planar point pattern such that iff (x, y) exists, ( -x ,  y) exists. The x axis 

is called the %kewed transverse axis" t~; whilst the y axis is called the "skewed symmetric axis" sk. 

If tkand s~ are not orthogonal, then we have a skewed symmetry. If they are orthogonal, then the 

skewed symmetry degenerates to a real (reflectional)symmetry, the reflectional axis of which is sk. 

Stevens [9] 's psychological experiments indicated that human beings will interpret a skewed 

symmetry as a real symmetry. Although it is possible to find counterexample s ( for example, we 

would not interpret a door as a Square ), this is almost always true. Hence a good measure should 

likewise interpret skewed symmetry as real symmetry. 

Brady and Yuille [24] showed that maximizing their compactness measure will intel]~ret skewed 

symmetry correctly as real symmetry. Liang and Todhunter [25] proved that minimSzing Barrow 

et. al. 's equality of angle measure [2] will also interpret skewed symmetry correctly. 

These works [24, 25] assume that the skewed symmetry is a parallel projection of a planar 

pattern, That is, the underlying transformation is affine. In the following, we shall also assume 

that the transformation is arlene. 

We identify a skewed symmetric subset of the point set S of line drawing L as a part ( later, we 

report how such a part may be identified directly from the line drawing ). Hence what we need is 

the general equation (3) applied to a part S~, which is 

E, = l lk (S~)  (4) 

This means that the three dimensional interpretation of a part Si maximizes the sum of the 

number of reflectional and rotational symmetries of S~. 

Propos i t ion  1 Minimizing (4) will interpret a skewed symmetric figure as a real symmetric figure 

if the projection is an affine transformation. 

Outline of the Proof 

It can be proved that the real symmetric interpretation will not have fewer rotational ( reflec- 

tional ) symmetries than any other interpretation. 
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3 Analys is  of  shape from contour m e t h o d s  

omitted. 

4 Shape from contour measures  revis i ted 

In this section, the disadvantages of existing shape measures will be discussed. The symmetry 

measure has none of these disadvantages, but on the contrary has many delightful advantages. 

Many of them are unique. 

The disadvantages of existing measures are : 

dt)  The shape measures do not suggest a process to extremize them. Though they are quite 

simple, it is not apparent how to extremize them. Frequently, brute force quantization is resorted 

to [24]. A good measure, on the contrary, should suggest a process for computing it: 

d2) Measures based on angles are very sensitive to small changes in boundary shape. 

d3) The extremization of these measures usually gives two global extrema only. (There are two 

because of Neckar reversal ). Other values of the measures do not have physical meaning ( see the 

section 3.2 ). 

d4) Different dimensions require different measures. For example, the three dimensional version 

of the compactness measure is 

( volume )2 / ( s u r f  ace area) 3 (5) 

Some other measures have no obvious higher dimensional generalization at all. 

d5) The measures are not applicable to point sets composed of isolated points. 

The symmetry measure has none of the above disadvantages. On the other hand, it has the 

following advantages : 

The following are also shared by most existing shape measures : 

al)  An n-dimensional sphere has k = ec. The measure considers an n-dimensional sphere as the 

simplest shape. 

a2) It is scale invariant. 

The following are unique : 

a3) It is applicable to point sets as well as line drawings. 

a4) It is "dimension invariant". It stays the same for all dimensions. In n dimensions, a 

reflectional plane is an (n-1)-dimensional hyperpla~e and an axis of rotation is an (n-2)-dimensional 

hyperplane. For example, in two dimensions, they are the line of reflection and the center of rotation 

respectively. In three dimensions, they are the plane of reflection and the axis of rotation. 
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a5) It is a process theoretic measure. It suggests a two level process theory : Level i : Look 

for symmetries in the image. Level 2 : Find the optimal combination of the symmetries found. 

Symmetry finding will be discussed in Part 2. 

a6) Symmetries are global and robust. They are insensitive to noise as well as occlusion. 

a7) It does not rate irregular and random figures. This is consistent with the limits of human 

ability. 

a8) Multiple percepts are allowed. Alternative percepts are those with fewer symmetries. They 

may still turn out to be favourite, particularly if motivated by a priori preference or beliefs. Allowing 

multiple percepts is very important. For example, it has been 'shown [26] that human beings may 

imagine different hidden part completions given the same line drawing. We also believe that a good 

measure should not only give the ideal best output, but exhibit graceful degradation [27]. 

Part  II 

A computational theory of shape from 

contour using s y m m e t r i e s  

5 I n t r o d u c t i o n  

There are two radically different approaches to solving (3) : Feedback and Generate-and-test. 

The main idea behind the first approach is to cast the problem as a self organization problem. 

The spirit of feedback is behind [28, 29]. 

However, this approach has three serious difficulties : (1) the feedback function may not have 

physical significance; (2) the feedback function usually introduces some extra coefficients to the 

system; (3) it is very difficult to find a suitable feedback function that converges to a good equilib- 

rium. It is refreshing to remember that to grow a good crystal, one has to start at near equilibrium 

conditions. 

As we shall show, in the line drawing, there are invariants of symmetries that are preserved 

under projection. They are usually readily apparent ( though the computational method to find 

them is not apparent ). An example is skewed symmetry, which is the projection of a reflectional 

symmetry. One approach to find these invariants is by a generate-and-test strategy. Two important 

advantages of this strategy are high parallelism and reliability [30]. The apparent difficulty is the 

combinatorial explosion. For example, naively, to generate all possible reflectional and rotational 

symmetries requires 3 and 5 degrees of freedom (d.f.) respectively. One of the key results of this 

paper is showing that they may be done with 2 and 3 d.f. ! In the rest of the paper, we shall explore 

the potential of the generate-and-test approach. 

Our theory is in two levels : 

Level 1 : find invariants due to symmetries in the given image; 

Level 2 : find the backprojection that provides the best combination of the invariants. 
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In this paper, efficient algorithms are reported to tackle Level 1. 

In the rest of the paper, we shall assume parallel, projection. 

The next section will deal with two interesting properties of symmetries. 

6 Two interesting properties 

Proposition 2 A reflectional symmetry will project as a skewed symmetry or a reflectional symme- 

try. Moreover, if it is a skewed symmetry, then if and only if the backprojected reflectional symmetry 

is planar, the skewed symmetric axis will be straight. 

This leads to two interesting corollaries : 

Corollary 2.1 

If a skewed symmetric figure is to be interpreted as the projection of a reflectional symmetry, 

then the reflectional symmetry must be planar. 

Corollary 2.2 

If a reflectional ( real ) symmetric figure is to be interpreted as the projection of another re- 

flectinal symmetric figure~ then the figure need not necessarily be planar. An example is Fig 1. ( 

pointed out to us by Prof. Harry Barrow ). 

Note : We are using skewed symmetry in a more general sense, Kanade's initial definition of 

skewed symmetry has a straight axis. 

Proposition 3 A rotationally symmetric figure may have neither skewed symmetric nor reflectional 

symmetries. 

An exaanple is shown in Fig 2. 

Fig 1 
Fig 2 

It is well known that a rotational symmetry is a composite of two reflections. However, the 

last proposition suggests that it is not helpful to look for skewed and reflectional symmetries when 
finding rotational symmetries. 
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7 Ref l ec t iona l  s y m m e t r y  

7.1 Finding skewed symmetry  under parallel projection - -  mapping 

pair 

Levitt [22] proposed an elegant method to detect reflectional symmetry in a point set, without 

requiring a priori that the point set is symmetric. Suppose there are n points. For each of the =C2 

pairs, the midpoint is found and assigned a direction perpendicular to the line joining the pair. 

To this is added the n points with no direction assigned. A Hough transform is then used to find 

straight reflectional symmetry axes. 

We may extend Levi.tt's method to detect skewed symmetry in the following way. Suppose P1, 

/92 is a pair of points. Then insteads of storing the angle of the perpendicular, we may store the 
angle/3 of line P--~  with some reference axis on a third dimension of the Hough space. High counts 

on the Hough space correspond to a skewed symmetric axis sk where the skewed transverse axes 

are at the same angle with respect to 8k. 

This method requires a 3-d Hough space, Below, we describe a variant which requires only a 

2-d Hough space. 

We point out in proposition 2 that skewed symmetry is the projection of reflectional symmetry. 

Suppose/¢, q' are two three dimensional points and p' reflects onto q' (and vice versa). Then we 

shall say that they are mapping points or a mapping pair. 

Suppose r', s '  are another mapping pair. Then clearly ~~7/~. Now since a parallel projection 

is an affine transformation, parallelism is preserved. Hence upon projection ~'~//~-g, where p is the 

projected point of p' and etc. We note that this is an invariant. 

7 . 2  Extend ing  Kanade's  skewed s y m m e t r y  constraint  to p a r a l l e l  p r o -  

j e c t i o n  

We now show how to make use of this invariant to find skewed symmetry in the image and the 

constraint of the skewed symmetry on the backprojected reflectional symmetry. 

Suppose p and q are mapping points. Let the known projection vector be (tz, t~, t~) and a and 

v be the slant and tilt (as defined in [24]) of the reflectional plane. Let 

[ a, //(q_p) (8) 

and 

[ ] [  ][] a~ cos t  --sin'r  a~ (7) 
t ~ 8~nT COST ay ay 

then it can be shown [1] that 
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~" -1 tza~ (8) 

(8) may be understood this way. Mapping pairs must be parallel to (a~, %). Hence (a,, %) 

defines a "mapping direction". Given the mapping direction, we may use (8) to calculate all feasible 

slant a and tilt r of the reflectional plane, assuming a known parallel projection. Once the equation 

of the reflectional plane is fixed, it is an easy matter to calculate the three dimensional positions of 

any mapping points. 

Recall that proposition 2 states that if the skewed symmetric axis is straight, the reflectional 

(real) symmetric interpretation must be planar. Hence given a skewed symmetric figure (with 

straight skewed symmetric axis) in the image plane and a mapping direction, we may apply (8) to 

find all reflectional planes that will give a symmetric interpretation. We note that 1 d.f. is required 

for the mapping direction. This is consistent with Friedberg's result [31] that 1 d.f. is needed to 

detect skewed symmetry. Moreover, the gradient of the reflectional plane has 1 d.f.,.which is again 

consistent with the 1 d.f. of Kanade's skewed symmetric heuristic. 

However, our formulation is more general because it is applicable to parallel projection, whilst 

Kanade's formulation assumes orthographic projection. It may also be noted that given r, the 

gradient of the reflectional plane is constrained to lie on a line in the gradient space. This may 

be constrasted with Kanade's heuristic, which specifies that the gradient of the plane on which the 

backprojected figure lies on is on a hyperbola in the gradient space. 

Under orthographic projection, the solution is particularly simple, whence it can be shown [1] 

that the mapping direction is r. 

7 . 3  E x t r e m u m  s y m m e t r y  

We shall define the more general notion of "extremum symmetry" and show that Ulupinar and 

Nevatias' "parallel symmetry" and "mirror symmetry" (see below ) are special cases. 

We say that a curve is "mapped" to another curve in the image if a one-one mapping may be 

defined which maps one curve to another. Of course, the "mapping directions" have to be the same. 

It is very important to recognize the following : 

L e m m a  4 Let cl, c2 be image curves aud d~, 4 their backprojection. I f  a mapping exists which 

maps cl to c2, a ~ and ~ may always be found such that d 1 is reflectionally symmetric to c' 2. 

This lemma indicates that refledonal symmetry may be imposed on almost any two curves. 

However, this is not so with human beings. Though a mapping may be defined for the two curves in 

Fig 3, no one would seriously consider that their backprojection is reflectionally symmetric. What 

extra constraints do we exploit then ? 

Ulupinar and Nevatia [11] proposed two special forms of symmetry : "parallel symmetry" and 

"mirror symmetry". Two analytic curves cl, c2 have parallel symmetry if 

Ol(S)=e2(as31-b) (9) 
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where 81(s) is the angle the curve made with the positive x axis at curve length s, and a, b are 

constant. Since a is merely a scaling factor, in the rest of the paper, we shall assume a = 1. Then 

one curve is a translation of the other. 

The mirror symmetry is identical to Kanade's skewed symmetry. Recall that Kanade's skewed 

symmetry has a straight skewed symmetric axis. 

Fig 4 shows a reflectional symmetry. The two curves, which are reflective to each other, may be 

described by 

where 

(:l:x(t), y(t), z(t)) (10) 

c(t) = (0,y(t) ,  z(t)) (11) 

FYq 3 Z 

It is not hard to show that 

(i) if x(t) = constant, the projected image has parallel symmetry; 

(ii) if c(t) is a straight line, the projected image has mirror symmetry 

Hence it may be concluded that both parallel and mirror symmetries are special cases of the 

(parallel) projection of reflectional symmetries. 

However, it is incorrect to suppose that  parallel and mirror symmetries are the only symmetries 

that human beings perceive. An example which neither fits parallel nor mirror symmetry is the top 

face of Fig 5. 

We define below the concept of "extremum symmetry", which we believe is the most general 

form of projected reflectional symmetry that human beings perceive. 

Two image curved fragments cl and c2 have "extremum symmetry" if a one-to-one map may be 

found between points in cl and points in c2 such that 

(i) if a point in cl is an extremum ( curvature maximum, curvature minimum, corner with m 

incident lines ), then the mapping point in c2 must be an extremum; 
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(ii) if a point in cl is not an extremum, then the mapping point in c2 is not an extremum. 

It is clear that our extremum symmetry subsumes both the parallel and the mirror symmetry. 

Under this definition, Fig 3 is not a projection of reflectional symmetry whilst Fig 5 is. Once an 

extremum symmetry is found, the three dimensional position of the backprojected curves may be 

found using the result of the last subsection. 

The concept most closely related to extremum symmetry is Brooks ribbon [32]. A Brooks ribbon 

is generated by line segments ( of varying length ) centered on a curved axis. The angle of the line 

segment is variable. The angle between the line segment and the tangent to the axis is constant. 

For an extremum symmetry, the angle of the line segment is constant whereas the angle between 

the line segment and the tangent is variable. If the axis is straight, then both give skewed symmetry 

with straight axis. But extremum symmetry is in general not Brooks ribbon. Thus we may also 

say that Brooks ribbon in general does not backproject to reflectional symmetry. 

In general, the skewed symmetric axis may be defined as the locus of the midpoints of the 

mapping pairs of an extremu m symmetry, Mirror symmetry restricts the axis to be straight, whilst 

for extremum symmetry the axis may be an arbitrary connected curve. It is interesting to ask 

if there are any notions of s}~nmetry intermediate between these two extremes. For example, is 

"quadric symmetry" - -  that is, the axis is a quadric cu rve - -  possible ? Fig 6 shows an example for 

which the axis is a circular arc. However, it is not apparant that the two curves have any symmetry 

relations to a human observer. Indeed, the lower curve has a curvature minimum which is absent in 

the upper curve, thereby violating the concept of extremum symmetry. We conclude that quadric 

symmetry is not perceived by human beings. 

Fig 5 ~ Fig 6 

7 . 4  A n  a l g o r i t h m  f o r  f i n d i n g  s k e w e d  s y m m e t r y  

It is simple to detect parallel symmetry. Given a mapping, the distance between the two mapping 

points will remain constant. ( One curve is a translation of the other ). Hence in this subsection, 

we shall concentrate on finding an efficient algorithm for detecting skewed symmetry. 

Let the mapping direction make an angle a with the positive x axis. 

Algorithm 1 (Skewed symmetry finding) 

Input : a two dimensional point set. 
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1. a ~ 0 ;  

;;; the initial mapping direction is parallel to the x axis 

2. clear the midpoint_array; 

rotate the point set by - a  about the origin; 

;;; after the rotation, the mapping direction is parallel to the x axis 

3. for all lines L parallel to the x axis do 

if two points p, q lie on the L then 

record the midpoint of p and q on midpoint_array; 

endif; 

end for; 

4. use a Hough transform to find straight lines in midpoint_array 

• and store symmetry axes found and their associated point subset; 

5. increment or; 

6. if ~ > It, then exit else goto 2. 

Output : a set of symmetry axes and their point subsets. 

We have 1 d.f. in a.  Finding lines using the Hough transform involves 1 d.f. [1]. Hence the 

algorithm has two d.f. 

The extremum symmetry finding is a special case of the algorithm. The straight line finding is 

unnecessary. Neighboring midpoints of the mapping pairs of an extremum symmetry may simply 

be connected together. 

It should also be noted that we have not exploited extremum at all in the above algorithm. In 

actual facts, 0nly a which maps an extremum to another extremum needs be considered. Hence 

one d.f. may be shrinked. We have not pursued this possibility. 

8 R o t a t i o n a l  s y m m e t r y  

8.1 Finding rotational symmetry 

Reflectional symmetry does not capture all symmetries in the world. Fig 2, for example, has no 

global reflectional symmetry. It looks pleasing because it is invariant under rotations of multiples 

of 7r/3. Proposition 3 suggests that rotational symmetry should not be detected by detecting 

skewed nor reflectional symmetry. This motivates us to study an independent method for detecting 

rotational symmetry.  It should be simple, robust, computationally inexpensive, highly parallel, 

and should not presuppose a symmetric point set. Last but not least, it should be able to detect 

rotational symmetry which is not symmetric in the image plane, but is so after a backprojection. 

Let us consider the problem of detecting rotational symmetry o11 the image plane first. Suppose 

our input is a point set S, Let p, q be two points in S. If p and q are rotationalty symmetric, then 

we may define a rotation R(o, O) which rotates p into q. o is center of rotation and 0 is the angle of 

rotation. It is clear that o must lie on the perpendicular of ~q passing through the midpoint of ~-q. 

Denote this perpendicular as p-q'. Now suppose we have manypairs  of points which are rotationally 

symmetric with the same R(o, 0). Then the perpendiculars must intersect at the origin o(xo, Y0). 



449 

Use the x-y image plane as an accumulator array. If we accumulate all points on ~'~' for every pair 

p, q on the x-y accumulator array, then there will be a high count at the common origin o(xo,yo) 
(Fig 7). 

This transform converts detection of concentricity to detection of high counts in the x-y accu- 

mulator array. But a rotational symmetry is concentricity and equality of subtended angles. That 

is, the angle subtended by p and q on o, /poq, must be equal to other angles subtended. Clearly, 

this common angle is the angle of rotation O. 

One solution is to accumulate in a three dimensional accumulator array (x,y,O). However, there 

is a better way to do it. 

Scott et. al. [33] reported a brilliant algorithm for dete.cting "smoothed local symmetries" 

(SLS). The problem is to find the locus of the SLS axis, points of which are the centers of bitangent 

circles. Scott used the following analogy. Each point is considered as a small stone dropped on a 

pond which sets off a one-off ripple. The SLS axis are those points where the wavefronts meet ! 

We may use the wave propagation analogy to detect rotational symmetry, except that a "wave- 

front" would be replaced by a "particle" ( as dictated by quantum mechanics ! ). Look at Fig 

8. T h e  "particle" is initially at m0, the midpoint of p and q. The "particle" then splits into two 

and moves away from m0 in two directions along ~ ' .  At "time" t = 0, the "particle" is at me. 

The position of me may be readily calculated using the right-angled triangle Amomop. If there is 

a rotational symmetry with angle of rotation 6 at o, then many "particles" will meet there and it 

will have a high count at that instant. 

/ , q  / , 

"%% M~ 

Fig 7 Fig 8 

It is clear that this algorithm involves only 1 d.f. (0) and the space complexity is the x-y plane, 

which is two dimensional insteads of three dimensional as with the Hough transform. 

However, there may exist some rotational symmetries on a slanted and tilted plane. If so, the 

projection need not have any rotational symmetry. To detect such symmetries, we first backproject 

the image point set onto a slanted and tilted plane, then perform the symmetry detection above 

on that plane. To specify the slant and tilt  entails 2 d.f. Hence our algorithm has a total of 3 d.f. 

( slant, tilt, 0 ).  Note that the naive way to specify a rotational symmetry axis and its angle of 

rotation needs 5 d.f. ( 2 for the x-y projection of the axis, 2 for the x-z projection of the axis, 1 for 

the angle of rotation ). Hence our method represents a significant improvement. It should also be 

noted that 3 d . i  is welt within the computing cabability of today's serial computer. This is even 

more so with a parallel computer. It is possible that "extremum" may shrink the d.f. further, as 
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with reflectional symmetries. We have not explored this possibility. 

So far, our rotational symmetries must lie on pla~es, which may be slanted and tilted. How 

about subsets of points which have rotational symmetries but are not necessarily planar ? We note 

that the normal vector of the slanted and tilted plane is parallel to the rotational axis. Now suppose 

for such a plane P ' ,  there exists two centers of rotation all, d 2 with the same angle of rotation, whose 

projections are cl, c2 respectively. Let S~ and S~ be the associated three dimensional point sets ( 

which lie on P '  ). Let S~' be a translation of S~ along the projection vector. Now if ~ on the 

image plane I is parallel to the gradient vector g of plane P '  ( Fig 9 ), a rotational axis exists which 

S t and S~' are both rotational symmetrical with. 

:" c '  

Fig 9 

\ 

8 . 2  A n  a l g o r i t h m  f o r  f i n d i n g  p r o j e c t e d  r o t a t i o n a l  s y m m e t r y  

Algorithm 2 ( Projected rotational symmetry finding ) 

Input : a two dimensional point set; the projection vector 

for each slant and tilt do 

1° 

2. 

backproject input point set to slanted and tilted plane passing through origin; 

for each angle of rotation 0 do 

for each pair of backprojected point do 
compute m0; 

project me to image plane and accumulate 

on the image plane; 

endfor; 

record high points on the image plane, 0, slant and tilt; 

endfor; 

end for; 
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Output : a set of projected rotational symmetries. 

In the algorithm, m0 is projected back to the image plane. This allows us to use the image plane 

as the accumulator array over and over without worrying about re-quantization. 

9 A c o m p u t a t i o n a l  so lut ion for the  c o m b i n a t i o n  of sym- 

metr ies  found 

omitted. 

Conclus ions  

We propose a middle out paradigm for shape from contour problem, which is composed of two stages 

: Level 1 : find invariants in the given images. Level 2 : find the backprojection that provides the 

best combination of the invariants. We argue that bottom up vision, which uses low level primitives, 

does not capture the essential properties of the world. On the other hand, top down vision, which 

uses full models, are computationally impossible. We believe that some intermediate approach like 

our middle out paradigm captures the best of both paradigms, yet has none of their attendant 

disadvantages. It may be regarded as a describe-and-match approach. 

We have provided theoretical as well as experimental evidence that suggests that energy/information 

content based approach to shape from contour is a problematic research program. On the other 

hand, we are able to show that symmetry has a lot of nice and unique advantages, including the 

interpretation of skewed symmetry as reflectional symmetry. 

Next, we show that symmetry may be implemented with highly parallel, robust and computa- 

tionally inexpensive algorithms ( compared with models and the iterative minimization needed for 

existing shape measures ). We report two such algorithms which also substantially extend the state 

of the art in skewed symmetry finding and rotational symmetry detection. We have also extended 

Kanade's skewed symmetry heuristic to parallel projection. We propose a general concept for re- 

flectional symmetry known as "extremum symmetry", which we believe is the most general form 

of invariance due to reflectional symmetry that human beings perceive. All of our results in this 

paper are applicable to parallel projection. 

This paper is also a step towards a theory of shape [34]. 
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