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".......the effort to produce accommodation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(focus) usually tesults in some degree of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcon- 
vergence (depth perception), even when one eye is covered zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- the so-called accommodation- 
convergence-synkinesis. It exists even in people who never had binocular vision ......" 

Gerald zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWesfheimer, The Eye, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I71 

Abstract 

Rough surfaces pose a challenging shape extraction problem. Images of rough sur- 
faces are often characterized by high frequency intensity variations, and it is difficult to 
perceive the shapes of these surfaces from their images. The shape-from-focur method de- 
scribed in this paper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuses different focus levels to obtain a sequence of object images. The 
sum-modified-Laplacian (SML) operator is developed to compute local measures of the qual- 
ity of image zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfocus. The SML operator is applied to the image sequence, and the set of focus 
measures obtained at each image point are used to compute local depth estimates. We present 
two algorithms for depth estimation. The first algorithm simply looks for the focus level 
that maximizes the focus measure at each point. The other algorithm models zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe SML focus 
measure variations at each point as a Gaussian distribution and use this model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto interpolate 
the computed focus measures to obtain more accurate depth estimates. The algorithms were 
implemented and tested using surfaces of different roughness and reflectance properties. We 
conclude with a brief discussion on how the proposed method can be applied to smooth 
textured and smooth non-textured surfaces. 

.. 
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1 Introduction 

1.1 Motivation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The advancement of threedimensional machine vision is largely dependent on the develop- 
ment of efficient and reliable shape exaaction methods. Shape extraction, in turn, requires 
a sound understanding of various surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAreflection mechanisms and the image formation 
process. Many extraction methods, for diffuse and specular surfaces, have been developed 
in the past. However, the extraction problem associated with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArough surfaces has not received 
sufficient attention. All surfaces encountered in practice are rough at some level detail. At 
that level, they exhibit high frequency spatial surface variations that are often random in na- 
ture. In many vision applications, the spatial surface variations are comparable in dimensions 
to the viewing area of individual picture elements of the imaging sensor. Hence, image in- 
tensities produced by such surfaces vary in an unpredictable manner from one sensor element 
to the next, and it is difficult to obtain dense and accurate. surface shape information by using 
existing techniques, such as, structured light, shape-from-shading, stereopsis, etc. Therefore, 
a practical and reliable solution to this rather difficult extraction problem is desirable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.2 Background 

We propose to use focus analysis to recover the shape of surfaces. Previously, focus analysis 
has been used to automatically focus imaging systems and obtain sparse depth information 
from the observed scene. Horn [l] proposed focusing imaging systems by using the Fourier 
transform and analyzing the frequency content in the image. Tenebaum [Z] developed the 
gradient magnitude maximization method that uses the sharpness of edges to optimize focus 
quality. Jarvis [3] proposed the sum-modulus-difference that is computed by summing the 
first intensity differences between neighboring pixels along a scan-line and is used as a 
measure of focus quality. Schlag et.al. 141 implemented and tested various automatically 
focusing algorithms. 

More recently, Krotkov [5][6] evaluated and compared the performance of different 
focus criterion functions. Krotkov also proposed a method to estimate the depth of an image 
area. Pentland [7] suggested the evaluation of image blur to determine the depth of image 
pints. Grossmann [SI has proposed the estimation of depth of edge points by analyzing the 
blur of the edges due to &focusing. Darrell and Wohn [9] have developed a depth from 
focus method that obtains an image sequence by varying the focus level and uses Laplacian 
and Gaussian pyramids to calculate depth. Subbarao [lo] suggests the change of intrinsic 
camera parameters to recover the depth map of a scene. Ohta et.al. [ l l ] and Kaneda et.al. 
[I21 have used images corresponding to different focus levels to obtain a single level of high 
focus quality. 
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1.3 Proposed Approach zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In this paper, we develop a shape-from-focus method. We start by defining visibly rough 
surfaces that produce textured images with high frequency intensity variations. We review 
the image formation process and show that a defocused imaging system plays the role of 
a low-pass filter. The shape-from-focus method moves the unknown object with respect to 
the imaging system and obtains a sequence of images zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthat correspond to different levels of 
object focus. The sum-m&ed-Laplacian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(SML) focus operator is developed to measure 
the relative degree of focus between images. The operator is applied to the image sequence 
to obtain a set of focus measures at each image point. The focus measure values at each 
point are modeled and interpolated to obtain accurate depth estimates. Experimental results 
indicate that the method is capable of extracting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdense and accurate shape information with 
appreciable invariance to texture seength and type. 

Though the shape-from-focus method is developed with the intention of extracting the 
shape of rough surfaces, it can also be applied to smooth surfaces that are textured as a result 
of variations in surface reflectance properties. Smooth surfaces that do not have textures can 
also be handled by illuminating these surfaces with high resolution light patterns to produce 
textured images. 

2 Visibly Rough Surfaces 

In the study of reflection, a rough surface is defined as one whose smallest spatial variations 
have dimensions that are much larger than the wavelength of the incident electromagnetic 
wave. This is the concept of optical roughness. In this paper, we inmduce the notion 
of visible zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAroughness; a surface is considered to be rough if the dimensions of its spatial 
variations are comparable to the viewing area of individual elements (e.g. pixels) of the 
sensor (e.g. camera) used to observe the surface. The surface shown in Fig.1 is composed 
of a large number of facets'. While the surface appears to have a smoothly varying global 
shape, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz(x. y). the orientation cy of individual facets may deviate substantially from the mean 
surface orientation in the facet vicinity. Although the facet orientations are dependent on the 
global shape of the surface and on the orientations of neighboring facets, they may exhibit 
some degree of randomness. 

Now let us consider the images of rough surfaces generated by using a finite resolution 
sensor. The number of facets that contribute to the image irradiance at a pixel location 
depends on the magnification of the optics used to project the surface onto the image plane 
of the sensor. We define two levels of magnification; multi-facet level and facet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlevel. At the 

'No assumptions are made regarding the size of the facets. Hence. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthese facets may or may not represent 
the micro-facers defined in [13], [14]. 
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Figure 1: Rough Surface. 

multi-facet level, the pixel width zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw is very large compared to the facet size wf (Le. w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= W I ) .  

In this case, the surface patch projected on a pixel may zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe modeled by assigning it a mean 
orientation value and a roughness which is determined by the probability function of its facet 
orientations [13] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[14]. The pixel intensities continuous functions of the angle of incident 
light and can be expressed as a linear combination of the diffuse lobe and specular lobe 
components [14], the relative strengths of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo components depending on the reflectance 
properties of the facets. 

At facet level magnificatioa on the other hand, the pixel width w is comparable to 
the facet width wf (Le. w = wz), and only one 01 few facets are viewed by each pixel. As a 
result of the random nature of facet orientations, the image intensity values are expected to 
vary substantially and unpredictably from one pixel to the next. This is true for both specular 
as well as diffuse facets as the radiance of both are dependent on the angle of incident light. 
Therefore. at the facet level, the surface produces images that are rich in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtexrur$ and we 
say that the surface is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvisibly rough. But, why do we use facet level measurements when- 
multi-facet level measurements wil l  provide us with image intensities that can perhaps be 
used to extract shape information? In many practical instances, the desirable resolution of 
shape information is unobtainable at the multi-facet level. 

*There are many notions of what is m t  by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAterm texture. Here, we d e h e  texture as a noticeable 
fluctuation in the intensities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo€ neighboring image pixels [16]. The texm produced by rough surfaces may 
be periodic, nearly periodic, OT random. No assumptions are made regarding the type of textwe, 
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3 Focused and Defocused Images zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In this section, we briefly review the image formation process and describe defocused images 
as processed versions of focused images. There are two approaches to the study of optics, 
and hence, also to the analysis of the image formation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAprocess. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAphysical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoptics approach 
is based on electromagnetic wave theory [6 ] ,  and it analyzes diffraction effects to derive 
an exact image formation model. Geometrical optics, on the other hand, uses the short 
wavelength of light to simplify the analysis, and the resulting image formation model may 
be viewed as an approximation to the corresponding physical optics model. Since our sensor 
(i.e. CCD camera) lacks sufficient spatial resolution to make diffraction effects significant, 
we confine ourselves to the geometrical analysis. 

Fig2 shows the basic image formation geometry. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAll light rays that are radiated by 
the object P and intercepted by the lens are refracted by the lens to converge at the point 
Q on the image plane. The relationship between the object distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,  focal distance of the 
lens zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, and the image distance i, is given by the Gaussian lens law: 

1 1 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- + : = - .  
0 ' f  

Each point on the object plane is projected onto a single point on the image plane, thus 
causing a clear or focused image I x x y )  to be formed on the image. plane. If, however, the 
sensor plane does not coincide with the image plane and is displaced f h m  the image plane 
by a distance 6, the energy received from the object by the lens is uniformly distributed over 
a circuld patch on the sensor plane. Fig.2 may be used to establish the relationship between 
the radius r of the circular patch and the sensor displacement 6. By using similar triangles, 
we find that: 

(2) 

where R is the radius of the lens. It is also possible to convince oneself that the radius r of 
the circular patch is independent of P's location on the object plane. Therefore, the blurred 
or defocured image y) formed on the sensor plane can zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalso be obtained by convolving 
the focused image Idx, y) with a circular symmetric function p(x, y) of unit volume, called 
the "pillbox" function: 

(3) 

where: 

6 R  
i 

r = -  

I d k Y )  = p(x,y) * I&y) 

'The shape. of the patch also depends on the shape of the aperture of the imaging system. We are assuming 
the apenure to be Circular .  
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'object zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI plane lens sensor plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2: Formation of focused and defocused images. 

rft zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX.Y) 

- 

? 

image plane 

Note that the defocusing effect is observed for both positive and negative sensor displace- 
ments. 

Now let us analyze the defocusing process in the frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdomain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u ,  v). Iff&, v), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f ( u ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv), and I&, v) are the Fourier transforms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Ixx, y), p(x,  y), and Id(& y), respectively, 
we can express eq.3 as: 

MU, V) = J%, VI. MU, V) (5 )  

The pillbox function ph ,y )  is a rotationally symmetric function, and the Fourier 
transform of rotationally symmetric functions can be computed as a single integral instead of 
a double integral by using the Hankel transform. If we define p = m, we can express 
P(u, v) in polar coordinates as: 

(6) 
2 Ji WP) F ( p )  = - 

where JArp) is the first-order Bessel function. The quantity Jl(rp)/(rp) plays the same role in 
two dimensions as the "sinc" function does in one dimension. F ( p )  is a m t a t i o d y  symmetric 
function of which a one-dimensional section is shown in Fig.3. F(p )  allows low frequencies 
of Mu, v) to be passed unattenuated while it attenuates higher frequencies. Hence, we see 
that defocusing is a low-pass filtering process. 
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Figure 3: One-dimensional section of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ( p ) .  

Due zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsharp cut-off of pCr,y), PIP) oscillates about zero and the amplitude of 
oscillation decreases asymptotically as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(rp)-’/’. The first zero of P ( p )  occurs at rp  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 3.83171. 
Therefore, as the sensor displacement 6 increases, the &focusing radius I increases, and a 
smaller zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArange of low frequencies is contained in the defocused image. 

From Fig.2, it can be seen that a defocused image of the object can be obtained in 
three ways: by displacing the sensor with respect to the image plane, by moving the lens, or 
by moving the object with respect to the object plane. Moving the lens or sensor plane with 
respect to one another causes the following problems: 

The magnification of the system varies, thereby causing the image coordinates of the 
object points to change. 

The a n a  on the sensor plane over which light energy is distributed varies, thereby 
causing a variation in image zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbrighmess. 

In order to overcome these problems, we propose to vary the degree of focus by 
moving the object4 with respect to a fixed configuration of the optical system and sensor. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

40bject movement is easily realized in indusrrial inspection appticatim. 
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This approach ensures that the focused areas of the image zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare always subjected to the same 
magnification. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAShape from Focus: An Overview 

The shape-from-focus method is based on the observations made in the previous sections. 

e At the facet level magnification, rough surfaces produce images that are rich in texture. 

A defocused optical system plays the role of a low-pass filter. 

Fig.4 shows a rough surface of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAunknown shape placed on a translational stage. The 
reference plane shown corresponds to the initial position of the stage. The configuration of the 
optics and sensor define a single plane, the "focused5 plane," that is perfectly focused onto the 
sensor plane. The distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, between the focused and reference planes, and the displacement 
d of the stage with respect to the reference plane, are always known by measurement. Let 
us focus our attention on the surface element, s, that lies on the unknown surface, S. If the 
stage is moved towards the focused plane, the image will gradually increase in its degree 
of focus (high frequency content) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill be perfectly focused when s lies on the focused 
plane. Further movement of the element s will again increase the defocusing of its image. 
If we observe the image area corresponding to the s and record the stage displacement d = 2 
at the instant of maximum focus, we can compute the height d, of s with respect to the stage 
as d, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdf - z. In fact, we can use the value of to determine the distance of s with respect 
to the focused plane, sensor plane, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor any other coordinate system defined with respect to 
the imaging system. This approach may bc applied independently to all surface elements to 
obtain the shape of entire surface S. 

To automatically detect the instant of "best" focus, we will develop an image focus 
measure. In the above discussion, the stage motion and image acquisition were assumed to 
be continuous processes. In practice, however, it is not feasible to acquire and process such 
a large number of images in a reasonable mount of time. Therefore, we obtain only a finite 
number of images; the stage is moved in increments of Ad, and an image is obtained at each 
stage position (d = n.Ad). By studying the behavior of the focus measure, we develop an 
interpolation method that uses a small number of focus measures to compute accurate depth 
estimates. An important feature of the methcd is its local nature; the depth estimate at an 
image point is computed only from focus measures recorded at that point. Consequently, the 
method can adapt well to variations in textun type and content over the object surface. 

'The focused p h e  is the same as the object plaoe defined in the previous section. A different name is used 
here as the object does not necessarily l ie on the focused plane. 
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sensor plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- optics 

surface element -, 
- ---- 

di zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 4: Shape fiom focus. 
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5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA Focus Measure Operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In order to measwe the quality of focus in a "small" image area, we would like to develop 
a focus measure operator. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe operator must respond to high frequency variations in image 
intensity, and ideally, must produce maximum response when the image area is perfectly 
focused. The high frequency content of an image area can be determined by using the Fourier 
transform and analyzing the frequency distribution. However, since Fourier transforms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare 
expensive to compute without special purpose hardware, we seek an alternative method. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A few focus measure operators have been proposed and used in the past. Generally, 
the objective has been to find an operator that behaves in a stable and robust manner over a 
variety of images such as images of outdoor scenes, text, etc. Such an approach is essential 
while developing automatically focusing imaging systems that have to deal with "general" 
scenes. Bearing in mind that we are dealing with textured images, we develop an operator 
that is particularly well-suited to such images. In the next section. we will evaluate our 
operator and compare it with other ones by using textured image samples. 

One way to high-pass filter an image is to determine its second derivative. For 
two-dimensional images, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALoplacion is very often used: 

where I (x ,  y) is the image intensity at the point (x, y). We note that in the case of the Laplacian 
the second derivatives in the x and y directions can have opposite signs and tend to cancel 
each other. An example of such an instance is illustrated in Fig.5; the partial derivatives 
are equal in magnitude but opposing in sign, i.e. A'I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. In the case of textured images, 
this and similar instances may occur frequently, and the Laplacian is prone to behave in an 
unstable manner. W e  overcome this problem by defining the modified LapZaciun as: 

Note that the modified Laplacian is always greater or equal in magnitude to the Laplacian. 
The discrete approximation to the Laplacian is usually a 3x 3 operator. In order to accommo- 
date for possible variations in the size of texture elements, we compute the partial derivatives 
by using a variable spacing (step) between the pixels used to compute the derivatives. Hence, 
the discrete approximation to the modified Laplacian is computed as: 

ML(x, y) = I X ( x ,  y) - Z(x - step, y )  - I ~ J  + step, y )  I + 
I 2 4 4  Y) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAICr, Y - step) - I (x,  Y + step) I 

(9) 

(10) 
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t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5:  A texture instance with zero Laplacian value. 

Finally, the focus measure at a point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ]  is computed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the sum of the modified Laplacian, 
in a "small" window around ( i j ) ,  that am greater than a threshold value: 

where, the parameter N determines the window size used to compute the focus measure. In 
contrast to automatically focusing methods, we typically use a small window of size 3 x 3 or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5x5, i.e. N = 1 or N = 2. We shall refer to the above focus measure as the sum-modifzed- 
Laplacian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(SML). 

6 Evaluating the Focus Measure 

We evaluate the SML fmus measure in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthne s tages .  First, we analyze its behavior as a 
function of the distance between the observed surface and the focused plane. Next, we see 
how the SML measm is affected by the selection if its parameters srep and Ti. Finally, we 
compare the performance of the SML operator with other operators used in the past. 

A detailed description of the experimental set-up is given in a later section. In the 
following experiments, texture samples are attached to a translational stage (Fig.4) and the 
distance, d,, from each sample to the stage is known by measurement, Images of the samples 
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are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAobtained using a microscope and a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA256x256 pixel CCD camera. The complete imaging 
system has a physical resolution of approximately zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlpm per pixel width. 

In Fig.6, the focus measure functions of two samples zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare shown. Sample X has high 
texture content while sample zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY has relatively weaker texture. Both samples are made of 
a paste containing resin and tungsten particles. The variable size of the tungsten particles 
gives the surfaces a randomly textured appearance. For each sample, the stage is moved 
in increments (Ad) of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl pm,  an image of the sample is obtained, and the focus measure 
is computed using an evaluation window size of lox 10 pixels. The vemcal lines in Fig.6 
indicate the known initial distances (df zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdJ of the samples from the focused plane. The focus 
measures were computed using parameter values of step = 1 and TI = 7. No form of temporal 
filtering was used to reduce the effects of image noise, as we intend to use unfiltered focus 
measures to estimate the depth of surface points. Though the measure values are slightly 
noisy, they peak very close to the expected peak positions (vertical lines in Fig.6). We see 
that, the focus measure function peaks sharply for the stronger texture and it peaks relatively 
slowly and with a lower peak value for the weaker texture. However, the sharpness of 
the focus measure function depends not only on the texture strength but also the "depth of 
focus" of the imaging system. The depth of focus, in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAturn. depends on the magnification and 
aperture size of the imaging system. We will assume that the depth of focus is constant for 
all our experiments. 

Fig.7 shows the focus measure computed as a function of the parameter srep, for 
the sample X shown in Fig.6. Once again, an evaluation window size of lox 10 pixels and 
a threshold value of TI = 7 were used. We see that, for sample X, a maximum measure 
value is computed at step = 4. However, it may be noted that the effective size of the focus 
measure evduation window increases with the srep size. As we are interested in local depth 
estimates, srep values of 1 or 2 are generally used, Fig.8 shows the effect of varying the 
threshold TI, for both focused and defccused images of sample X. A g o d  value of TI is 
one that produces a high measure value for the focused image and low measure values for 
defocused images. From Fig.8 we see that, for sample X, TI = 7 appears to be a good choice. 
However, from a number of unreported experiments, we find that though the peak value of 
the focus measure function F(d) varies with the parameter values, the same parameter values 
may be used to obtain sharp, unimodal, focus measure peaks for surface elements of varying 
degrees of texture content. 

In Fig.10, we compare the SML focus measure. with three other popular measures: 
the Tenengrud, variance, and sum-lopluciun (SL). All of these measures are defined and 
evaluated by Krotkov [5]. Here, we use four lox 10 sample windows to compare the mea- 
sures. The differences between the four samples are illustrated in Fig.9. Sample A lies on 
the edge of a textured surface; only a part of the window has strong texture. Sample B lies 
just inside the edge of the texture. Sample C lies well within edge and sample D lies on a 
surface patch that is oriented away from the viewing direction of the camera. Real samples 
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Figure 7: SML focus measure as a function of the operator parameter step. 
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Figure 8: SML focus measure as a function of the operator parameter TI. 
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Figure 9: Texture samples used to compare focus measure operators. 

and images were used to conduct the experiments. Since the comparison graphs are meant 
to project the global behaviors of the operators, they zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare plotted using large incremental 
displacements of the stage zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Ad zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10pm). Therefore, the actual peaks in the focus measure 
function can lie between two computed measure. values. The measwe values produced by 
each operator are normalized by the maximum measure value. Once again, the vertical line 
in each graph indicate the known depth of each sample. 

The Tenengrad was computed using a threshold value[5] of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = 1, and the SL and 
SML were computed using TI = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 and step = 1. We find that the SL and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASML measures peak 
sharply and close to the expected peak positions (vertical lines). However, for lower measure 
values, the SL is more noisy than the SML. For weakex textures than the ones used above, 
this causes multimodal measure functions. The Tenengrad and variance operators produce 
relatively weaker modes for sample A as both operators respond to first-order variations in 
image intensity. When the texture edge in sample A is defocused, the first-order variations 
are strong although the second-order variations are not. As a result, both these operators 
produce high measure. values while the SL and SML operatom do not. Sample B represents 
a particularly interesting case. When the edge of the textured surface is highly defocused, 
it is also subjected to a different magnification than when it is in focus. Hence, the edge 
coordinates change and the image of sample A shifts to the image area of sample B. Since 
even the highly defocused image of the edge has substantial fust-order intensity variations, 
the Tenengrad and variance operators produce high measure values. This effect is rather 
significant when the mean intensities of the textured and background areas are very different. 
In such cases, the Tenengrad and variance operators produce bimodal focus measure functions 
that result in erroneous depth estimates. From these experiments, we conclude that the SML 
operator is best suited for measuring the focus quality of textured images. 

14 



F- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(a) Sample A 

h 

1.0 

OJ 

01 

0.7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.6 

0.3 

OA 

0.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
01 

0.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 

(c) Sample c 

(b) Sample B 

F 

I I  

a! 

0.1 

0: 

0.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
03 

0.4 

0.1 

01 

ai 

- 
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i MCUM 

(d) Sample D 

Figure 10 Comparison bchuecn Tenegrad. variance, SL, and SML opuam. 
15 



7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASampling the Focus Measure Function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We can represent the focus measure function of an image point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy) as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF(x,y,d). Since depth 
estimation is a local operation, we will focus OUT attention on a single image point, bearing 
in mind that the same estimation method can be applied to all other image points. Therefore, 
we will denote the focus measure function as simply F(d) .  By studying the variation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF(d)  
in Fig.6, we find that F(d) may be assumed to have a Gaussian distribution with mean value 
d and standard deviation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAup Fig.11). The mean zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa corresponds to the stage displacement at 
which F(d )  is maximum, i.e. F ( 3  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Fpt .  As the texture content of the surface element 
increases, Fpsk increases and u p  decreases. Each surface element, therefore, is expected to 
have its own F,t and UF values. 

- 

F 

I 

Figure 11: Sampling the SML focus measure function. 

If we use very small stage displacement (Ad M 0), the number of images to be ob- 
tained and processed is too large from the perspective of practical implementation. Hence, 
we use large displacements to obtain a few images of different focus levels and use the 
Gaussian model to interpolate the small number of focus measures to obtain depth estimates 
at each image point Computing the focus measure at a finite number of displacements is 
equivalent to sumpling the function F(d)  (Fig.11); at each displacement di we compute the 
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focus measure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF(d,) to obtain the set {F(dij zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1,2,  .... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM}. We show in the following sec- 
tion that a minimum of rhree focus measures are needed perform the Gaussian interpolation. 
In theory, therefore, depth estimates may be obtained from only three images of the surface. 
However, since the Gaussian model only approximates the focus measure function, we use 
the condition mF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM 5 2 f f F  to ensure that evaluation of at least one focus measure in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f m~ range of F(d).  Note that displacements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare applied to all object points. Therefore, by 
applying the above condition to the image point that has maximum texture content, we can 
ensure that a few or many zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfocus measures will be computed in the f u p  range at all image 
points. 

We note that the value of a~ also increases with the depth of focus of the imaging 
system. Therefore, for objects of larger dimensions also, only a small number of images 
may used by increasing the depth of focus. 

8 Depth Estimates from Focus Measures 

In this section, we describe the estimation of depth of a surface point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x, yj from the focus 

measure set {F(d,) I i = 1 , 2 ,  .... M}. We use the parameter a to represent the depth of the 
surface point. For convenience, the notation F; is used to represent the focus measure value 
F(dJ. We present algorithms for two different depth estimation methods. Each algorithm 
may be applied to all points in the image to obtain depth maps. 

8.1 Coarse Resolution Depth Estimation 

The first algorithm simply looks for the displacement value d; that maximizes the focus 
measure and assigns that value to 2. 

Algorithm 1 

Step 1: Let k = 1, F- = 0. 

Step 2: If Fk > F-, F,, = Fk and 2 = dk. 

Step 3: I f k  <M, k = k  + I, go to step 2. 

Step 4: If F,. < T2, the point (x, yj belongs to background. Stop. 

mance of the algorithm is directly dependent on the selection of Ad.  
This simple algorithm may be used to compute rough depth estimates. The perfor- 
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8.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The second algorithm uses the Gaussian distribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto model the focus measure function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F(d)  and interpolates the computed measure values to obtain more accurate depth estimates. 
One approach is to fit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall computed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF j  values to the Gaussian model. However, we feel 
that more accurate depth estimates can be obtained, while saving computations, by using the 
Gaussian distribution to model only the peak of F(d). The following algorithm uses only 
three focus measures, namely, Fm-f ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFm, and Fwj, that lie on the largest mode of F(d), such 
that, F,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> F,-1 and F,,, > F,,,+l (Fig.12). 

Using the Gaussian model, the focus measure function may be expressed as: 

Depth Estimation by Gaussian Interpolation 

where 2and u~are  the mean and standard deviation of the Gaussian distribution (Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15). 
Using natural logarithm, we can rewrite Q. 12 as: 

1nF = h F P d  - 

By substituting each of the three measures F,-I, F,, and F,,,+l, and its corresponding 
displacement value in &. 13, we obtain three equations that can zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe solved for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 and OF: 

2 2 2 

(14) 

(15) 

- 
d =  

(InF, - InFm+l) (dm' - d+j ) - (InF, - InF,,,-i) (dm - dm+i ) 
2 d d { ( 2 n F m  - InF,-l) + (InF,,, - h F m + i ) }  

(dmz - dm-1') + (dm' - dm+r2) 
uF2 = - 

2{ ( lnFm - InFm-f) + (InF, - InF,,)} 

Using Eq. 12, we can find Fpuk from UF and 2 as: 

If Fpwk is large and up is small, the focus measure function has a "strong" peak, indicating 
high surface texture content in the vicinity of the image point (x, y). Thus, the values of Fpak 
and uF can be used to segment the observed scene into regions of different texture content. 

Tne following algorithm first finds the measures F,,,-,, F,, and Fm+I that correspond 
to the strongest peak of F(d) and then uses these measures to estimate the depth 2 by Gaus- 
sian interpolation. 

'Due lo image noise and variations in magnification, the focus measure function may be multi-modal with 
one slmng pealr and one or more weak ones. 
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1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc d  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdm+l 

Figure 12: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGaussian interpolation of focus measures. 

Algorithm 2 

Step 1: Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3, F,-j = 0, F,  = 0, F,,,+, = 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, = 0. 

Step 2: If Ft-j > Fm , Ft-j > F t  , and Fk-1 > Fk-2, then: 

Step 3: I f k  < M, k = k + I, go to step 2. 

Step 4: d,,,-j = dm - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd d  and dwj = d,,, + Ad. Determine 2, UP, and Fp=k using Eqs. 14, 
15, and 16. 

Step 5: If Fpwk < T3 or OF > TI, the image point (x, y) belongs to background. Stop. 

uation may be avoided to save computations. 
Since the values of F p d  and UP are only useful for texture classification, their eval- 
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9 Experiments 

9.1 Experimental Set-up zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig.13 shows a photograph of the experimental set-up zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAused to demonstrate the shape-from- 
focus method. A schematic diagram of the set-up is shown in Fig.14. A microscope is used 
to magnify the object surface, and images are obtained using a CCD camera with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA256x256 
pixels. Camera images are digitized and processes using a computer. The magnification of 
the imaging system can be varied from x 5  to x 160. The object is placed on a translational 
stage that is used to move the object through the focused plane of the imaging system. Stage 
displacements are. monitored using an electronic displacement sensor that has an accuracy 
of within 0.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApm. In most of our experiments, the bright field illumination (Fig.14) of the 
microscope was used to illuminate the object surface. 

9.2 Results 

The accuracy of the shape-from-focus algorithms was analyzed using a steel ball sample 
that was 1590pm in diameter. The ball was sand-papered to give it a rough surface. A 

camera image of the ball, under bright field illumination, is shown in Fig.15a. Due to the 
small depth of focus of the microscope, some areas of the ball are defocused. The bright 
field illumination decreases the texture intensity from the flat top section of the ball to the 
steep boundary area. As it is difficult to perceive the shape of most of the samples we have 
used from their camera images, we have also included scanning electron microscope (SEM) 
images of the samples. We hope that these images will provide sufficient shape cues to the 
reader. An SEM image of the ball is shown in Fig.15b. Incremental displacement of A d  = 

100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApm were used to obtain 13 images of the bal, and a 5x5  SML operator was applied to the 
image sequence to obtain focus measures. Depth maps of the ball, generated by the come 
resolution and Gaussian interpolation algorithms, are shown in Fig.15~ and 15d, respectively. 
The known size and location of the ball were used to obtain error maps by subtracting a 
smooth ball from the two depth maps. It is difficult to define the accuracy of the method 
as it depends on many factors: the surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtexture, depth of focus of the imaging system, 
and the incremental displacement Ad. The table shown in Fig.15e shows the error statistics 
computed from the error maps corresponding to the two algorithms. A total of 23235 image 
pixels lie within the boundary of the ball. The number of depth values computes by each 
algorithm depends on the selected values for the thresholds T2. Tj ,  and T,. The e m r  map 
corresponding to the Gaussian interpolation algorithm is shown in Fig.15f. We see that there 
is no obvious correlation between the errors and the surface orientation. 

Fig.16 to 19 show samples with different surface reflectance and roughness properties, 
and their depth maps obtained using the Gaussian intelpolation algorithm. All sample are 
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approximately 100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApm in width and an incremental displacement of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 10 prn was used 
in all cases to obtain sequences of about 10 images each. Fig.16a and 16b show the camera 
and SEM images of a tungsten paste filling in a via-hole on a subsmate [15] that is used 
to establish electrical connections between different components. Conditions such as excess 
filling and lack of filling cause electrical defects such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas short and open circuits. The sample 
shown in Fig.16 has a bump on its surface, indicating excess filling. The specular reflectance 
and variable size of the tungsten panicles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgives the surface a random texture. The white 
background (Fig.16a) is the substrate area that has very weak texture. For this sample, we 
selected the threshold values to classify the substrate area as buckground. An arbitrary depth 
value is assigned to the background region. 

Fig.17 shows another via-hole sample. In this case, the substrate and filling are 
hardened by baking. The baking process changes the reflectance and texture of the filling 
and also increases the texture content of the subsnate. From the SEM image we see that the 
filling has some contamination on its surface and a concavity in the center. For this sample, 
the algorithm threshold values were selected to obtain the depth of the substrate area too. 
To accommodate for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe large size of substrate texture elements, a step size of 2 was used 
Two different views of the sample’s depth map are shown in Fig.17~ and d. Fig.18 shows 
another baked via-hole sample. In this case, the the via-hole is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot sufficiently filled with 
tungsten paste. Again, two views of the computed depth maps are shown. 

Fig.19 shows a via-hole filling that is plated with Nickel. The plating process increases 
the panicale size and each particle is highly specular in reflectance. Due to the spherical 
shape of the particles (Fig.l9b), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe bright field illumination produces a single spot at the 
center of each particles and some of the steep surface areas do not reflect any light. To 
demonstrate the use of special illumination, we used a multi-spot light source to illuminate 
the sample and obtained images of higher texture content, such as the one shown in Fig.19c. 
The computed depth map of the sample is shown in Fig.19d. 

9.3 Discussion 

The above experiments validate the effectiveness of the shape-from-focus method. The 
Gaussian interpolation algorithm performs stably over a wide range of textures. Errors in 
computed depth estimates result from factors, such as image noise, Gaussian approximation 
of the SML focus measure function, and weak textures in some image areas. Some detail 
of the surface roughness is lost due to the use of a finite size window to compute the SML 
focus measures. 

Most of the above experiments were conducted using bright field illumination. In 
the last experiment, we demonstrated the use of special illumination to enhance the quality 
of textured images. Furthermore, light patterns can be projected on smooth surfaces, both 
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diffuse and specular.to generate textured images. Hence, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby using special illumination, the 
shape-from-focus method can also be applied to smooth surfaces. 

In the above experiments, object displacement and image aquisition were manually 
initiated. In a high-speed implementation, the object can be moved continuously, while 
images zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare obtained at fixed intervals of time. By using customized hardware, the SML 
focus operator can be applied to each image in a frame-time and the Gaussian interpolation 
can be implemented by using look-up tables. We estimate that a Ggh-speed implementation 
of the method can generate surface depth maps in less than 1 second. 

10 Conclusion 

In this paper, we have presented shape-from-focus as a new method of extracting the shape 
of rough surfaces. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e To measure the quality of image focus, we developed the SML operator. By evaluating 
the SML operator and comparing it to other existing operators, we found that the SML 
operator is particularly well-suited for measuring the focus of textured images. 

e We developed and tested two depth estimation algorithms and found, through numerous 
experiments, that the Gaussian interpolation algorithm produces accurate results for a 
variety of textures. 

The local nature of the depth estimation technique enables it to adapt to substantial 
variations in image texture. 

e Though we have concentrated on rough surfaces in this paper, the shape-from-focus 
method can be directly applied to smooth textured surfaces. Smooth non-textured 
surfaces can also be handled by using special illumination techniques. 
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Figure 13: Photograph zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the experimental set-up, 
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(a) Camera image. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 

(b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASEM image. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(c) Depth Map: coarse resolution. (d) Depth Map: Gaussian interpolation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 15: Steel ball. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(a) Camera image. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

75pm 
(b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASEM image. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 16: Via-hole filling. 
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50pm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
fb) SEM image. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

: c )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADepth maps 

Figure 18: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABaked via-hole filling. 
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