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This paper describes an approach to interpreting line drawings under assumptions which are 

ubiquitous in natural scenes. The assumptions are that many identical, essentially two-dimen- 

sional features are depicted and they are arranged in random orientations. We assume that at 

least one of the many features is parallel to the image plane, and thus gives the real dimensions 

of a feature. From this, the orientations of the other features can be easily recovered. Four 

examples of this approach are shown to give quite natural results. �9 1988 Academic Press, Inc. 

1. INTRODUCTION 

One of the most marvelous image understanding abihties of human beings is the 
ability to perceive three-dimensional shapes in line drawings. Even though line 

drawings contain no information such as stereo, shading, or texture, generally we 

have no difficulty in visualizing 3D shapes from such drawings. In this paper, we 

propose an approach to interpreting some classes of line drawings under probable 

assumptions which are frequently valid in natural scenes. 

There have been a number of other approaches to 3D line drawing interpretation. 
In one approach, known as "shape from shape" [1], the basic idea is that of 

regularity--for example, parallelism or symmetry. Combining regularity assump- 

tions with gradient space techniques, sufficient constraints on surface normal 

orientations can be obtained. If some type of uniformity is assumed for a spatial 

curve, its 2D image can be interpreted as a 3D shape [2, 3]. The ACRONYM system 

[4, 5] is a model-based system whose representation of shape is very general, though 

domain specific data is necessary. 

This paper deals with a class of line drawing images in which many identical 

objects are depicted in random orientations. Conventional line drawing interpreta- 

tion is carried out on single objects. If we are given many different representations 

of a feature, that is, many identical objects in random orientations are given, they 

present a useful cue for 3D interpretation. This situation is very common in natural 
scenes encountered in our daily life. Animals, plants, and many types of artificial 

objects have almost identical shapes, and they often occur in large groups in a scene. 

The purpose of the interpretation scheme proposed here is to indicate how 3D shape 
can be estimated from a line drawing containing a large group of such objects. An 

advantage of our scheme is that it is not model based, and so does not require 

knowledge of domain specific parameters. 

Since our scheme uses many features, it is related to the techniques for deriving 

3D shape from texture [6]. In a sense, the technique proposed here can be 

considered to be somewhere between shape from shape and shape from texture. 
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In the next section, the general assumptions on which our interpretation scheme is 

based, and the basic steps of the scheme, will be explained. In Section 3, four classes 

of models based on our general scheme will be introduced, and typical examples 

and interpretation results using these models will be presented. It will be shown that 

the line drawing interpretation scheme proposed here gives natural results under a 

reasonable set of assumptions. In Section 4, some of the advantages of and 

problems with our scheme will be discussed and brief comments on possible future 

work will be made. 

2. THE GENERAL APPROACH 

2.1 Assumptions 

The general idea of our approach, and the assumptions on which it is based, are 

presented in this section. 
Our purpose is to propose an approach to 3D interpretation and to demonstrate 

its ability. Like much recent research, our interpretation scheme is module or 

function specific rather than domain specific. The scheme assumes the results of 

lower level feature extraction. The examples in this paper show natural objects 

represented by line drawings. The drawings are simplified in the sense that only 

information essential to the interpretation scheme remains. The real scene, of 

course, is not a line drawing, and the process of extracting the important lines from 

among the edges present in the image would be a nontrivial problem. 

Our interpretation scheme assumes that the following two conditions hold: 

1. Many identical objects are depicted. 

2. They are arranged in random orientations. 

Under these assumptions, the image contains many instances of the same object 

in various directions. Based on our prior process of feature extraction, we also 

assume that we have complete information about the correspondences of lines, 

endpoints, or comers between the various instances. 

2.2. Underlying Concept 

To clarify the significance of our assumptions and our interpretation strategy, 

some comparative remarks may be helpful. 

In conventional "shape from shape" line drawing interpretation, the assumption 
of uniformity is one of the basic ideas. For example, under the assumption of zero 

or minimal torsion, some spatial curve images can be interpreted [2, 3]. In this 

paper, we also utilize a certain type of uniformity. This is not uniformity of the 

features in one object, but rather it is uniformity in the sense that many identical 

objects are present in the image. Non-uniformity, complexity, or heterogeneity 

within one object is acceptable in our interpretation scheme. 

From a different viewpoint, interpretation techniques using many objects are 

relevant to shape from texture techniques [6]. They are based on statistical informa- 

tion in some region where the texture composed of many primitive objects can be 
considered to be approximately uniform. On this basis, the orientation of the region 

is estimated from the observed texture. 
The assumption in this paper is that the objects have random orientations, so 

there is no uniform region. Three-dimensional interpretation is carried out for every 

object, not for a surface containing a group of them. 
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We have so far used the term "object" very vaguely. In general, it is an object as 

it appears in an image, but more specifically we shall assume that it is a geometrical 

feature such as a triangle formed by a given triple of points on the object in the 

scene, a line segment, an angle between a pair of lines, or a combination of these. In 

this paper they are called unit features. An important property of all the unit 

features just mentioned is that they are all planar features. 

A general interpretation scheme based on the properties of planar features can be 

defined as explained in the next subsection. Depending on which kind of features 

are used, many different specific models can be designed. In the next section four 

such models will be introduced and examples of their application will be given. 

2.3. Interpretation Scheme 

Although each model defined in the next section has its own specific scheme, all 

of these schemes involve two common steps as described below. 

Step 1. Estimating the Actual Features 

An actual feature is a real length or angle in 3D space, not in its projection on the 

image. Such features can be estimated using cues such as the following: 

* Longest line. Assume that a line segment of length L is given in 3D space, 

and that it is projected orthographically onto the image. Then its length in the image 

is L cos #, where 0 is the angle between the image plane and the direction of the 
line. 

By our basic assumption, many identical line segments are present in random 

orientations. Thus there is a good possibility that some of them are oriented at 

angles # that are nearly equal to zero. It is therefore a reasonable assumption that 

the longest length among the line segments in the image is the real length L. 

* Features in special positions. In the case of line segments, the longest one is 

assumed to be oriented parallel to the image plane. Imagine a plane which contains 

that longest line segment, and a feature on it. The image of the feature is a 

projection of the feature rotated around the line as an axis. Then, relative to the 

direction of the line, we have some mathematical constraints on estimating the real 

feature from its image. This is one of the possible cues for interpretation, which 

depends on special arrangements or positions of the features. 

The angle between two branching line segments is another important geometrical 

feature. Assume that an angle between two branching line segments in 3D space is 

projected onto the image and lengths of line segments are measurable. Again, by our 

basic assumption, many identical angles are presented in random orientations. Then 

some angles on the image are near zero. This means that the plane containing the 

two branching line segments is perpendicular to the image plane. Thus, the lengths 

of these line segments in the image provide a good basis for estimating the real angle 
or the real lengths. 

In the same way, the maximum length of the perpendicular from the end of one 

line to the other line is another good cue. The perpendicular should be parallel to 

the image plane. Then, geometrical interpretation can be carried out using combina- 
tions of this and other cues. 

* Most frequent angle. In the preceding paragraphs, we discussed interpreta- 

tion cues in the case where both angles and lengths of line segments are measurable. 
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Even in the situation where only angles are measurable, we can obtain some 

information and estimate the real angles. This interpretation scheme too depends on 

the randomness of the distribution of 3D orientations of the angles. It will be shown 

in Section 3 that the most frequent angle is likely to be the real angle. 

Step 2. Estimating the 3D Angle 

Once a real feature in 3D space has been estimated, it is not difficult to determine 

the value of the angle in 3D space that projects the given feature onto the image 

plane. Generally, there will be two possible values that are mirror images. To 

eliminate this ambiguity, other heuristic information would be required. Although 

we discuss some ways to resolve the ambiguity in this paper, this is essentially a 

domain specific problem. We will therefore sometimes use random selection to 

chose one of the two possible answers. 

3. SPECIFIC MODELS 

In this section, four specific models are introduced. They are based on the general 

scheme described in Section 2. Typical examples of these models and the results of 

applying them are presented. 

3.1. Base Line and Height 

As indicated in section 2, we assume that the image is composed of many 

identical planar features in random orientations. 

A simple example of a feature is a planar curve. I n  this ~section we present a 

model that can estimate 3D information from an image in which many planar 

curves are depicted. These curves will have the same shape and are oriented in 

random direction in 3D space. 

Let C be a planar curve from point P to Q as shown in Fig. 1. The actual shape 

of C is arbitrary. The only information required in our interpretation scheme is the 

length L of the base line between P and Q, and the height H of C from the base 

line. 

A coordinate system is chosen as shown in Fig. 2, where orthographical projection 

is assumed. The planar curve C is located at point P in 3Dspace and in a direction 

designated by the two angle parameters 6 and ~k- 

P z Ip 

FIG. 1. Planar curve notation. 
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FIG. 2. Projection of a planar curve C. 

The following relations on the base line length and the height are easily proved: 

1 = L cos/~ (1.a) 

h = n sin (1.b) 

As described in Section 2, let us assume that there are many identical curves in 

the scene, oriented in various random directions (O's and q/s). If they are really 

many and randomly oriented, there is a good chance that the O of some curve is 

close to zero, and also that some curve has q~ close to ~r/2. Hence, the unknown real 

3D length L and height H can be estimated using the maximum lengths among the 

I 's  and h 's. This estimations scheme is represented as Eq. (2): 

L 2 max ( 1~ } (2.a) 
i 

H > max { hj }, (2.b) 
J 

where i or j is the suffix of each curve. 

This scheme does not require that the i and j that give the maxima are the same. 

The necessary condition for the scheme is that at least one base line among all the 

curves is parallel to the image plane, and that at least one direction of the height of 

a curve is also parallel to the image plane. 

The assumptions of a large number of curves and of randomness are sufficient 

conditions for the estimation scheme being accurate. Although the example given 

later will be interpreted in the  way described above, that is, by simply using the 
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FIG. 3. House plant. 

maxima, a more mathematically precise estimation is available. By Eq. (1), the 

distributions of l ' s  and h's should have particular shapes related to the cos and sin 

curves. The accurate maximum value for I or h can be estimated by fitting the 

theoretical distribution curve to the data. This scheme would be effective in the case 

where only a small number of curves are given. 

Once the real length L and the height H have been obtained, interpreting the 3D 

information is easy. First, every 0 i and ~i is determined by l~ and h i a s  in Eq. (3): 

0 i = c o s - I ( l i / L )  (3.a) 

~b i = s i n - l ( h i / H ) .  (3.b) 

Mathematically 0 and ff each have two possibilities. Combining these, there are 

four answers that satisfy Eq. (3). In practical cases, this ambiguity would not 

necessarily be serious. Some natural heuristics or some other information would be 

used to resolve the ambiguity. 

Suppose that the 0 and ff for every planar curve have been determined. Because 0 

and ~k designate the plane which contains the curve, a z axis value relative to the 

point P for every point on the curve can then be easily obtained. 

EXAMPLE. A house plant. Figure 3 is a simplified house plant. Many thin leaves 

are hanging down from a pot. Assume that every root of a leaf comes out from the 

circular edge of the pot, and every leaf has the same shape. Let p be the root point 

of a leaf, and q the end point of the leaf. Then the base line l is the line p q  and the 

height h is the maximum distance between the leaf and the base line. Choose the X 

axis as the horizontal direction, the Y axis as the vertical direction, and the Z axis as 

coming toward the viewer perpendicular to the X Y  plane. The (x, y)  coordinate 

values of every leaf are given. The 3D information can then be recovered by the 
scheme described above. 

Now, heuristics specific to this example may be introduced. If 0 is positive, that 

is, the leaf is coming toward the viewer, the root of the leaf may be on the front edge 

of the pot and ~k is between ~r/2 and 3~r/2. On the other hand, if O is negative, 

that is, the leaf is going away from the viewer, the root of the leaf may be on the 
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FIG. 4. Top view of interpreted 3D house plant. 
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back edge of the pot and g, is between -~r /2  and ~r/2. We may also assume that 

we are given the z position of the pot. 

These are natural heuristic interpretations. However, there is still an ambiguity; 

namely, there is no information about the sign of 0 in a silhouette image like Fig. 3. 
Here, we choose the sign of 0 randomly. 

The complete 3D shape can then be recovered from the image in Fig. 3. Figure 4 

is the top view of the recovered 3D house plant, that is, the silhouette in the X Z  

plane. Figure 5 is another side view, the silhouette in the Y Z  plane. The results look 
very natural. 

/ /  J 

FIG. 5. Side view of interpreted 3D house plant. 
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Generally, the interpreted result in the XY plane is exactly the same as the 

original image Fig. 3. Thus, we will skip all the XY plane results in the examples. 

3.2. Length and Angle 

Many natural or artificial objects have spines, and around the spine many needles 

of the same length branch out at a fixed angle in various directions. If there really 

are many needles in random directions, it is possible to interpret the 3D shape of 

such an object from its image. 

Let the spine be at an unknown angle 0 to the image plane, and let many needles 

whose lengths all have the unknown value L be distributed in random directions 

around the spine, at an unknown fixed angle A to the spine. 

Generally, the needles are scattered over many points on the spine. For simplicity, 

however, a preprocessing of the image is useful in order to make it easy to 

understand our interpretation scheme. The preprocessing causes all the needles to be 

temporarily gathered together at a single point p on the spine; that is, every needle 

is translated along the spine to the point p without changing its length and angle. 

The geometrical relations at this stage are illustrated in Fig. 6. Passing through the 

end points of the needles on the image, a hypothetical ellipse can be constructed. 

Let the center of the ellipse be q. The three lengths a, b, and c shown in Fig. 6 are 

important parameters for our interpretation scheme. 

Rough estimates of these parameters are available in a very simple way without 

the need for preprocessing. The parameters can be estimated using the longest and 

/'\ Ux 
, x 

I \ �9 ,.." ii 

? , 

/ i  I 
i J , } J 

P 

spine 

image plane 

/ 
FIG. 6. Geometrical relations on spine and needles. 
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shortest lengths of the needles which are in almost the same direction relative to the 

spine, and finding the maximum distrance of the end points of these needles from 

the spine. Then the following geometrical relations are easily proved: 

a = L s i n A  

b = a s i n O  

c = L cos A cos 0. 

(4.a) 

(4.b) 

(4.c) 

Solving these equations, we obtain 

b 
0 = Sill  - 1  - -  ( 5 . a )  

a 

~ a  2 - b 2 
A = tan -~ (5.b) 

r 

a~]a 2 - b ~ + c 2 

L = ~ _  b ~ ( 5 . c )  

These solutions provide complete 3D information, but there is still an ambiguity 

between two possible solutions that are mirror images. This ambiguity depends on 

the sign of b. In real examples, it is usually not an important problem and may be 

determined using heuristics or domain specific information. 

EXAMPLE. A pine branch. A pine branch is a typical example that has a spine 

and needles. In Fig. 7 a simplified pine branch is shown. It has a spine which is 

divided into four sections. Let us assume that the spine is coming toward the viewer, 

that is, the 0's are positive. In each spine section, there are many needles which 

have the same lengths and make the same angles relative to the spine in 3D space. 

, \ '\ '\" ~ ,) ,,t , ~ , ~ ~ I ~  " 'f~ '~ 

\ ,~'%\ 
\ ,  

FIG. 7. Pine branch. 
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FIG. 8. Preprocessed pine branch. 

As in the previous example let the X axis be in the horizontal direction, the Y axis 

in the vertical direction, and the Z axis perpendicular to the X Y  plane. 

In Fig. 8, an image of the preprocessed pine branch is shown. The preprocessing 

is done for convenience in order to provide a better intuitive understanding of the 

parameters. It is not difficult to fit an ellipse to the end points of the needles. 

However, the actual interpretation was carried out in the simple way described 

above, using the lengths in the special positions. 

For each section, 8, L, and A can be recovered. These provide relative informa- 

tion. Let us finally assume an absolute Z axis position for the root point of the 

branch, and interpret each section as connecting to the top of the previous section. 
The top view, that is, the silhouette projected onto the X Z  plane, of the 

interpreted 3D shape is shown in Fig. 9. The side view, the YZ  plane silhouette, is 

shown in Fig. 10. 

The accuracy depends on the image. In this case it depends on how close to the 

special position the needles can be found. 

/ 

/,, 

/ 

/ " J / /  /' 
/ , " /  / , , / /  
h" /  /,"( / /,,, /' / / /  

.~6%.~::~ ~ ~... 

FIG. 9. Top view of interpreted 3D pine branch. 
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FIG. 10. Side view of interpreted 3D pine branch. 

3.3. Triangle 

Many objects can be represented by fitting triangles. A triangle is a natural and 
simple way to specify a plane in the space. Assume that there are many identical 

objects in the scene represented by triangles and that they are oriented in various 
directions. Then 3D interpretation of the objects from their images is possible. An 

advantage of using triangles is that since some triangles may be smaller than others, 

a scale factor can be estimated. 

The situation assumed above is very common in natural objects, such as animals 
or plants. They are similar to each other, tend to occur grouped together, and some 

of them are immature, having similar shapes but smaller than the adults. 

We assume that preprocessing provides reliable information about the correspon- 

dences among the triangles, that is, every vertex or edge can be recognized and 

distinguished from the others. 
For a triangle which is not small, notation is defined as shown in Fig. 11. The 

vertex A is chosen as a root point, the edge AB is chosen as a base line, and 

the perpendicular line CD is drawn. The length of the perpendicular line is H, the 

length of the line AD is L, and the length of the line DB is R. The quantities H, L, 

and R determine the triangle. 

C 

FIG. 11. Notation for a triangle. 
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Next, a small triangle is represented using a scale factor X (0 < X < 1): 

H '  = XH (6.a) 

L ' = X L  (6.b) 

R ' =  7tR. (6.c) 

H' ,  L' ,  and R'  are the lengths of the lines corresponding to the sides of a normal 

size triangle. H, L, R, and h are unknown values. 

Now, assume that many triangles T~ lie in various orientations in the scene. Each 

of them is defined by H, L, R, and h i. All of these triangles are projected onto the 

image plane X Y .  

Let the triangle T~ have root vertex A at z 0 on the Z axis; let the angle between 

the base line A B  and the X Y  image plane be 6i, and let the angle between the 

perpendicular line DC and the X Z  plane be qJi. 

The geometrical relations between the triangle and the X, Y, and Z axes are 

illustrated in Fig. 12. For simplicity, in Fig. 12 and from now on, the suffixes i are 

omitted. The triangle T is projected onto the image plane and forms a triangle t. 

The triangle t can be represented in the same way as T: the length of the 

perpendicular line ce is h, the length of the line ae is 1, and the length of the line eb 

is r. 

A 

z 0 

Y 

FIG. 12. Geometrical relations for a triangle and its image. 
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In the image, the point d is the projection of the point D, the root of the 

perpendicular line in space. Generally the points d and e are not the same, having 

disparity that depends on the angles 8 and ~. The position of the point d is 

unknown. Let the unknown distance between d and e be a. H, L, R, ?~, 8, and ~b 

are unknown, and h, l, and r can be measured on the image. The relations between 

them are as follows: 

a = H'cos ~sin O (7.a) 

h = H'sin ~ (7.b) 

1 = L'cos O + a (7.c) 

r = R'cos O - a. (7.d) 

The first step of interpretation is the estimation of the real lengths H, L, and R. 

The basic scheme is the same as that of Section 3.1. If there really are many 

triangles in random orientations, there is a good possibility that at least one of the 

edges of a triangle is close to flat. Hence, the estimation can be carried out by using 

the maximum length. Once the lengths of the edges are obtained, they are easily 

converted to the lengths H, L, and R. 
This is the general, fundamental scheme used above. However, by taking ad- 

vantage of a triangle's special properties, a more sophisticated method of estimation 

is available. 
The general idea is sketched in Fig. 13. Let the real lengths of the edges be 

L1, LE,L3, and the lengths in the image be ll, l 2, and /3. Now, among the many 
triangles in the image, some triangle has maximum length of ll; let the maximum 

value be  l I max, and in that triangle let the other two lengths be 112 for 12, and 113 for 
l 3. At the same time, there are two other triangles which have the maximum lengths 

of 12 and 13. The notation for these triangles is shown in Fig. 13. 
Consider the trinagle abc where the length ab in the image is the maximum, 

llmax" The line ab in the space can be assumed to be parallel to the image plane; 
hence the only distortion in the shape of the image triangle is caused by a rotation 

around the axis ab in space. Depending on the angle of rotation, the point c moves 

along the dotted line perpendicular to the line ab in Fig. 13. 

On the other hand, from another triangle, l 3 max has been obtained, which is 

usually longer than 113. It is then a reasonable condition that triangle abp is one of 

the largest triangles, even though we could not find the length bp for line 12 in the 

actual image. 
The estimated length bp may be longer than the l 2 max, the maximum value found 

in the image. Thus, this is a superior scheme as compared with the elementary 

scheme described above. 

Using 113 , 112 , and L 2 max, lff, the length of bp is obtained by 

{ 13 max )2 (113)2 = { l~, }2 { 112 )2. (8) 

Then, the estimation of L 2 is carried out by choosing the maximum value among 

12 max, lff  obtained above, and another l~" obtained by the same scheme from the 
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FIG. 13. Estimating t h e  l e n g t h s  o f  e d g e s .  

triangle which has l 3 ~ .  The complete results are represented in Eq. (9): 

L 1 ___ max{ llmax, ~121 + 12max -- 123, ~121 + l~ax - 1222 ) (9.a) 

L 2 > max( 12 max, ~/ll 2 "j- 1 2 m a x -  173, ffl22 -j- l ? m a x -  121 ) (9 .b )  

L 3 >__ max( l 3 max,~/123 + l~max - 122, ~123 + 12max -- l~1 }. (9.C) 

Once L1, L2, and L 3 a r e  obtained, they are easily converted to H, L, and R. 

Then, Eq. (6) and Eq. (7) are combined together to yield 

h = )~Hsin ~k (10.a) 

l = XL cos 0 + XHcos + sin0 (10.b) 

r = XR cos 0 - )~Hcos # sin 0. (10.c) 

H, L, and R are constant parameters over all triangles. The lengths h, l, and r 

can be measured on each triangle in the image. Equation (10) can then be solved for 
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?~, 0, and ~k for each triangle. The solutions are 

= - 1 " i i  (,,.., 
i I 

o = cos -1 x ( R  + L )  ' (11.c)  

where 

= H 2 ( R  + L) 2 ( l l .d)  

~1 = h 2 ( R  + L ) :  + H 2 ( r  + l)  2 + (IR - L r )  2 ( l l .e)  

"Y= {h2( R + L ) 2 _  H2(r+ 1)2} 

q - ( I R -  Lr)2[(IR - L/') 2 -4- 2 {h2(R --b L )  2 --I- H2(r  -1- l )2 } ] .  (11.f) 

Formally, there are two answers for 2~; let the smaller one be 2,- and the bigger 
one X § It is easily proved that X- is not a solution of Eq. (10), because h -  satisfies 

h 
sin ~k 7 ;X_ H > 1 (12.a) 

a~:! (r + I) 
c o s  ~,  : =  ~ . - -  . . . .  . > 1 .  ( 1 2 . b )  

.~ x- (R + z,) 

Thus ?~+ is the only answer for 4; however, there are still two possible answers 
for 0 and ~p. They are mirror images, just as in the previous examples. In this case, 
they are summarized by 

{ x+ { X+ 
~ ,  ~-q~. 

0 - 0  

(13) 

The other two answers using other combinations of ~p, 0, ~r - ~p, and - 0  do not 
satisfy Eq. (10). Thus (13) gives complete information about the 3D shape of each 
triangle. 

EXAMPLE. Flowers. Many natural objects satisfy the assumptions required in the 
triangle interpretation scheme. Leaves or flowers of plants are good examples. They 
have almost the same shapes and are easily represented by triangles. Moreover, 
some of them are small in size. 

In this section, an interpretation for a collection of flowers is carried out. Figure 
14 is the input image in which there are many flowers, some of which are small. 
Now, assume that all petals are the same shape and planar. Then they are easily 
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FIO. 14. Flowers. 

represented by triangles, where the three vertices of the triangle are a root point and 

the two extreme points of a petal. 
As in the previous examples, on the image plane the X axis is in the horizontal 

direction, the Y axis in the vertical direction, and the Z axis perpendicular to the 

X Y  image plane. The center cores of the flowers are the common points; that is, the 

root points of the petals in a flower have the same Z axis values. In a more general 

scene, other information such as location on stalks or branches will give absolute Z 

values for the cores of flowers. Here, we assume that Z axis values are given a priori 

for every flower. 

In Fig. 15 flowers represented by triangles are illustrated. The first step is the 

estimation of the real lengths of the triangle edges. The values are converted to 

H, L, and R, and Eq. (10) is solved. 
Combined with the given Z position of the flower core, the solution for X, 0, and 

gives 3D information for each petal. We choose one of the two answers for which 
the flower shape looks natural, that is, the petals have edges that are close together. 

The interpretation results for the triangles are shown in Figs. 16 and 17. Figure 16 

is the top view, that is, the silhouette image of the interpreted flowers projected onto 

the XZ plane. Figure 17 is the other side view on the YZ plane. Since each triangle 

determines a plane, the original line drawings in Fig. 14 are easily interpreted, 

because they are contained in that plane. The final results are shown in Figs. 18 and 

19, which are analogous to Figs. 16 and 17. Although some petals are interpreted as 

lying in unnatural orientations, generally speaking, the interpretation was successful 

for these flowers. 
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FIG. 15. Flowers represented by triangles. 
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FIG. 16. Top ~ew of mte~reted triangle flowers. 
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FIG. 17. Side view of interpreted triangle flowers. 
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FIG. 18. Top view of interpreted flowers. 
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FIG. 19. Side view of interpreted flowers. 
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3.4. Angle 

In this section, a model which is based only on angles in introduced. The 

assumption for the interpretation is that many identical angles are distributed in 

space in random orientations. An angle is a more ambiguous geometrical feature 

than the features in the previous sections, because there is no information on the 

lengths of the line segments. Even though it provides less information, it is possible 

to estimate the real angle, and from it the 3D shape, as shown in the following 

example. 

The geometrical relations are illustrated in Fig. 20. In 3D space the angle POQ is 

oriented in the direction determined by two angles 0 and ~p, where O is the angle 

between the line OP and the image plane, and ~p is the angle between the plane 

containing the angle POQ and the plane perpendicular to the image plane and 

containing the line OP. 
The relation between the spatial angle A and the angle a on the image plane is 

sin ~ tan A 

tan a = cos 0 + cos + sin 0 tan A " (14) 

An overview of the appearance of tan a as represented by Eq. (14) is illustrated in 

Fig. 21, as a function of 0 and ~k, where 0 < 0 < ~r/2 and 0 < ~p < ~r/2. In the area 

outside of Fig. 21, the tan a function has many singular points. 

Assume that many angles are distributed in random orientations. In other words, 

over the 0, + plane, where -Tr < 0 < ~r and - I t  < ~ < rr, many angle samples are 
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FIG. 20. Geometrical relations for an angle and its image. 

0 

t~u~ 

2 

Fro. 21. Overview of the appearance of tan a. 
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a : angle in the imege 

Histogram of angles in the image. 

distributed with uniform density. Then, each sample is projected onto the image 
plane using Eq. (14). 

Let us consider the statistical frequency distribution of tan a, that is, how many 

samples are in a unit interval of tan a values. The frequency at a given value of 

tan a depends on the gradient of the tan a function. For example, in a small unit 

area around the point, 0 = 0 and ~ = ~r/2, the gradient is nearly equal to zero, and 

we have many samples which satisfy tan a = tan A. On the other hand, in a small 

unit area around the point 0 = ,r /2 and ~k = ~r/2 the gradient is nearly infinite, and 

samples in the unit area are scattered over a wide range of tan a. 

The discussion above suggests that the density distribution of tan a is not 

uniform over its range, even though the samples were originally distributed on the 

0, ~k plane uniformly. Moreover, it is likely that there are more samples that satisfy 

tan a = tan A. This can be proved by analysis of Eq. (14). For example, let the real 

spatial angle A be ~rf4 and let many of the ~r/4 angles be distributed uniformly on 

the 0, ~ plane; then the histogram of the image angle a has a peak that is exactly at 

~r/4 as shown in Fig. 22. Some other cases of A's equal to ~3~r2o , -7~r20 , and 9~r are also 

shown in the same figure. These examples indicate that it is possible to guess the 

real spatial angle by looking for a significant peak on the density distribution. 

Actual 3D information for the spatial z position is easily obtained as follows. For 

convenience in explanation, let us translate the vertex to the origin and assume a 3D 

direction for one of the edges, for example OP in Fig. 20, where the 3D direction is 

given by a point on OP = (a, fl, y). Then the direction of the other edge OQ is 

represented in the same way by a point on OQ = (x, y,  z), where z is unknown. We 
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can obtain z from 

b+_ ~ - a c  
z = (15.a) 

a 

where 

a = (off + f12 + y2)cos2A _ y2 (15.b) 

b = y(olx + fly) (15.c) 

c = (a  2 + f12 + 3,2)cos2A(x2 + y2)  _ (ax + fly)2. (15.d) 

Generally there are two solutions for z, but in some cases only one of them is 

available. This can be determined by verifying the conditions that 

- -  < A  < - ( 1 6 . a )  
2 -  - 2  

and 

ax + fly + yz 
cos A = > 0. (16.b) 

~/a2 +/82 + 72~/x 2 + y2 + z 2 

In the special case where b 2 - ac < O, there is no solution. 

EXAMPLE. A tree. A good example of interpretation based on angles is a tree, 

where the spatial angles between the trunk and the branches have the same value. 

Recent research on graphics has created beautiful tree images in which the angles 

are basically fixed [7]. In our example, a tree image was generated in a rather 

primitive way: the angles between the branches and the trunk are fixed at 30~ the 

lengths of the branches are defined using a random function; and the directions of 

the branches are random. The image is shown in Fig. 23. The image has about 3500 

angles. The histogram of the image angles is shown in Fig. 24, which is the result 

obtained by a simple filtering operation on the original histogram. This filtering 

eliminates small jagged peaks. 

The peak is located at 29 ~ Thus we can guess that the real spatial angles in the 

tree image shown in Fig. 23 are equal to 29 ~ . The correct exact answer is 30 ~ . Since 

the histogram was constructed for angles spaced 1 o apart, this is the minimum error. 

Let assume that the X axis is horizontal and the Y axis is vertical in Fig. 23, and 

that the root trunk of the tree is parallel to the X Y  plane. Then we can recover the 

3D shape of the tree using Eq. (15). 

For  many branches we have two possible solutions. In practice it would not be 

difficult to choose one of the two answers, because we may have much more 

information on the branch directions, such as detailed image data at the branching 

points, or occlusion information between branches. 

It is possible, however, to interpret the example by using the following "pure"  

algorithm: We first choose one of the two solutions at random, and continue to 

reconstruct the 3D shape. If a sub-branch yields a contradiction, that is, it has no 
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FIG. 23. Tree image. 
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possible solution, we trace back to the nearest parent trunk which has another 

possible solution, discard the old interpretation, and try to reconstruct the 3D shape 

using the other solution. Because of the estimation error for the angles, the 

possibility remains that some branches have no solution, even after trying all 

possibilities. In our example, 52 branches had no solutions. For simplicity, they 

were interpreted as parallel to the X Y  plane. 

Degrees 

00 

FIG. 24. Histogram of angles in the tree image. 
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FIG. 25. Top view of interpreted 3D tree, 

FIO. 26. Side view of interpreted 3D tree. 
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The top view, the silhouette of the recovered 3D tree on the XZ plane, is shown 
in Fig. 25. The other side view, the silhouette on the YZ plane, is shown in Fig. 26. 

For this 3D interpretation, the input information was very vague, because there was 

no information about lengths. However, the result is quite natural. 

4. DISCUSSION 

4.1. Advantages 

Some advantages of our interpretation scheme are summarized here. First, the 
scheme is a quite general approach for interpreting various kinds of natural or 

artificial objects. Its assumptions of many identical objects in the scene and of 

randomness in their orientations are characteristic of many natural scenes that 
we observe in daily life. Not only natural objects, but also artificial objects such as 

industrial parts in a pile, or architectural features of a large building, may satisfy the 

assumption. The scheme does not require object models. Domain specific knowledge 

is not important, though it can help in the interpretation by reducing the ambiguity 

of the results obtained by the basic scheme. 

Second, the mathematical cncepts on which the scheme is based are quite simple. 

Generally, the equations can be solved by elementary algebra. They do not involve 

complicated differential components, which are usually unstable. The data that are 

required for the equations are basically a length between two points or an angle 

between two lines. Such quantities can be easily measured with high accuracy on the 

given image. 

From the standpoint of the complexity of the algorithm, the scheme is very 

simple, since it does not require any iterative calculations. The interpretation of 

every feature is carried out simply by calculating the solution of the equations, 
whose parameters are measured in the image. In fact, the implementation of the 

scheme required only a small amount of work. For each example in the last section, 

the programs contained about 30-70 Lisp functions, half of which were display 

controls. 
Finally, from a psychological standpoint, it is probably not difficult for a human 

to imagine the 3D shape of the house plant in Section 3.1. As regards quantitative 

accuracy, the program works almost perfectly on the data. The numerical calcula- 

tions in the interpretations are apparently very accurate. On the other hand, the 
accuracy of human beings would be very poor. In the case of the tree in Section 3.4, 

it may be possible for humans to vaguely infer the most frequent angle, but it would 

be difficult for most humans to imagine the consistent 3D shape shown in Figs. 25 

and 26. 

4.2. Problems 

The low level feature extractio n stage, including feature selection and defining the 
correspondences between features, was skipped in this paper. If the scheme is to be 

applied to the interpretation of a real natual scene, those low level processes become 

serious problems. 
The examples given here were all wire-frame-like objects. No occlusion between 

objects was considered in this paper. In the case of solid objects, the interpretation 

would become somewhat more complicated, although essentially the scheme would 

be the same. In some situations, occlusion helps the interpretation, because it gives 
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relative 3D position. For example, in case of the tree example, occlusions between 

branches would be of great help in obtaining 3D shape. 

A more fundamental  problem is that it is not realistic to expect natural objects to 

be exactly identical to each other in their lengths or angles. If the lengths or angles 

vary, the 3D shape obtained by the scheme would be deformed. Intrinsically, it is 

impossible to infer the exact answer, when the measurements are variable. The 

scheme proposed here gives the most credible answer from a statistical standpoint 

by  assuming that the features are exactly the same. 

4.3. Future  W o r k  

In  case of the house plant in Section 3.1, it may be possible to derive a more 

sophisticated interpretation, if the continuous curves of the leaves can be compared 

and the disparity between them can be evaluated and interpreted. Generally 

speaking, continuous curves are difficult objects in the sense of the scheme proposed 

here, because it is difficult to pick up exact feature points and measure lengths or 

angles. 

For  more complicated scenes, a combination of the techniques proposed in 

Section 3 may  be required. If the initial feature extraction is sufficiently complete, 

such a combination should not be difficult. 

Another  interesting extension of the scheme is possible. In this paper, the 

condition that many objects are present in the scene is required. Suppose that only 

one object is shown and that it is moving around and rotating in a random way. 

Then a t ime sequence of images gives the same information that is assumed in this 

paper.  For  example, suppose the skeleton of a person moves around in various ways 

for a while; then gradually the real lengths of its bones can be obtained, and 

eventually we can interpret its 3D features. 

Another  more practical example is a shape measurement method for industrial 

parts.  Let us put a mark on the object at every point which is important for 

representing its 3D shape. These marks form many triangles. Let the object turn in 

various directions so that we can measure every distance between the marks. This 

information allows us to interpret the actual shapes of the triangles using the 

scheme in this paper, so that the 3D shape of the object can be determined. This 

approach may  constitute a kind of learning scheme based on image sequences for 

3D object recognition. 
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