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Shape from shading schemes are based on the assumption
that image radiance is a function of surface normal alone.
Unfortunately, because surfaces illuminate one another, radi-
ance is a complicated global property of surface shape.

We review briefly the equations governing mutual illumina-
tion effects, and demonstrate that mutual illumination forms
a major component of image radiance. We then discuss the
consequences of mutual illumination effects for different the-
ories of recovering shape from radiance. We show that dis-
continuities in image radiance originate solely in surface dis-
continuities, from shadows and from changes in surface re-
flectance. We argue that for a large class of shapes the re-
sponse of edge detectors will also remain unchanged. Our
proof involves a bookkeeping method that applies with minor
modifications to discontinuities in derivatives of the radiance.

We argue that edges must be an important shape cue,
because they bear a tractable relationship to three di-
mensional shape. The radiance of a surface cannot
be of such importance, because it is intractably cou-
pled to shape. We suggest that, because discontinuities
in the derivatives of radiance arise in a highly struc-
tured fashion, they may contain exploitable shape cues.

It has been argued for many years that human subjects re-
cover three dimensional shape cues from the distribution of
shading on an object. Many machine vision researchers have
interpreted this skill as an indication that the distribution
of radiance in regions of an object that do not lie in shadow,
can be integrated to yield a dense depth map. Unfortunately,
this belief is critically dependent on an extremely simple pho-
tometric model, known as the image irradiance equation (see
[11] for a clear exposition of this approach).

This model is flawed because it assumes that radiance is
a function of a purely local geometric property, the surface
normal. It ignores the fact that patches of surface reflect light
not only to an imaging sensor, but also to other patches of
surface (an effect known as "mutual illumination"), making
the distribution of radiance a complicated function of the
global scene geometry.

Unfortunately, it is easy to observe the effects of this re-
distribution in simple experiments [18,4,16,12,13]. We show
some examples in figures 1-3. At first glance, the effects of
mutual illumination appear rich in desirable cues to shape
and to absolute surface lightness. However, the mathemat-
ical complexity of mutual illumination effects means that it
is very difficult to see how these cues may be exploited. On
the other hand, there is reason to believe that humans can
exploit these cues to some extent [6,7].

The purpose of this article is to explore the implications
of mutual illumination and to consider what shading cues
can in fact be used to recover shape information. We show
that although radiance itself is not a reliable shape cue, dis-
continuities in radiance are, as they can appear only at dis-
tinguished points on surfaces. Furthermore, the events that
cause discontinuities in radiance are geometrically simple.

1 Mutual illumination physics

Consider a scene consisting of surfaces parametrised in some
way that allows us to write the surfaces as r(u), where the
bold font denotes a vector quantity. At a point u, denote the
radiance by N(u). Write p(u) for the albedo of the surface
patch parametrised by u.

Assume that all surfaces are Lambertian for the present.
Although our result on continuity requires only that the bidi-
rectional reflectance distribution function of all surfaces be
smooth, the Lambertian assumption simplifies the analysis
considerably. We will explore the implications of relaxing
this assumption in future papers.

The radiance at a point is the sum of two terms: the ra-
diance resulting from the illuminant alone, and the radiance
resulting from light reflected off other surface patches. The
second term must be a sum over all surface patches. Thus,
the radiance at u can be written:

N{VL) = p(u) / K(u,V)N(v)dv (1)

where D refers to the whole domain of the parametrisation,
K(u, v) represents the geometrical gain factor (often called a
form factor) for the component of radiance at u due to that
at v, and iVo(u) is the component of radiance at u due to the
effects of the source alone. Conservation of energy requires
K to be symmetric. In what follows we use the term "initial
radiance" to refer to No- Equation 1, which expresses energy
balance, is called the radiosity equation (see, for example,
[16] or [3]).

When p(u) is constant, equation 1 is a Fredholm equation
of the second kind, and K is referred to as the kernel of this
equation.

For Lambertian surfaces where only diffuse reflection oc-
curs, the kernel takes the form:

where n(u) is the surface normal at the point parametrised
by u, dut, is the vector from the point parametrised by u to
that parametrised by v, and View(u, v) is 1 if there is a line
of sight from u to v, 0 otherwise and View(u, u) = 0. View
is clearly symmetric, and discontinuous.

We have demonstrated elsewhere [4] that solutions of this
equation are in good qualitative agreement with observed
mutual illumination effects. This equation is the model of
diffuse radiance formation in Lambertian surfaces that we
use from now on, and is the basis for the propositions proved
below.

There are several approaches for solving equations of this
type (see, for example, [19]). One well-known solution for the
case of constant reflectance p is given by a Neumann series:

JV(u) = iVo(u)
-
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Where

Kn(u, v) = / A'(u, w)A"n_i(w, v)dw and Ki = K

It is easy to prove that this geometric series always con-
verges for p < 1. The ra'th term in this series corresponds
to the contribution to radiance of a ray that has been re-
flected n +1 times, and evaluating a partial sum of this series
corresponds to a form of ray tracing which admits diffuse re-
flection. In general, although the rate of convergence of the
series depends on p and on the particular shape, the first few
terms of the series give insight into the extent of mutual il-
lumination effects. For example, mutual illumination effects
will prove significant in concave patches. Notice also that the
operator that takes the initial radiance to radiance is linear,
so that the effect of superposing a set of sources is found by
adding their individual effects.

2 Traditional Shape Cues

Several different features in image radiance have been em-
ployed to recover shape properties of surfaces. Most of these
techniques require radiance to be local, and fail in the pres-
ence of mutual illumination. We discuss the effects of mutual
illumination on each of the commonly used features.

2.1 The radiance itself

Conventional shape from shading ([11], and many others) ex-
plicitly computes the surface normal at each point of a shape
by solving a partial differential equation (the "image irradi-
ance equation") in the normal and the radiance. This ap-
proach clearly requires that radiance be a function of surface
normal alone.

Figures 1 and 2 confirm that mutual illumination causes
significant qualitative changes in the radiance. As a result
of the global nature of mutual illumination effects, to con-
struct a quantitative reconstruction of a shape with known
reflectance map from its radiance under a known source, it is
necessary to account for the effects of far off patches of the
shape in estimating the surface normal of any patch. Under
certain circumstances it may be possible to ignore distant
patches or approximate their effects by isotropic ambient il-
lumination.

If the solid angle subtended at a point by a distant surface
is not small, it may make a large contribution to radiance at
that point. Thus, for example, a large white wall may make
significant contributions to the radiance of a scene, although
not visible to the imaging device. Even under controlled con-
ditions, unless all surfaces are nearly black or consist of an
isolated convex surface, the effects of mutual illumination are
significant.

As a result, quantitative shape from shading is intractable
in any but the simplest cases: to succeed at quantitative
shape from shading, we may have to account for things we
cannot even see. Furthermore, even if the sensor can see all
radiating surfaces, their interaction is complex, global and
non-linear.

2.2 Singularities in radiance

If radiance is a given by a function of the surface normal
alone, then singularities of the Gauss map [17] will cause
specific events to occur in the field of isophotes. For example,
a saddle point in radiance can occur only on a parabolic line

on the surface. Koenderink and Van Doom's paper [15] is
the best known exposition of this approach.

It is clear that mutual illumination means that the singu-
larities in the Gauss map are no longer tightly coupled to
radiance. Techniques that use this coupling to infer shape
information are therefore likely to be misleading if applied to
real objects.

2.3 Multiple views

Photometric stereo [11] is a technique where, by observing
two images of an object, each illuminated by a source an in-
finite distance away in different directions, one recovers the
surface normal at every visible point on the object. This
technique critically depends on the assumption that the ra-
diance at a point is a function only of the surface normal
at that point. As a result, mutual illumination effects will
cause photometric stereo programs to estimate surface nor-
mals incorrectly. Another effect (see [12,13], for example) is
that gain due to mutual illumination can cause some surface
patches to be brighter than is consistent with the photomet-
ric model. It is not clear to what extent such errors in fact
affect the usefulness of photometric stereo for tasks such as
model matching or grasping, which can be relatively robust.
Any attempt to use the dense surface normal maps recovered
by photometric stereo without reference to models will have
to confront these sources of error, however.

2.4 Specularities

The movement and monocular shape of specularities provide
strong cues to and constraints on, local surface geometry
[1,2,10,20]. Our result, given below, that mutual illumina-
tion does not give rise to discontinuities is valid only for dif-
fuse reflection as specularities can mimic point sources and
cast shadows. In more perverse cases, multiple specular re-
flections can cause apparent specularities which will confuse
processes, such as those of [1], that extract shape from the
motion of a specularity and an assumed light source.

3 Reliable shape cues

For the case of diffuse reflection and piecewise smooth sur-
faces and albedo we have proved the following results (the
details of the proof appear in the appendix):

3.1 Discontinuities in radiance

Mutual illumination generates discontinuities
only at points where the first derivative of the
surface is discontinuous or at discontinuities in
surface reflectance. Discontinuities in the initial
radiance are preserved in the sense that their po-
sition is unaltered (though their magnitude may
well be).

Thus new discontinuities can be created by mutual illumi-
nation (see figure 3 for an example of this), but these dis-
continuities cling to surface features. Discontinuities in the
initial radiance may be local (for example, changes in albedo)
or global (for example, shadows) in origin. Mutual illumina-
tion can accentuate, diminish, or even, for highly unlikely
geometries, null discontinuities which are local in origin.

These are strong results, because these events are easy to
interpret. Thus, although one can draw few or no conclusions
from observations of radiance, because of its global origins,
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discontinuities in radiance offer robust, reliable and tractable
shape cues.

These results arise from theoretical considerations. In prac-
tice the detection of discontinuities is carried out by edge de-
tectors and there might be some change in the position of the
discontinuity due to the mutual illumination effects.

3.2 Discontinuities in radiance deriva-

tives

Mutual Illumination can create new discontinu-
ities in the derivative. Discontinuities in the
derivative of the initial radiance are in general
preserved.

Discontinuities in one of the derivatives of initial radiance
occur, for example, at self shadows - where the illuminant
direction grazes the surface. The new discontinuities in the
derivative of radiance created by mutual illumination are es-
sentially occlusion effects (see figure 4 and the appendix). In
general these phantom self shadows will not null the discon-
tinuities in the initial radiance derivative.

The method of proof of the first result allows us to show
that discontinuities in the derivatives of radiance that arise
from mutual illumination appear in a highly ordered fashion
(see the appendix). In particular, they occur in a predictable
way when surfaces occlude one another. This encourages
speculation that these discontinuities could also represent
shape cues, although it is difficult at this stage to say how
they might be employed. Informal experiments indicate that
these discontinuities are often small and hard to localize.

4 Conclusion

Mutual illumination is an important source of radiance that
confounds simple attempts to extract shape features from a
radiance signal. The complexity of the relationship between
radiance and shape makes quantitative shape from shading
appear impossible. However, certain features, such as step
edges and self shadow boundaries, are very largely immune
to the effects of mutual illumination, and as a result are of
much greater importance to real vision than exact measure-
ments of absolute radiance. Attempts have been made to
exploit shadow cues. These techniques, however, approxi-
mate a dense depth map from the shadows obtained under
many different illuminants. See, for example, [8,9,14].

However, to exploit these features properly, we need to
change the way in which we think about shape representa-
tion. In particular, trustworthy dense depth or surface nor-
mal maps cannot be obtained using traditional techniques.
Shadow and edge information is sparse and qualitative in na-
ture, but reliable.

A great deal of work is necessary to determine how these
cues may be extracted from images and how they may be
exploited.

Appendix

In this section we present a sketch of the proof that dis-
continuities in radiance occur only at surface features or
shadows, and show how to account for discontinuities in the
derivatives of radiance. We have omitted unedifying mathe-
matical details here, but have given sufficient detail that it
is possible to reconstruct a full proof. The key idea is to use
the radiosity equation (equation 1) to chart the discontinu-
ities in radiance and its derivatives. This is accomplished by

comparing the radiance and its derivatives at neighbouring
points on the surface.

For simplicity we consider an arrangement of surfaces and
illuminants which has translational symmetry. Consequently
it is only necessary to deal with the surface profile. The
graphical aid presented below in the proof captures all the
essential geometric features, and the extension to more gen-
eral surfaces is straightforward.

Translational symmetry in the arrangement of surfaces and
illuminants makes it possible to integrate out one degree of
freedom in the kernel, and the radiosity equation (1) reduces
to:

> 1 k(s,s')View(s,s')N(s')ds' (2)

where T is the cross section and s is arc length. The term
k(s, s')View(s, a') is the original kernel with the contribution
along the symmetry integrated out. We use the notation
N = No + pKN for equation 2.

Discontinuities in radiance

N(s) is discontinuous at s if

AN(s) = lim \N(s + 8)- N(s - S)\ ^ 0
s~* o

AN provides a measure of the magnitude of the discontinuity.
For the proof we assume that the radiance obeys equation 2
and is bounded.

We first examine the discontinuities in KiV. These arise
because the kernel k(s,s') is discontinuous. There are 2
types of discontinuity - creases (where k(s, s') is discontin-
uous) and changes in occlusion (where View(s,s') switches
between 0 and 1). Although K.N is necessarily continuous
when k(s, s')View(s,s') is, discontinuities in the kernel do
not necessarily generate discontinuities in K.N. Analysing
where discontinuities occur is simply visualised by examining
a representation of the discontinuities in the kernel, called the
Crease Occlusion Graph (COG). A typical COG is shown in
figure 5.

K.N is discontinuous if AKiV is not zero. This can
only occur when the domain over which the integrand (i.e.
k(s,s')View(s,s')N(s'), for fixed s) is non-zero (the support
of the integrand) changes sharply. This domain is the pool
of ones in View(s, s'), for fixed s. In figure 6, the horizontal
lines represent the domain of integration (with respect to s'
for fixed s), and the intersections between the lines and the
shaded regions represent the support of the integrand.

K.N can be discontinuous if s is at a crease because here
the support of the integrand changes sharply, causing a sharp
change in KN (see line c in figure 6). For most points, KiV
is continuous even though the kernel is not, because the sup-
port of the integrand changes only slightly for a small change
in s (line a in figure 6). In particular, notice that when a
change in s causes a new pool of ones to appear in the sup-
port of the integrand (line b figure 6), a discontinuity can
only be generated when the pool itself grows discontinuously,
i.e. changes suddenly from the empty set to an open set1,
which happens when the boundary of a pool of ones is lo-
cally parallel to the integrating line. This can happen with
piecewise smooth surfaces only when the surface has a planar

1
 That is, to a set of non-zero measure. The core of this argu-

ment is that continuity of KJV is guaranteed by a measure condi-
tion. For a detailed presentation, see [5].
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patch. However, this does not generate a discontinuity be-
cause along this patch the kernel itself falls to zero over the
parallel section of boundary, because this section represents
the case when the planar patch is viewed in its plane. Thus,
K.N is discontinuous only at creases.

We have seen that KN is continuous except at creases.
Thus, pK.N is in general discontinuous at creases, and at
discontinuities in p. Special cases where a discontinuity in p
lies on a crease, and the discontinuity in p nulls that at the
crease can be disturbed by a small change in either p or the
geometry, and are therefore highly unlikely. Thus, for N to
be discontinuous, we must have one of the following cases:

1. No discontinuous, pKJV continuous

This case occurs at surface points like point C in fig-
ure 3 where K.N is continuous but there is a disconti-
nuity in the initial radiance due to, for example, a cast
shadow. Here because its effects are continuous, mu-
tual illumination does not affect the magnitude of the
discontinuity (though the magnitude of the radiance
itself may well be altered).

2. No continuous, pT£N discontinuous

This can occur, for example at points like B in figure 3,
where the surface is in shadow, but would generate a
discontinuity were it illuminated. Here N is discon-
tinuous as a result of mutual illumination, but the dis-
continuity must lie on a crease or a discontinuity in
albedo.

3. Both discontinuous

This is the general case for creases or discontinuities
in albedo. This proof is concerned with the existence
of discontinuities, but has no bearing on their magni-
tudes or signs, so that we cannot say that either sign
or magnitude will be preserved. It is unlikely, however,
that discontinuities will have the same magnitude and
exactly cancel.

In summary:

Discontinuities are introduced by mutual illu-
mination only at creases and discontinuities in
albedo, which are surface features. Discontinu-
ities in the initial radiance away from surface
features, such as those caused by shadow, are al-
ways preserved. Discontinuities in the initial ra-
diance at creases and at discontinuities in albedo
will be preserved in general - but their magnitude
(not position) may change.

The rest of the proof consists of checking that these results
hold for more general surfaces. The details appear in [5].

Discontinuities

derivative

in radiance

The argument for preservation/creation of discontinuities
in radiance derivative is similar to the above. In this case, we
assume that the geometry and source are such that radiance
and initial radiance are piecewise differentiable. However,
instead of using equation 2 for the radiance, we consider its
derivative, £N(s).

dN{s)

ds ds

d
Jp.
ds

KN
ds

(3)

functions. In particular, it will be true for almost all geome-
tries. Hence, the derivative of radiance will be discontinuous
when any single term is discontinous. Inspection of the first
two terms in equation 3 and a repeat of the process described
above shows immediately that the derivative of radiance will
be discontinuous when the derivative of the initial radiance
is discontinuous and when the derivative of the albedo is dis-
continuous (gjJV(s) is undefined at discontinuities in albedo
and at creases where N is discontinuous).

The COG can be used to discover discontinuities in the
fourth term.

We must admit generalised functions for the derivatives to
be meaningful. We assume that the sum of two discontin-
uous functions is discontinuous; this is true for almost all

In general -§^{k(s,s')View(s,s')} consists of delta func-
tions along the borders of the pools of ones in the graph,
except where the border is parallel to the s direction. Else-
where, except at creases, it is continuous. Discontinuities in
this term can occur in two possible ways; a horizontal line
touches the boundary of a pool in the COG, or a discontinu-
ity in N is "sampled" by one of the delta functions.

The first case depends on the geometry of the pools in the
COG; an example is shown in figure 7 (line d). The second
case is easily predicted from the COG, because, as we have
seen, we can predict the discontinuities in N (see figure 7, line
e). This method can clearly be applied to higher derivatives
of the radiance.
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Figure 1: When p is small, solutions of the mutual illumi-

nation equation tend towards the radiance predicted by the

image irradiance equation as mutual illumination effects will

be dominated by source effects. Thus the effects of mutual il-

lumination can be observed experimentally by comparing the

radiance of a white set of objects and a black set. Qualitative

differences in radiance distributions for images taken of simi-

lar arrangements of these objects can be ascribed to the effects

of mutual illumination. This figure shows a section of the ra-

diance observed for a black cylindrical gutter cut in a black

plane, illuminated from above. Radiance features marked A

and B in this and the following figure occur at the points on

the profile (shown in the inset) marked with corresponding

letters.
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Figure 2: A section of the radiance observed for a white

cylindrical gutter cut in a black plane, illuminated from above.

Note that this signal is qualitatively very different from that

of figure 1. In particular note the constant central region -

this is not a saturation effect. Quantitative shape from shad-

ing, based on the image irradiance equation, would produce

entirely the wrong result with this data.
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Figure 3: A surface feature highlighted by mutual illumina-

tion, a) shows the geometry for this case, a white cylindrical

hump on a white planar background. The surface crease la-

belled B is not illuminated by the primary illuminant. The

shadowed surface is however illuminated by secondary reflec-

tions, b) Measured radiance for this geometry: there is a

discontinuity in radiance at B, which not predicted by the im-

age irradiance equation, and one at C, caused by a shadow.

The radiance features labelled A, B and C in (b) occur at the

points with the corresponding labels in (a).
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Figure 4: In this simple geometry there is a discontinuity in

the derivative of radiance at point A due to mutual illumina-

tion.

Figure 5: The crease occlusion graph charts the events which

may cause discontinuities to appear in K.N and its deriva-

tives. We show this graph for a simple profile. A point

(s, s') in the square represents a pair of points on the pro-

file, which is drawn above and to the left of the graph. Re-

gions where the corresponding points have a line of sight (i.e.

View(s,s') = 1) are hatched, and regions where they do not,

are left blank. The dashed lines are creases on the surface

(discontinuities in surface orientation). Note the symmetry

about the line s = s'.

Figure 6: Evaluating KN is equivalent to integrating (w.r.t.

s') the radiance along a horizontal line. This is the COG

of figure 5, with the shapes omitted. At s = a, KN is con-

tinuous, because the support of the integrand changes only

very slightly for nearby lines. It is also continuous at s = b

- even though the variation takes the integral away from an

occlusion boundary. This is because the relevant regions in

the support of the integrand shrinks to a point before disap-

pearing. At c, however, where a change in s crosses a crease

in the surface, the support changes sharply, and the integral

may be discontinuous.

s--t

A'* ..

i

i

Figure 7: // a discontinuity in N lies at s' = f (doited line),

informing j r §;{k(s, s')View{s, s')} N (s')ds', the delta func-

tions, which lie along the heavy border, will "sample" the dis-

continuity at s' = / , and the integral will be discontinuous

at s = e. The integral will also be discontinuous at s = d,

tvhere the line of integration just touches the border, because

at s = d the integral contains a sample of radiance, and for

s < d it does not. For values of s where neither of these

events occur, the integral is continuous. The COG is that of

figure 5.
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