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Abstract—An image of a specular (mirror-like) object is nothing but a distorted reflection of its environment. When the environment is

unknown, reconstructing shape from such an image can be very difficult. This reconstruction task can be made tractable when, instead

of a single image, one observes relative motion between the specular object and its environment, and therefore, a motion field—or

specular flow—in the image plane. In this paper, we study the shape from specular flow problem and show that observable specular

flow is directly related to surface shape through a nonlinear partial differential equation. This equation has the key property of

depending only on the relative motion of the environment while being independent of its content. We take first steps toward

understanding and exploiting this PDE, and we examine its qualitative properties in relation to shape geometry. We analyze several

cases in which the surface shape can be recovered in closed form, and we show that, under certain conditions, specular shape can be

reconstructed when both the relative motion and the content of the environment are unknown. We discuss numerical issues related to

the proposed reconstruction algorithms, and we validate our findings using both real and synthetic data.

Index Terms—Specular objects, specular flow, shape reconstruction, environment motion field, Gaussian curvature, parabolic points,

specular curvature.

Ç

1 INTRODUCTION

AN image of a specular (mirror-like) surface is a distortion
of the surrounding environment. Since this distortion

depends on surface shape, it is natural to ask if and how
surface structure can be recovered from such an image. Like
most vision problems, this one is ill-posed; without knowl-
edge of the environment, veridical shape information is
theoretically inaccessible. Indeed, as has often been ob-
served, it is possible to create any given image from any
given specular surface by suitably manipulating the envir-
onment. This is leveraged, for example, in some forms of
anamorphic art (Fig. 1).

Despite the intrinsic difficulties, the human visual
system seems quite adept at inferring specular shape in
unknown environments, even when few other shape cues
are available (Fig. 1). Computational solutions have proven
elusive, however, and existing methods are limited to
recovering only sparse or qualitative shape information,
considering a limited class of surfaces, or requiring
calibrated conditions in which the environment structure
is known.

In contrast to the existing methods, this paper presents a
theory for dense and quantitative specular surface recon-
struction that specifically considers general surfaces in
unknown, real-world environments. Our approach is built
on an image formation model that is complex enough to be

practical but simple enough for tractable analysis. This
model has two key features as follows:

1. The environment and observer are far from the
specular surface relative to the surface relief. This
implies a parallel projection camera and a reduced,
two-dimensional plenoptic function (i.e., an envir-
onment map), which simplifies the reconstruction
problem.

2. The camera is set fixed relative to the object and it
observes a relative motion between the specular
surface and the environment. This induces a specular
flow [1], [2] on the image plane, which provides
direct access to surface shape (since it depends only
on the motion of the environment, not its content).

We show that, based on this model and assuming no
interreflections, one can derive differential equations relat-
ing observed specular flow to the environment motion and
surface shape. In some cases, these equations can be solved
analytically to yield dense surface shape in closed form.
Here, we explore such cases in detail.

We begin our analysis in a two-dimensional world
(Section 3) in which the specular object is a plane curve, the
image plane is a line, and the surrounding environment is a
function defined on the unit circle. In this case, one can
uniquely recover the surface by solving a separable non-
linear ordinary differential equation (ODE) with initial
conditions provided by an occlusion boundary.

We then consider the three-dimensionalworld (Section 4),
where the specular object is a surface, the environment is a
sphericalmap, and the environmentmotion is described by a
spherical vector field. Fundamental to our analysis is the
derivation of a pair of coupled nonlinear partial differential
equations (PDEs) that relate specular flow to the surface
shape. While these equations may be difficult to solve in
general, we show that, for a special class of environment
rotations, they can be reduced to a system of decoupled
linear equations which can be solved to recover the shape in
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closed form when sufficient initial conditions are available
(Section 5).

Armed with a solution to this special case, we turn to the
general case of arbitrary environment rotations in three
dimensions (Section 6) and show that closed-form solutions
can be obtained in this case as well if one combines
observations from multiple, distinct environment rotations.
Somewhat surprisingly, we find that this is true even when
the environment rotations are unknown. This yields an
“autocalibrating” reconstruction procedure that requires
virtually no knowledge about the environment content or
its axes of rotation.

It is important to note that the focus of this paper is the
recovery of shape once specular flow is known, and for this
reason, we do not directly address the problem of
estimating a specular flow field from image data. Although
many existing optical flow techniques exhibit excellent
performance in classical cases (see [3] for an extensive
comparison), the unique characteristics and singularities of
specular flows suggest that their estimation from image
data requires a significantly different approach. Whether or
not this task can be achieved reliably and what novel
techniques would facilitate this computation are important
directions for future work (see Section 7) and we expect that
the analysis presented in this paper will be useful for this
problem as well.

2 RELATED WORK

Most studies of the relationship between specular reflections
and surface shape avoid the complications of natural lighting
by considering environments that contain a single point light
source. In these cases, oneobserves a small numberof isolated
“specularities” and, provided they can be accurately loca-

lized, each of these induces a constraint between a surface
point, its normal, and its local view and illumination
directions.When the camera and source positions are known,
for example, the surface normal and the surface depth at a
specular point are both determined up to a one-parameter
family. Constraints of this type have been used computation-
ally for different tasks, including recognition (e.g., [4]) and
surface reconstruction (e.g., [5], [6], [7]). In a similar vein,
complex illumination environments that are known and
controlled have been used to obtain higher order surface
information (e.g., curvature) [8], [9], [10], [11], [12], [13], [14],
[15] and to extract shape frommultiple specular bounces [16].

When two (stereo) views of a specular highlight are
available and illumination consists of a known point source,
the apparent shift of the specular highlight relative to the
surface constrains the surface curvature [17], [18]. While less
information is available when the position of the source is
unknown, two views of a specular reflection are still
sufficient to determine whether a surface is locally concave
or convex [19], [20].

Not unrelated to these “specular stereo” approaches are
methods that seek to exploit the motion of sparse specula-
rities. Qualitatively, it is known that as the observer moves,
specularities are created and annihilated in pairs at (or, in
the near-field case [21], close to) parabolic surface points
[22], [23]. More quantitatively, theory suggests that one can
recover a complete surface curve by observing the specular
motion induced by continuous camera motion [19],
although the existing techniques for doing so are restricted
to convex (or concave) surfaces without parabolic points
[24]. Dense 3D shape for more general surfaces can be
obtained by observing rotating objects under properly
configured extended light sources, and by integrating the
profiles from tracked specularities [25], [26].
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Fig. 1. Specular surfaces under dense, (approximately) far-field illumination are frequently encountered in everyday life (a)-(c), in art (d), (e), and in
technological applications (f). These images often convey useful shape information, such as the dent in the car (a), or the imperfections in a
building’s window (b), (c). Can this information be extracted computationally when the environment is unknown? The fact that one can manipulate
the environment to create almost any image from any specular object (e) casts doubt on the ability to do so.
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All of the methods mentioned above rely on either point
source environments or complex environments that are
known and calibrated. The inference of specular shape in
natural, uncontrolled illumination environments has re-
ceived significantly less attention. Such “real-world” en-
vironments induce dense specular reflections (Fig. 1) that are
qualitatively very different from the sparse specularities
described above. For still images of this type, it has been
observed that humans often (but not always [27]) infer
accurate shape, even when the illumination environment
and bounding contour of the surface are unknown [28].
While the exact mechanisms underlying these results are
not yet known, it has been suggested that humans exploit
the fact that image gradient directions are often correlated
with second derivatives of the surface [28], an observation
that has been exploited in the extraction of local shape
features and the nonphotorealistic rendering of specular
objects [29] and the detection of specular surfaces in natural
images [30].

Computationally, the inference of shape in such general
conditions is severely ill-posed. One can obtain additional
constraints, however, through observations of dense spec-
ular flow induced by relativemotion of the object, the viewer,
and/or the environment. In a qualitative analysis, Waldon
and Dyer [1] show that specular flow is singular along
parabolic curves when either the environment or viewer is
far from the surface, and that singularities can drift from
parabolic curves when both are nearby. (This is directly
related to the pairwise creation and destruction of sparse
specularities described above.) More quantitatively, Roth
and Black [2] present an optical flow algorithm that estimates
a specular flow field from an image sequence and simulta-
neously identifies a surface. Unlike our work, their system
considers flow estimation as well as reconstruction, and it
can handle surfaces with mixtures of specular and diffuse
materials. The main limitation of their approach is the set of
surfaces it considers, because the reconstruction amounts to
choosing a member from a parameterized family of convex
implicit surfaces (e.g., spheres of varying radii).

In contrast to the previous work, we seek quantitative
shape recovery for general free-form surfaces that are not
constrained to be convex/concave or of any particular
parametric form.Weconsiderunknown,natural illumination
environments, and surfaces that are free of diffuse texture
that could otherwise assist in the reconstruction process (e.g.,
[2]). The main contribution of our work is to show that
recovering specular shape in these conditions is tractable.

As a final note, it is worth recognizing the connection
between ourwork and the problem of nonparametric camera
calibration [31], [32], which also benefits fromobservations of
small motions. The difference of our work is that we
explicitly interpret the nonparametric image plane “warp”
as being caused by reflection from a single continuous
specular surface.

3 SHAPE FROM SPECULAR FLOW IN 2D

Before addressing the general three-dimensional problem,
important insights can be gained from analyzing the
inference of specular shape in two dimensions. This also
allows us to introduce our theoretical framework in
simplified terms. In this case, surfaces are reduced to plane
curves, images and specular flow fields are one-dimensional,
and the space of illumination directions is a circle (Fig. 2).

Here, we show that, under the conditions of our model (i.e.,
far-field illumination and observer), one can analytically
recover an arbitrary continuous 2D “surface” from the
observed specular flow.

As shown in Fig. 2, the visible part of a smooth surface
profile is assumed to be the graph of a function fðxÞ, and
the far-field illumination environment Eð�Þ describes the
incident radiance, which is independent of x. At a point x
on the image plane, we observe the radiance reflected from
a point on the surface having normal orientation �ðxÞ, and
the radiance measured at IðxÞ is simply the value of the
illumination environment Eð�ðxÞÞ in the mirror-reflected
direction �ðxÞ. Since the viewing direction is aligned with
� ¼ 0, it follows that �ðxÞ ¼ 2�ðxÞ.

To recover shape from specular flow, we seek a relation-
ship between motion of the environment ! ¼ d�=dt and the
induced motion field u ¼ dx=dt on the image plane. From
the sign convention in Fig. 2, it follows that

tanð�ðxÞ=2Þ ¼ �fxðxÞ:

Taking temporal derivatives of this last expression and
using the fact that sec2ð�=2Þ ¼ 1þ f2

x , we obtain the desired
relationship:

uðxÞ ¼ �!

2�ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ fxðxÞ2
q ; ð1Þ

where �ðxÞ ¼ fxx=ð1þ f2
xÞ

3=2 is the curvature of the curve at
point x.

Equation (1) is a generative equation for specular flow,
and it shows that specular flow is well defined everywhere
except at the projections of surface points having zero
curvature. Furthermore, as exemplified in Fig. 3, projections
of these points behave as either “sources” or “sinks” of
specular flow, in accordance with the pairwise specular
“birth” and “death” that is expected at parabolic lines in
three dimensions [22], [23]. In this example, where the
environment rotates in a counterclockwise manner, the flow
is divergent (expands “outward” in both directions) at the
left inflection point. This point behaves as a flow source—a
point where new regions of the environment come into
view on the image plane. By the same reasoning, the right
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Fig. 2. The specular shape reconstruction problem in two dimensions. A
surface profile fðxÞ (a plane curve) is illuminated by a far-field
illumination environment Eð�Þ, and is viewed orthographically to produce
a 1D image IðxÞ. The sign convention for the angular dimension is
shown in the inset.
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inflection point is a sink because the flow is convergent
there. Their roles would change if one were to reverse the
direction of environment rotation.

In order to recover the surface from the observed
specular flow, we rearrange (1) to obtain a Riccati equation:

2uðxÞfxx þ !f2x þ ! ¼ 0: ð2Þ
This second order nonlinear ODE can be reduced to a
separable first order equation by making the substitution
v ¼ fx, and it has a relatively simple analytic solution. We
first obtain the first derivative of the surface using

fxðxÞ ¼ tan �!

2

Z x

xi

d�

uð�Þ þ C

� �

;

where � is a dummy integration variable, xi is some initial
point on the image plane, and C is an arbitrary constant
that can be determined using an initial condition
C ¼ tan�1ðfxðxiÞÞ. Once the first derivative is known, the
surface f can be recovered through integration. This
introduces another arbitrary constant, which determines
the absolute depth of the surface and can be set to zero.

Ademonstration of this procedure is shown inFig. 3.Here,
a sequence of 1D images is rendered under an environment
that rotates in a counterclockwisedirection.While the content
of the environment is irrelevant, for this experiment we
extracted it from a great circle of the captured “St. Peter’s”
environment map [33]. Flow is estimated numerically and
independently at each pixel using the optical flow equation
Ixuþ It ¼ 0, and the surface is recovered by solving (2) using
the leftmost point of the curve as an initial condition.

3.1 Object Boundaries as Initial Conditions

When the surface profile is a smooth closed curve, object
boundaries occur where the surface normal is orthogonal to
the viewing direction, and the derivative is therefore known
at these points (see x0 and xf in Fig. 2). Thus, object
boundaries provide a convenient source for initial condi-
tions. Using the surface parametrization proposed above,
however, the initial conditions at the left and right object
boundaries are fxðxoÞ ! 1 and fxðxfÞ ! �1, which are
inconvenient for numerical purposes.

To get around this, we can reparameterize the surface
derivative fx using a stereographic projection [34], accord-
ing to which we define the following:

q ¼ 2fx

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

f2
x þ 1

p ;

fx ¼ 4q

4� q2
:

ð3Þ

Substituting in (2) yields an equation of the same form:

uðxÞqx þ
!

8
q2 þ !

2
¼ 0; ð4Þ

whose solution is

qðxÞ ¼ 2 tan �!

4

Z x

xo

d�

uð�Þ þ C

� �

: ð5Þ

Here, C is an arbitrary constant that can now be
determined using the initial condition provided by one of
the object boundaries:

C ¼ tan�1 qðxoÞð Þ ¼ tan�1 2ð Þ:
To recover the surface fðxÞ, the solution qðxÞ is transformed
via (3) and then integrated as before. This entire solution
approach is demonstrated in Fig. 4, where, unlike in Fig. 3,
the initial conditions were extracted automatically from the
observable occluding points of the unknown curve.

3.2 Observations

Since it enables the recovery of surface shape, we refer to (4)
as the shape from specular flow (SFSF) equation in two
dimensions. It has a number of notable properties. The
ODE can be solved analytically given an analytic expression
for the specular flow, and a unique solution can be readily
obtained using an “occluding contour” (or any other point at
which the first derivative is known) as a boundary condition.
Since there is no aperture problem in two dimensions,
specular flow can be estimated independently at every image
point from as few as two images. Thus, provided that the
illumination environment exhibits sufficient angular radi-
ance variation (“texture”), we are able to completely recover
a two-dimensional surface profile from as few as two frames.

Another important property is that the 2D SFSF
equation enables the recovery of arbitrary smooth surfaces,
including those with points of zero curvature. As noted
above, the specular flow approaches �1 at the projection
of an inflection point. However, surface reconstruction
requires the integration of the inverse flow, which is well
defined everywhere. We note that this ability to handle
general free-form surfaces differentiates our approach from
that of Oren and Nayar [24], which represents 2D curves
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Fig. 3. Recovering a surface profile from specular flow. A surface profile
fðxÞ (blue solid curve in (a)) is viewed under a rotating environment as
depicted in Fig. 2. This induces a specular flow (b) that is singular at
inflection points. Using this flow, we recover the surface by solving (4)
using the left-hand surface boundary as an initial condition. The surface
is recovered (red dashed curve in (a)) despite the singularities in
specular flow because reconstruction relies on the integration of inverse
flow, which is well defined everywhere.
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using a support function, and therefore, requires them to
be convex.

Thenice properties of the 2DSFSF equation followdirectly
from an image formation model that includes a far-field
viewer and environment and relative object/environment
motion. As we show in Section 5, many of these desirable
properties carry over to the three-dimensional case as well.

4 SHAPE FROM SPECULAR FLOW IN 3D

Much like the two-dimensional case described in the
previous section, we begin the three-dimensional analysis
by considering a surface Sðx; yÞ ¼ ðx; y; fðx; yÞÞ that is the
graph of a (bivariate) function. As before, the surface is
viewed orthographically from above and illuminated by a
far-field environment (see Fig. 5).

Let v̂ ¼ ð0; 0; 1Þ be the viewing direction, n̂ðx; yÞ the
surface normal at surface point ðx; y; fðx; yÞÞ, and r̂ðx; yÞ the
mirror-reflection direction at the same point. An image of
Sðx; yÞ on the orthographic image plane samples radiance
values of the distant illumination environment. In the 3D
case, this environment constitutes a sphere of directions,
whichweparameterizewith two spherical angles (zenith and
azimuth, with the zenith measured from the viewing
direction). In particular, we represent reflection directions
as ð�; �Þ and normal directions as ð�; �Þ, both under the sign
convention shown in Fig. 5. As in the previous section, these
directions are related by

�ðx; yÞ ¼ 2�ðx; yÞ;
�ðx; yÞ ¼ �ðx; yÞ:

In order to relate displacements on the image plane to
those on the illumination sphere, we note that the reflection
vector at each point can be expressed both in terms of
surface derivatives and spherical coordinates:

r̂ ¼ ðsin� cos �; sin� sin �; cos�Þ

¼
�

�2fx;�2fy; 1� f2
x � f2

y

�

f2x þ f2
y þ 1

:

From this relationship, we can deduce that

tan� ¼ 2krfk
1� krfk2

;

tan� ¼ fy
fx

:

ð6Þ

As in the two-dimensional case, we are interested in the
effects of environment motion. In three dimensions, the
angularmotion of a far-field environment can be represented
as a vector field on the unit sphere. We use the following
notation to describe this environment motion field (EMF)1:

!!ð�; �Þ ¼ ð!�ð�; �Þ; !�ð�; �ÞÞÞ ¼
d�

dt
;
d�

dt

� �

:

This is a general representation that can describe both “rigid”
motion (i.e., an environment that rotates around some fixed
axis relative to the object) and an arbitrary “nonrigid”
motion. In the rigid case, which is the focus of our analysis,
any small motion corresponds to the environment rotating
about an axis, say,

â ¼ ðsin�� cos��; sin�� sin��; cos��Þ
with angular velocity !. In this case, the EMF can be shown
to take the following analytic form:

!�ð�; �Þ ¼ ! sin�� sinð�� � �Þ;
!�ð�; �Þ ¼ ! cos�� � sin�� cosð� � ��Þ cot�ð Þ: ð7Þ

Environment motion induces a motion field, or a specular
flow, on the image plane. This flow, represented as

u ¼ uðx; yÞ; vðx; yÞð Þ ¼ dx

dt
;
dy

dt

� �

;
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Fig. 4. 2D shape from specular flow with (5) and initial condition
extracted automatically from an observable occluding boundary point.
All graphs are color-coded as in Fig. 3.

Fig. 5. The specular shape reconstruction problem in three dimensions.
A surface fðx; yÞ is illuminated by a far-field illumination environment
and is viewed orthographically to produce a 2D image Iðx; yÞ. The
illumination sphere is parameterized using spherical coordinates ð�; �Þ.

1. In the absence of interreflections, the law of specular reflection
guarantees that the coordinates ð�; �Þ of a surface reflection vector will be
equal to those of the corresponding point in the environment sphere. Thus,
we use the same notation for both.
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is related to the environment motion through the Jacobian:

!! ¼ dð�; �Þ
dt

¼ @ð�; �Þ
@ðx; yÞ

dðx; yÞ
dt

¼ Ju: ð8Þ

The Jacobian J can be expressed in terms of surface shape
by taking temporal derivatives of (6), which yields

J ¼4 @ð�; �Þ
@ðx; yÞ ¼

fxfxx þ fyfxy

krfk � ð1þ krfk2Þ
fxfxy þ fyfyy

krfk � ð1þ krfk2Þ
fxfxy � fyfxx

2krfk2
fxfyy � fyfxy

2krfk2

0

B

B

@

1

C

C

A

:

ð9Þ
Implicit in (8) is the fact that the environment direction

reflected by each point is determined by the surface
geometry, i.e.,

!! ¼ !!ð�ðfx; fyÞ; �ðfx; fyÞÞ ¼ ~!!ðfx; fyÞ:
Hence, when the environment motion field !! is known and
the induced specular flow u is observed (and measured) on
the image plane, (8) becomes a system of nonlinear PDEs in
the unknown shape fðx; yÞ. We refer to this equation as the
SFSF equation in three dimensions. Solving this equation is
equivalent to reconstructing the unknown specular shape.

4.1 Behavior at Parabolic Points

Equation (8) may be used to solve for an unknown shape
fðx; yÞ from a known specular flow ðu; vÞ, but we can also
invert the Jacobian J to derive a generative equation for an
unknown specular flow u induced by a known surface
fðx; yÞ under a given environment motion !!:

u ¼ J
�1!!: ð10Þ

Important insight into this relationship is revealed from the
determinant of J, which can be written as

DetðJÞ ¼ 2Kð1þ krfk2Þ
krfk ; ð11Þ

where K is the Gaussian curvature of the surface, i.e.,

K ¼
�

fxxfyy � f2
xy

�

=ð1þ krfk2Þ2:

Equation (11) tells us that the environment motion field
and specular flow are related by an isomorphism at all
surface points except parabolic points, where the Gaussian
curvature vanishes.2 This is analogous to the two-dimen-
sional case in which the specular flow is infinite at inflection
points. In the three-dimensional case, the magnitude of the
specular flow generically grows unbounded at the image
projection of a parabolic point on the surface. (Note that this
is different from the near-field case [1], [10], where the flow
singularities can drift away from parabolic points.) A
synthetic example of this phenomenon, with the specular
flow computed using (10), is demonstrated in Fig. 6.

The unique behavior of specular flow near parabolic
points must be considered when one seeks to estimate
specular flow from image data. Like standard optical flow,

the aperture problem means that purely local estimation is

underconstrained and that regularization is required to

accomplish the task. Most existing regularization schemes

for optical flow are unsuitable, however, because they are

designed to handle piecewise smooth flows with finite

magnitude. While not considered in this paper, it is

possible that the differential geometric analysis provided

above will prove useful in designing more suitable

regularization schemes.

5 ENVIRONMENT MOTION ABOUT THE VIEW

DIRECTION

Solving the 3D SFSF (8) in general may be a very difficult

task as is usually the case with nonlinear PDEs. One

special case in which this equation assumes a simple form

that can be solved analytically occurs when the axis of

environment rotation â is aligned with the view direction v̂

(i.e., â ¼ ð0; 0; 1Þ). In our spherical coordinate system,

environment rotation about the view direction induces

the motion field

!�ð�; �Þ ¼ 0;

!�ð�; �Þ ¼ !;
ð12Þ

with ! being the scalar angular velocity.
To exploit the reduced complexity, we define two

auxiliary functions corresponding to the surface gradient

magnitude and orientation:
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Fig. 6. The magnitude of the specular flow induced by a specular surface
under environment motion. (a) The shape of a synthetic specular
surface with parabolic lines superimposed. (b) One frame of a rendered
image sequence under a rotating environment. Superimposed are the
projection of the parabolic curves. (c) A zoomed image of the log-
magnitude of the induced specular flow in the marked region of interest.
Note how the flow magnitude is incomparably larger (even in the
logarithmic scale) near parabolic lines than in any other surface point.

2. Singularities also occur at points where krfk ¼ 0, which is caused by
our choice of spherical coordinates. In practice, these points are likely to
reflect the observer, who, unlike the rest of the environment, does not move
relative to the surface, and hence, provides little in the way of shape
information.
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hðx; yÞ ¼4 f2
x þ f2

y ;

kðx; yÞ ¼4 tan�1ðfy=fxÞ:
ð13Þ

The SFSF equation then reduces to a particularly simple
form:

hx hy

kx ky

� �

u
v

� �

¼ 0

2!

� �

; ð14Þ

with the derivatives of h and k derived directly from (13):

hx ¼ 2ðfxfxx þ fyfxyÞ; hy ¼ 2ðfxfxy þ fyfyyÞ;
kx ¼ fxfxy � fyfxx

krfk2
; ky ¼

fxfyy � fyfxy

krfk2
: ð15Þ

For convenience, we define

~J ¼4 hx hy

kx ky

� �

; ð16Þ

in which case (14) can be written as

~Ju ¼ ð0; 2!Þ:
Equation (14) represents a pair of decoupled, linear PDEs in

h and k. Hence, by observing the specular flowu ¼ ðu; vÞ, one
can solve each of these equations in closed form using the
method of characteristics. The characteristic curves for both
equations are the same, and they correspond to the integral
curves of the specular flow. Of course, the surface will be
recovered through this procedure provided that requisite
initial conditions are available, i.e., rf is known at one or
more points along each integral curve of the specular flow.
Once hðx; yÞ and kðx; yÞ are known, the surface gradient can
be recovered by inverting the expressions in (13):

fx ¼
ffiffiffi

h
p

cos k;

fy ¼
ffiffiffi

h
p

sin k;
ð17Þ

and derivative functions can be integrated to recover the
surface fðx; yÞ. Clearly, the absolute depth of the surface
cannot be recovered unless the absolute depth of one or
more surface points is given by some other means.

5.1 Shape Recovery under Unknown Angular
Velocity

In addition to facilitating a shape recovery procedure, (14)
has a straightforward and useful geometric interpretation:
Its two linear equations constrain the directional derivatives
of the magnitude (hðx; yÞ) and orientation (kðx; yÞ) of the
surface gradient along integral curves of specular flow.

In particular, consider the second equation that con-
strains the behavior of kðx; yÞ. That equation can be
rewritten in terms of the unit specular flow û:

û � rk ¼ u

kuk � rk ¼ 2!

kuk ; ð18Þ

which implies that the rate of change in the surface gradient
orientation along each arc-length-parameterized character-
istic must be proportional to the angular velocity ! and
inversely proportional to the flow magnitude kuk. Since k is
an angle, its rate of change can be interpreted as a curvature
measure in the spirit proposed in studies of oriented
patterns and visual flows (e.g., [35]). Given the specular
flow u induced by environment rotation about v̂, we can

therefore define its specular curvature as the covariant
derivative rûk, i.e.,

�s ¼4 rûk ¼ rk � û ¼ 2!

ku k : ð19Þ

Moreover, since the characteristics (the integral curves of the
specular flow) are generically closed curves, integrating �s

along each such curvemust yield 2N�, whereN is an integer,
in order to satisfy surface integrability. While there are cases
whereN takes arbitrary integral value, generically it is either
0 or 1, depending on the local shape of the surface patch and
whether or not the characteristic intersects parabolic curves
on the surface (see Fig. 7). While a complete account of this
issue is outside the scopeof thispaper,weprove the following
weaker proposition, which is sufficient for our purposes.

Proposition 1. Let p be an elliptic extremum point of a bounded
Monge patch ðx; y; fðx; yÞÞ. Let u be the observed specular flow
under a view-axis EMF. Then, there exists a closed characteristic
curve CðsÞ; s 2 ½0; l� of the SFSF (14) that goes around p and
satisfies

I

C

�sds ¼
I

C

2!

uk k ds ¼ 2�:

That is, CðsÞ is a characteristic for which kðx; yÞ completes
exactly one revolution (N ¼ 1).

Proof. Assume,without loss of generality, that fðx; yÞ is given
such that p is the origin and the frame axes coincide with
the principal directions of the surface at p (or, if p is
umbilical, assume arbitrary frame). A second order Taylor
expansion of fðx; yÞ in this coordinate frame is

fðx; yÞ ¼ 1

2
�1x

2 þ �2y
2

� �

þR

where �1 and �2 are the principal curvatures at p and R
includes higher order terms. The surface gradient and
the function hðx; yÞ (13) are therefore approximated by

rf ¼ ð�1x; �2yÞ;
hðx; yÞ ¼ �2

1x
2 þ �2

2y
2;

while the gradient of h (15) is approximated by

rhðx; yÞ ¼
�

2�2
1x; 2�

2
2y
�

:

Since rh � u ¼ 0 (see 14), the gradient of h is always
perpendicular to the specular flow, i.e., rh is every-
where normal to CðsÞ. Also note that kðx; yÞ can be
expressed in unit vector form k̂ðx; yÞ as

k̂ ¼ rf

krfk :

Given all of the above, consider the angle (expressed as a
dot product) between k̂ and rh along a characteristic
CðsÞ that is sufficiently close to p:

k̂ � rh

krhk ¼ 2

krfk � krhk
�

�3
1x

2 þ �2
3y

2
�

:

Since p is elliptic,�1 and�2 have the same sign andare both
nonzero, which implies that the dot product never
vanishes. Thus, k̂ is nowhere perpendicular to rh and is
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nowhere tangent to the specular flow u. Since this is
equivalent to being nowhere tangent to the integral curve
CðsÞ, k̂ points either inside or outside CðsÞ along CðsÞ’s
entire length. This guarantees that k̂ completes the same
number of revolutions as the tangent of CðsÞ, and,
following the theorem of turning tangents [36, p. 37], we
conclude that

I

C

�sds ¼
I

C

�cds ¼ 2�;

where �c is the curvature of the curve CðsÞ. tu
Given Proposition 1, suppose that a bounded specular

surface is viewed under a view-axis EMF, but unlike the
previous section, suppose the angular velocity! is unknown.
We claim that the specular shape can still be reconstructed
since ! can be recovered automatically from the specular
flow field by exploiting this proposition. Indeed, such
bounded surfaces generically have at least one elliptic
extremum point (the one closer to the viewer) having a
normal that coincides with the viewing direction. Such
points produce zero specular flow and can be identified in
the flow field (see also footnote 2). A characteristic CðsÞ
around such a point that does not intersect a parabolic curve
(which can also be identified in the flow field) satisfies
Proposition 1, and by computing

! ¼ �
H

C kuk�1ds
; ð20Þ

the angular velocity ! can be recovered.
In summary, the following procedure provides dense

surface shape from specular flow induced by a view-axis
rotation of the environment with arbitrary and unknown
angular velocity:

Reconstruction Algorithm I: View-axis Rotation

1) Recover ! using (20).

2) Solve (14) for hðx; yÞ and kðx; yÞ.

3) Recover fx and fy using (17).

4) Integrate fx and fy to obtain fðx; yÞ.

5.2 Numerical Considerations

Carrying out the reconstruction procedure numerically
requires special care. While integration can be accom-
plished using standard numerical tools, such as Runge-
Kutta methods (e.g., Matlab’s ode45 PDE solver), doing so
naively fails at the singularities—both in magnitude and
orientation—that occur along parabolic curves. To insure
numerical stability, we must preprocess the observed flows
and rewrite the SFSF equation.

Throughout the paper, we have assumed that a specular
flow field is given as input. Of course, any practical system
that estimates such a flow field from image data will
necessarily identify parabolic curves (as flow singularities)
during the estimation process. Thus, if we assume that the
flow fields are given as input, it is natural to assume that the
locations of the parabolic curves are given as well. Since
parabolic curves determine the Gaussian curvature function
up to a binary choice, this means that we have access to a
function g up to sign, where g is defined by

gðx; yÞ ¼4 1; Kðx; yÞ � 0;
�1; Kðx; yÞ < 0;

�

and Kðx; yÞ is the Gaussian curvature function.
The function�g can be used to multiply both sides of (14)

toeffectively “flip” the flowdirection in regionsofpositive (or
negative) Gaussian curvature and remove orientation singu-
larities. Coupled with this, we can scale the equations by the
inverse flow magnitude to remove instabilities caused by
large flow magnitudes. This yields the equations

u � g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p hx þ

v � g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p hy ¼ 0;

u � g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p kx þ

v � g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p ky ¼

2! � g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p ;

ð21Þ

8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. XX, XXXXXXX 2010

Fig. 7. The specular curvature �s of the auxiliary function kðx; yÞ (the surface gradient orientation field) integrates to 2N� along any closed
characteristics, where generically, but not always, N 2 f0; 1g. (a) Several characteristics (in gray), the k function (depicted as a unit length vector
field in red), and the parabolic lines (in black) of a particular shape (Fig. 12a). Several characteristics are highlighted by different colors. Note that k
completes one full revolution (N ¼ 1) along the blue characteristic and along the red characteristic, but zero revolutions (N ¼ 0) along the green
characteristics. (b) Degenerate surfaces can produce specular flows for which the specular curvature along closed characteristics of the SFSF
equation integrates to 2N� with N > 1. Shown is the flow field induced by the monkey saddle surface fðx; yÞ ¼ x3 � 3xy2 for which the function k
completes two full revolutions (i.e., �s integrates to 4�) along any characteristic curve.
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which have the same characteristic curves as those of (14)
but can be solved numerically using standard tools. Since
this manipulation flips the flow direction in some regions
on the image plane, we refer to the function g as the
“flipping function” in the sequel.

5.3 Experimental Results for View-Axis EMF

We have tested the theory and reconstruction procedures
discussed above on both synthetic and real data. Synthetic
data were generated by placing virtual specular surfaces in
real far-field illumination environments [33] and rendering
them under orthographic projection. This type of evaluation
provides access to ground truth shape for comparison, and
it also enables us to compute specular flow fields (using
(10)) instead of measuring them from image data. One such
example is shown in Fig. 8 and it includes both the
measured and flipped specular flow, the flipping function,
the computed characteristic curves versus the function h
level sets (which represent the ground truth computation),
and the reconstructed surface. To demonstrate the essential
role of the flipping procedure, we also show the result of
integrating selected characteristics without it (Fig. 8f). To
compare the recovered surface against the ground truth, we
report both the absolute reconstruction error (Fig. 8k) and
the relative reconstruction error in percent of surface height
at each point (Fig. 8l). Initial conditions for this example
were supplied along the two main axes.

In addition to synthetic results, we also applied our
reconstruction procedure to real image data acquired using
the system depicted in Fig. 9a. A camera (Canon 10D, EF
75-300 mm lens, EF 25 II extension tube) was placed 1 m
from a 5 cm-diameter chrome sphere. Both the camera and
the object were placed in an unknown, far-field illumina-
tion environment (a large lecture hall), and rotated as a
fixed pair about an axis parallel and close to the camera’s
optical axis. One frame of the captured image sequence is
shown in Figs. 9b and 9c.

Specular flow was recovered from this image sequence
using the Horn and Schunck algorithm [37]. Based on this
flow, the surface was recovered as described in the previous
section, with the important exception that the angular
velocity was given as input (! ¼ 0:5�/frame) as opposed to
being estimated from data. (This experimental setup pre-
cludes the existence of the closed integral curves required for
estimating !.) Initial conditions were provided manually by
specifying the surface gradient along the red curve shown in
the figure. TheRMS error in the reconstruction as a fraction of
the sphere radius was approximately 1 percent.

While a specular sphere is a relatively simple object, it
provides the benefit of readily available ground truth shape
for the purpose of quantitative performance evaluation.
Unfortunately, no such data were available to us for more
complex specular objects (and devising ways to construct
such objects is part of our future work). Still, to obtain
additional confirmation of the reconstruction abilities of our
method for more general shapes, we have applied it to
nontrivial, real specular objects with no ground truth shape
and compared the results visually. One such example is
shown in Fig. 10. As with the sphere, the corresponding
specular flow was measured using the Horn and Schunck
algorithm [37] and initial data were measured manually
(and therefore, inevitably, inaccurately).

We reiterate that measuring specular flows reliably and
correctly from images is a difficult problem in itself, which is
not addressed in this paper. Standard approaches succeed in

Fig. 9 due to the absence of parabolics, but to our knowledge,
no existing optical flow technique can handle the unique
singularities that occur when surfaces are nonconvex.
Developing suitable new optical flow techniques is an
important direction of future work (see Section 7).

In addition to these results on synthetic and captureddata,
wepresent a theoretical example that emphasizes the ability to
obtain analytical solutions whenever the measured specular
flow can be expressed analytically (either explicitly or via
interpolation of discrete measurements). As before, consider
the specular flow observed for a sphere under view-axis
rotation.One can showthat the resulting specular flow field is

uðx; yÞ ¼ �!y;

vðx; yÞ ¼ !x:

This expression for the specular flow can be used in (14) to

obtain the Cauchy problem

�!yhx þ !xhy ¼ 0;

�!ykx þ !xky ¼ !;

where the initial conditions are

�h ¼ x ¼ 0; y ¼ 	; h ¼ 	2

r� 	2

� �

;

�k ¼ x ¼ 0; y ¼ 	; k ¼ �

2

n o

:

The first step toward solving this problem is to find its
characteristic curves. Given their similar structure, both
equations have the same characteristic curves

dx

�y
¼ dy

x
) �xdx ¼ ydy ) x2 þ y2 ¼ c:

Using the characteristic curves and �h, we solve for h in a

straightforward way

c ¼ 	2 ) x2 þ y2 ¼ 	2 ) h ¼ x2 þ y2

r� x2 � y2
:

Since the second equation is inhomogeneous, we require an

additional step. We first note that

dy

x
¼ dk ) dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

	2 � y2
p ¼ dk ) arcsin

y

	
¼ kþ c;

and, using the initial condition �k, we conclude that c ¼ 0

and

k ¼ arcsin
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � y2
p :

Finally, the surface derivatives are

fx ¼
ffiffiffi

h
p

cos k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r� x2 � y2
p

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � y2
p ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r� x2 � y2
p ;

fy ¼
ffiffiffi

h
p

sin k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r� x2 � y2
p

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � y2
p ¼ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r� x2 � y2
p ;

and by integrating these derivative functions, the sphere is

recovered as a height function

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r� x2 � y2
p

:
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6 GENERAL ENVIRONMENT MOTION

The special case described above—the case of rotation

about the view direction—is important because it enables

closed-form solutions. However, it is quite “accidental.” In

this section, we relax this restriction on â while maintain-

ing the ability to find closed-form solutions. We show that
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Fig. 8. Example of specular shape reconstruction of a general surface observed under environment rotation about the viewing direction. (a) The original
surface fðx; yÞ ¼ 0:2ab2 � 1:1 sinðaÞ. This surface includes multiple extrema and several elliptic and hyperbolic regions. The parabolic lines that
separate these regions are marked here in black. (b) The illumination environment (mapped on a disk of directions) in which the specular surface was
observed [33]. (c) One image from the image sequence obtained under view-axis environment motion. (d) The observed specular flow field under this
EMF. Flow magnitude is color-coded and orientation is shown by the superimposed unit-length vector field. (e) Detail of singularities in the flow field.
Note the singularities in both magnitude and orientation. (f) Solving the SFSF equation in the presence of specular flow singularities is prone to fail.
Note how the red integrations that begin from the blue points fail to follow the true level sets of the h function (show in light gray) as soon as they need to
cross a singularity. Compare to the green curve that keeps off these singularities. (g) The flipping mask. Compare this mask to the specular flow
magnitude in panel (c). (h) The flipped specular flow. Note how the orientation singularities were eliminated. (i) Solving the normalized SFSF equation
provides robust solutions. Shown here are characteristics of the function h based on (21). (j) The reconstructed surface. (k) Absolute reconstruction
error, expressed as percentage of surface relief. (l) Relative reconstruction error, expressed as percentage of surface height at each point.
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this can be done for arbitrary rotation axes â in the case
when the object is observed under two or more known
environment motions, each inducing a distinct specular
flow. Furthermore, we show that with multiple specular
flows, one can recover the shape even without knowing
the environment motions under which they were ob-
served. This leads to an “autocalibrating” reconstruction
procedure that requires no knowledge about the environ-
ment content or its motion.

We begin by expressing the general EMF in (7) explicitly
in terms of the surface and its derivatives. For this, we first
note that (see also (6))

cot� ¼ 1� krfk2
2 � krfk ;

sin� ¼ �fy
krfk ;

cos� ¼ �fx
krfk ;

ð22Þ

and, substituting these expressions into (7), we obtain

!�ð�; �Þ ¼
! sin��
krfk ðfy cos�� � fx sin��Þ;

!�ð�; �Þ ¼ ! cos��

þ ! sin��
1� krfk2

2 � krfk2
ðfx cos�� þ fy sin��Þ:

ð23Þ

Using this in conjunction with the auxiliary functions from
(13), we can therefore rewrite the SFSF as follows:

~Ju ¼ ! sin��
2ð1þ hÞðfy cos�� � fx sin ��Þ

2 cot�0 þ
1� h

h
ðfx cos�� þ fy sin��Þ

 !

: ð24Þ

At first sight, this expression (24) seems to offer little
advantage over the original SFSF equation ((8) and (9)).
Indeed, while it has been reduced from second order to first
order, the equations are still coupled and nonlinear. Even
worse, it now involves three unknown and coupled
functions (h, k, and f). As we will see, however, this form
is the key to the multiple flow approach discussed next.

6.1 Two Equal-Azimuth Motions

Consider a specular object viewed under two different
EMFs defined by the two different rotation axes,

â1 ¼ ð�1; �0Þ;
â2 ¼ ð�2; �0Þ;

ð25Þ

and angular velocities !1 6¼ 0 and !2 6¼ 0, respectively.
Assume that â1, â2, and the viewing direction are all in the
same plane, i.e., the two rotation axes have identical azimuth
angle, as depicted graphically in Fig. 11. Note that if either
�1 ¼ 0 or �2 ¼ 0, the corresponding EMF reduces to the
special solvable caseof rotation around theviewingdirection.
We therefore assume that neither zenith angle vanishes.

Let u1 ¼ ðu1; v1Þ and u2 ¼ ðu2; v2Þ be the specular flows
obtained due to the first and second EMFs, respectively,
and consider the following “normalized” specular flows ~ui

for i 2 f1; 2g:

~ui ¼
~ui

~vi

� �

¼4 ui

!i sin�i
¼ ui

!i sin�i
;

vi
!i sin�i

� �

: ð26Þ

Since !i 6¼ 0 and �i 6¼ 0, both normalized flows are well
defined. By rewriting (24) in terms of ~ui, we now obtain the
following two SFSF equations for i 2 f1; 2g:

~J~ui ¼
2ð1þ hÞðfy cos �� � fx sin��Þ

2 cot�i þ
1� h

h
ðfx cos �� þ fy sin ��Þ

 !

:

This equation is significant because it is linear in the arbitrary
azimuthal angles �1 and �2. Hence, by subtracting the
equations due to the first and second EMFs, we can obtain
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Fig. 9. Recovering general shape from specular flow in three dimen-
sions. (a) Under far-field illumination, a camera and object rotate as a
fixed pair around a line parallel to the optical axis. (b) One image from a
captured sequence. (c) Estimated specular flow. (d) Shape recovered by
solving the 3D shape from specular flow equation as described in
Section 5. The surface gradient is assumed known along the red curve,
which provides the necessary initial conditions.

Fig. 10. Reconstruction of a nontrivial real specular object. (a) A blob-like
specular object (mounted on a stand). The black arrow shows the
viewing direction. (b) A single frame from the specular flow sequence
captured by the camera. (c) The reconstructed shape. Compare
(qualitatively, since no ground truth shape data were available) to the
perceived shape in panel a.
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~Jð~u1 � ~u2Þ ¼
0

2 cot�1 � 2 cot�2

� �

: ð27Þ

Since ~u1 � ~u2 is easily computed from the measured pair of
specular flows, (27) is a pair of decoupled linear PDEs in the
unknown h and k and the known EMFs. This equation is in
exactly the same form as that of a single, view-axis EMF,
and it is therefore solvable using the technique discussed in
Section 5.

6.2 Combining EMFs Linearly

Equation (27) implies that a linear combination of two
measured specular flows (under equal-azimuth motions)
gives an SFSF equation of the type obtained for a single
EMF around the viewing direction. This should not come as
a surprise. In fact, (7) already suggests that if !!1 and !!2 are
two equal-azimuth EMFs (cf., 25), then there exist two
constants 
1 and 
2 such that their linear combination


1!!1 þ 
2!!2 ¼ 0

1

� �

ð28Þ

corresponds to a unit-speed, view-axis EMF (Fig. 11).
Applying this requirement first to !�ð�; �Þ from (7) implies
that 
1 and 
2 must satisfy


1!1 sin�1 þ 
2!2 sin�2 ¼ 0;

a constraint which can be trivially satisfied by the normal-
ization factor used in (26), i.e.,


1 ¼
1

!1 sin�1

; 
2 ¼ � 1

!2 sin�2

:

Next, by dividing both 
1 and 
2 by the common factor
2 cot�1 � 2 cot�2 that appears in (27), we also satisfy the
requirement on !�ð�; �Þ and find the final 
1 and 
2.

Exploiting the observation above, we can now rewrite
the SFSF for the special case of rotation around the viewing
direction (and with angular velocity ! ¼ 1) as a linear
combination of the general SFSF equations due to two
equal-azimuth EMFs

0

1

� �

¼
X

2

i¼1


i!!i ¼ J

X

2

i¼1


iui ¼ ~J
X

2

i¼1


iui

2
; ð29Þ

which clearly reduce to (27) developed above.
Generalizing the insights discussed above, we note that,

given n � 3 EMFs !!i, at least three of which have distinct
rotation axes âi, one can find a set of constants 
i such that
the linear combination

X

n

i¼1


i!!i ¼ 0

1

� �

ð30Þ

is a view-axis EMF with unit angular speed. If the rotation
axes ð�i; �iÞ and angular velocities !i are known, one can
use (7) to solve for 
i and express them in terms of these
parameters. Then, as in the two-EMF case, the view-axis
SFSF can be rewritten as a linear combination of general
SFSF equations due to the general EMFs,

0

1

� �

¼
X

n

i¼1


i!!i ¼ J

X

n

i¼1


iui ¼ ~J
X

n

i¼1


iui

2
; ð31Þ

which can be solved using the technique discussed in

Section 5.

6.3 Three Arbitrary Motions

Section 6.1 showed that the shape from specular flow

problem can be solved for two general EMFs as long as they

obey one restriction—their rotation axes must be coplanar

with the view axis. Equation (31) suggests, however, that this

restriction can be eliminated once we use three (or more)

EMFs. Indeed, consider a specular object viewed under three

different EMFs defined by the three different and arbitrary

rotation axes

âi ¼ ð�i; �iÞ i 2 f1; 2; 3g

and angular velocities !i 6¼ 0, i 2 f1; 2; 3g, respectively. Let
ui ¼ ðui; viÞ, i 2 f1; 2; 3g, be the corresponding specular flows

observed in the image plane for each EMF and consider the

following “normalized” specular flows ~ui for i 2 f1; 2; 3g:

~ui ¼4
ui

!i sin�i cos�i
¼ ui

!i sin�i cos�i
;

vi
!i sin�i cos �i

� �

:

By rewriting (24) in terms of these definitions, we now get

the following three equations:

~J~ui ¼
2ð1þ hÞðfy � fx tan�iÞ

2
cot�i

cos�i
þ 1� h

h
ðfx þ fy tan�iÞ

0

@

1

A i 2 f1; 2; 3g:

Then, by subtracting proper weighted combinations of pairs

of equations, we obtain

~J

~u1 � ~u2

tan�2 � tan�1

� ~u1 � ~u3

tan�3 � tan�1

~v1 � ~v2
tan�2 � tan�1

� ~v1 � ~v3
tan�3 � tan�1

0

B

B

@

1

C

C

A

¼ 0

�

� �

; ð32Þ
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Fig. 11. Two EMFs with rotation axes of equal azimuthal angle. A linear combination of these two vector fields is equal to an EMF around the viewing
direction. Since the SFSF is solvable in the latter case, the specular shape can be recovered after being observed under two such EMFs.
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where � is the following scalar defined from the three
rotation axes:

� ¼ cot�1 cos �2 � cot�2 cos �1

cos�1 sin �2 � cos�2 sin�1

� cot�1 cos�3 � cot�3 cos�1

cos �1 sin�3 � cos�3 sin �1

:

Notably, dividing (32) by � reduces it to (31), as expected.
Since the weighted combination of specular flows is

easily computed from the measured specular flows and the
known EMFs, (32) is a set of two decoupled linear PDEs in
the unknown h and k, and once again, we arrived at an
equation that resembles in structure the case of a single
view-axis EMF. Hence, as in Section 6.1, (32) is solvable
using the same technique discussed in Section 5.

6.4 Shape Recovery under Unknown Arbitrary
EMFs

The previous section demonstrates that the shape of a
specular surface can be recovered in closed form given its
specular flows under two or more known environment
motion fields. A natural question is whether or not shape can
still be recovered in the “uncalibrated case,” i.e.,whenneither
the angular velocities nor the rotation axes of the input EMFs
are known. In this section, we answer this question in the
affirmative. Somewhat surprisingly, this requires no addi-
tional information or assumptions beyond those used so far.

In order to address surface reconstruction under multi-
ple unknown EMFs, recall first that we need to linearly
combine several EMFs to yield a solvable view-axis SFSF
equation (cf., (31) or (32)). When the EMF parameters (i.e.,
their rotation axes âi ¼ ð�i; �iÞ and angular velocities !i) are
known, the coefficients 
i of this linear combination can be
computed analytically. However, as we argue next, these
coefficients can be recovered even when the EMF para-
meters are unknown.

Consider again (14), which represents the SFSF problem
for EMFs about the viewing direction. Section 5.1 exploited
a geometrical interpretation of this equation with regard to
the behavior of the function kðx; yÞ in order to automati-
cally recover the angular velocity of the EMF. In the same
spirit, consider now the equation in hðx; yÞ from (14), i.e.,
the equation

u � rh ¼ 0:

This equation dictates that, for a view-axis rotation, the
specular flow must be perpendicular to the gradient of
hðx; yÞ and therefore parallel to its isocontours (see also
Proposition 1). Since hðx; yÞ is defined as the square
magnitude of the surface gradient (13), the integral curves
of specular flow must therefore be curves of constant
gradient magnitude. One useful curve for which this holds
is the shape’s occluding contour. While the flow is zero at
the contour itself, there are always curves of isogradient
magnitude arbitrarily close to it in the object domain, and
when the environment rotates about the view axis, the flow
direction along such a curve must be tangent to the
occluding contour. Assuming that the occluding contour
can be detected in an image, this tangency condition can be
used to determine the coefficients 
i.

More formally, if �ðsÞ is an arc-length-parameterized
curve representing the object’s occluding contour, then

the specular flow u due to an EMF about the view axis
must satisfy

uð�ðsÞÞ ¼ vðsÞ�0ðsÞ; ð33Þ

where vðsÞ is some scalar function of the arc length. Given
multiple observed specular flows ui due to EMFs !!i, the
coefficients 
i that bring the linear combination

P

i 
i!!i to a
view-axis rotation are those for which a combined flow �u ¼
P

i 
iui satisfies the tangency condition in (33). Computa-
tionally, these coefficients are given by

argmin

i

Z

�

E � �0ðsÞð Þ; � �uð�ðsÞÞð Þ½ �ds; ð34Þ

where �ð�Þ is a function returning the orientation of its vector
argument and E is any suitable penalty metric between two
orientations. Although in our experiments we used least
squares, other penalty functions can be used as well.

Finally, we note that the solution to (34) may not be
unique if the number of linearly independent input flows
exceeds 3. Note also that the tangency constraint only
determines the coefficients up to scale, but since this scale
factor is simply the angular velocity, it can be recovered
using the procedure described in Section 5.1. In summary,
the following procedure provides dense surface shape from
multiple specular flows induced by arbitrary and unknown
rotations of the environment:

Reconstruction Algorithm II: Multiple unknown

arbitrary EMFs

1) Use (34) to find 
i such that �u ¼Pi 
iui

satisfies the tangency condition along the
occluding boundary.

2) Apply Reconstruction Algorithm I (page 8)

on �u to reconstruct fðx; yÞ.

6.5 Experimental Results

The procedure for specular shape reconstruction from
multiple specular flows induced by arbitrary and unknown
EMFs was evaluated using data similar to that of Section 5.3.
Synthetic surfaces were placed in captured illumination
environments and used to generate multiple distinct spec-
ular flow fields corresponding to different rotation axes.
Given multiple specular flows for different (two or three)
EMFs, the “normalized” linear combination that corre-
sponds to a view-axis EMF was computed by minimizing
the least square error of the tangency condition. Given the
recovered coefficients of the combination, the corresponding
view-axis SFSF equation (31) was derived to yield the PDEs
for hðx; yÞ and kðx; yÞ as described in Section 6. The resulting
final equation was then solved for hðx; yÞ and kðx; yÞ as
discussed in Section 5, using manually provided initial
conditions. Two examples of this entire process are shown in
Figs. 12 and 13. Note that the numerical considerations
described in Section 5.2 apply here as well.

7 SUMMARY AND DISCUSSION

This paper introduces a novel theoretical framework for the
reconstruction of smooth specular shapes from observed
motion in natural, unknown, and uncontrolled environ-
ments. Using far-field view and illumination conditions and
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relative object/environmentmotion,we analyze the relation-

ship between observed specular flow and specular shape

(assuming no interreflections), and derive a system of

couplednonlinearPDEs that canbe solved for reconstruction.

We show that in the particular case of environment rotation

around the viewing direction, this system can be reduced to a

pair of linear PDEs and solved either analytically or

numerically.
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Fig. 13. A second example using the surface fðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� x2 � y2 � cosð3x� 6Þ � 2 sin 2y
p

. Note that this surface is significantly more complex than
the previous one in the sense of having more parabolic lines as well as multiple maxima, minima, and saddle points. (a) The original surface. (b) The
“corrected” weighted specular flow used in the integration. (c) The recovered surface.

Fig. 12. An example of specular shape reconstruction of a general surface observed under three arbitrary and unknown EMFs. (a) The original surface
fðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� x2 � y2 � cos ð2x� 2Þ � sin 2y
p

. As in the previous examples, this surface includes multiple maxima and several elliptic and hyperbolic
regions separated by parabolic lines, shown here in black. (c) One snapshot of the specular surface obtained under the first EMF. (d)-(f) Specular flow
obtained from the three different EMFs. (â1 ¼ ð180�;�45�Þ, â2 ¼ ð�30�;�18�Þ, â3 ¼ ð45�;�60�Þ). Although the EMFswere known, this information was
not used in the reconstruction. (g) The weighted specular flow obtained by a linear combination of the three different EMFs. The coefficients of the
combinations were recovered based on (34) and least squares as the optimality criterion. (h) The reconstructed surface. (i) Absolute reconstruction
error, reported as percent of maximum input surface height.
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Armed with a computational procedure for solving the
SFSF problem for environment rotations about the view
direction, we then show that specular shape can be
reconstructed from specular flow under arbitrary rotations
once the same object is observed under multiple distinct
motions. Furthermore, we show that with multiple specular
flows, one can recover the shape without knowing the
environment rotations under which they were observed.

Several extensions and research directions arise naturally
from our results. In particular, the problem of measuring
the specular flow itself was not discussed in this paper. This
problem shares many features with optical flow estimation,
but it is also fundamentally different due to the unique
structures and singularities that specular flows exhibit, both
in terms of orientation and their magnitude, especially
along parabolic lines. While many optical flow techniques
do exist, it is likely that reliable specular flow estimation, if
possible, would require novel schemes and regularization
approaches. As mentioned before, it is possible that the
differential geometric analysis we provide in this paper
may be constructive for this aspect of the problem as well
(perhaps using the framework described in [38]). In this
context, the unique behavior of specular flow around
parabolic curves may be useful for identifying them and
distinguishing them from other types of flow singularities
(e.g., due to surface discontinuities and interreflections).
This, in turn, could facilitate the reconstruction of piecewise
smooth specular shape as well. In any case, a study of the
specular flow itself should also assist in recovering or
estimating the required initial conditions for the solution of
the SFSF equation and replace the present need to provide
these data by other means (for example, by spatial sampling
or using calibrated illumination sources). It can also assist in
determining the occluding boundaries of specular objects
(e.g., for the application of the tangency condition from
Section 6.4), a task that could become nontrivial, for
example, in complex specular of hybrid scenes with
multiple objects that occlude each other.

Another issue that deserves attention regarding the
practical reconstruction of shape from specular flow is the
numerical sensitivity of the proposedmethods. For example,
even if specular flows could be measured from image data,
one should expect imperfect measurements and flow fields
corruptedwithnoise. It is therefore natural to askwhether the
proposed shape reconstruction methods exhibit graceful
degradation in the presence of noise, or if they collapse
completely. Preliminary analysis canbe conductedbyadding
noise to synthetic specular flows (Table 1 and Fig. 14), and
such an analysis suggests that the proposed methods may

indeed be robust. But an in-depth investigation of numerical

sensitivity aswell as experiments on real data is an important

future research direction. As part of this research thread, it

wouldbe beneficial to design andbuild an acquisition system

that generalizes the system inFig. 9 byproviding the ability to

induce arbitrary rotation axes. Until these issues are studied
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Fig. 14. Qualitative sensitivity to specular flow noise. (a) Another
reconstruction of the same object from Fig. 12 from a single view-axis
specular flow u ¼ ðu; vÞ. (b) A noisy version û of u, with i.i.d. Gaussian
noise corrupting both the u and v coordinate functions. (c) A close-up of
one section of û. (d) Selected characteristic curves recovered from û

(shown in thick blue). Note that while the noise in the specular flow
translates to inaccurate integral curves, the latter maintains the
qualitative structure of the true curves (shown in thin). (e) The full
reconstructed surface from û. Compare to panel a. (f) The reconstruc-
tion error.

TABLE 1
Quantitative Sensitivity to Specular Flow Noise: Reconstruction Errors for Multiple Runs of the Noise Experiment in Fig. 14

Algorithm 5.1 was applied to flows with added spatially varying, zero-mean Gaussian noise having standard deviation � proportional to local flow
magnitude. Reported are average errors over five runs with angular speed ! both given and estimated from the data. Rows 2 and 4: Mean absolute
angular error in the recovered normal field. Rows 3 and 5: RMS surface height error as a percentage of maximum surface height. Row 6: Mean
absolute difference between estimated angular speed and true value, ! ¼ 1�=s.
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closely, even the appropriate noise model that applies to
specular flows remains an open question.

Whileouranalysis shows that shapecanbe recovered from
a single specular flow observed under view-axis rotation and
from multiple specular flows observed under arbitrary
rotations, it is still an open question whether the problem
can be solved from a single specular flow under an arbitrary
motion. Similarly, reframing the SFSF problem for perspec-
tive projection is considered a key issue in our forthcoming
research.

In addition to addressing these computational questions,
our analysis may aid the understanding of human percep-
tion of specular shape. While the human visual system
seems to exploit specular flow in distinguishing between
surfaces that are specular and diffuse [39], whether flow is
used to recover shape is less certain [40]. But since we often
move our heads while inspecting specular objects (e.g.,
when locating a dent in a car), it seems plausible that shape
recovery does utilize specular flow. In particular, the
distinguished behavior at parabolic points would seem to
play a role in this process.

Finally, this paper considers the case in which the
camera and object move as a fixed pair relative to a distant
environment. Another important direction to pursue in the
future is to consider the more natural case in which the
object (resp. viewer) moves relative to a fixed camera (resp.
object) and environment. This is effectively what a human
does when holding a specular surface in their hand and
investigating it under small rotations. The analysis pre-
sented in this paper is likely relevant to this case as well,
and it suggests that when shape is the desired output,
observations of an object under multiple distinct rotations
may be beneficial.
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