
SHAPE FUNCTION OBJECT MODELING FOR MESHFREE

METHODS

José M. Morales Sánchez
a
, Paulo B. Gonçalves

b

a
Departamento de Tecnologia em Arquitetura e Urbanismo, Universidade de Brasília, Campus

Universitário Darcy Ribeiro, Brasília, DF, Brasil, sanchez@unb.br, http://unb.br/fau/pos_graduacao/

b
Departamento de Engenharia Civil, Pontifícia Universidade Católica, PUC-Rio, Av. Marquês de São

Vicente, 225, Rio de Janeiro, RJ, Brasil, paulo@civ.puc-rio.br, http://www.civ.puc-rio.br/pt/index.php

Keywords: Meshfree Methods, Shape Functions, Moving Least Square Method, Object

Oriented Analysis, JAVA.

Abstract. This article presents a computational object modeling for shape functions used in Meshfree

Methods, especially those derived from the of Moving Least Square Method, such as Generalized

Finite Differences, Element-Free Galerkin, Hp-Clouds and Finite Point Method, for example. The

class model includes abstractions for the basis of functions, the weighting functions and the strategy of

building the sparse point cloud. These abstractions allow the definition of classes of shape functions

considering specific problems and methods. It should be noted that the Finite Element Method fits this

class structure; the points that define the element are the cloud points in Meshfree Method. As ultimate

goal, this work aims to build a framework of classes, which allows the construction of agile

applications for numerical experiments of Meshfree Methods. In this work the Java language was

adopted to implement the proposed design.

Mecánica Computacional Vol XXIX, págs. 4753-4767 (artículo completo)
Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.)

Buenos Aires, Argentina, 15-18 Noviembre 2010

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

1 INTRODUCTION

This article continues the study of Meshfree Methods and the possibilities of its modeling

by computational objects. This work aims to facilitate the computational implementation and

the numerical experimentation with these methods (Sánchez, 2003).

Meshfree Methods kernels are shape functions that allows constructing approximation

functions based in a set of scattered points (cloud). Some variation of this shape functions are

used in different variants of these methods. The study presented here details and extends the

portion concerning the object-oriented analysis for Meshfree Methods shown in previous

article (Sanchez et al., 2004-b).

The abstractions developed are based in the theoretical framework of weighted residuals

methods. This approach clarifies and encompasses many specialized methods described in the

literature. It is worth mentioning that the Meshfree Methods treated here are those known in

the literature as domain approach (Belystchko et al., 1996; Fries and Matthies, 2004).

Therefore boundary approaches such as Boundary Elements Method or Fundamental

Solutions Method are not considered in this study.

This article develops in section 2, the mathematical background for shape functions used in

Meshfree methods, considering the Moving Least Square Method, proposed by Šalkauskas

and Lancaster (1981). Then in section 3 presents some criteria for the construction of the

cloud of points. The modeling of the classes that allow creating objects of shape functions is

in Section 4. Some aspects of modeling implementation in the Java language are discussed in

Section 5.

The Finite Element Method can be demonstrated as a particular case of the method of

weighted residuals and given its importance in the aspect of comparing results and even the

coupling with Meshfree methods, abstractions have been developed to include this important

method of discretization.

Obviously, it is not the purpose of this work to encompass all Meshfree methods. The

virtue of the object analysis is the possibility of its extension. From the analysis presented

here it is intended that other methods of determining the shape functions can be quickly

incorporated allowing the evolution of object-oriented system proposed.

2 MESHFREE METHODS SHAPE FUNCTIONS

Approximation function based on a set of nodal points scattered and without

interconnection follows in the literature three lines of research. The oldest approach uses the

kernel approximation u
h
(x) over the domain as:

u
h
(x) = w(x − y,h) u(y) dΩ

y

Ω
∫ (1)

where w(x-y, h) is the kernel or weighting function, h is a measure of the extent of support in

which w(x-y) is nonzero (Lucy, 1977 apud Belytschko et al., 1994).

The approach of Meshfree Methods can also be based on partitions of unity (Babuška and

Melenk, 1997), which constitutes a paradigm in which sub-domains, each associated with a

function that is nonzero in it, covers the domain. In this case the approximation function takes

the following form:

u
h
(x) = φ

i

k
(x) u

i
+ b

ji
q

i
(x)

j =1

m

∑⎛
⎝⎜

⎞
⎠⎟

i

∑ (2)

J. MORALES SANCHEZ, P. GONCALVES4754

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

where φ is the function partition of unit, b are coefficients and q are base functions, generally

monomials.

The third form of generating functions for approximation of Meshfree Methods is to use

the method of Moving Least Square Method (Šalkauskas and Lancaster, 1981). The technique

consists in minimizing the functional of the weighted squared error, on the form:

E

x
(u) = w

i
(x) u(x

i
) − u

i
()

2

i=1

N

∑ (3)

where, wi is a weighting function.

In this work will be used as technique to determine the approximation functions the

Moving Least Square Method of Lancaster and Šalkauskas, limiting the study of Meshfree

Methods to those using this technique in the generation of shape functions.

2.1 Moving Least Square Method

Most Meshfree Methods have shape functions generated from some particular way by the

Moving Least Square Method. Let u(x) be a function defined on a domain. Adopting an

approximate solution in the form

u (x) ≈ u

h
(x) = p

i
a

i

i=1

m

∑ = p
T
a (4)

where ai are coefficients and pi are the terms of the basis, usually monomials due to the

facilities involved in the numerical analysis with polynomials. For a 2D problem, for

example, linear and quadratic basis are given by

p
T
= 1 x y⎡
⎣

⎤
⎦ , m = 3

p
T
= 1 x y x

2
xy y

2⎡
⎣

⎤
⎦ , m = 6

 (5)

where, m defines the dimension of each basis.

Adopting a set of n nodal points and applying expression (4) comes to organizing in matrix

form

u = P a (6)

If the number of terms of base (dimension) equals the number of nodal points of the sub

domain, i.e., m = n, the system (6) can be solved, imposing certain conditions on the

geometric organization of the nodal points, which in replacing (4) allows to relate the function

approximation in terms of nodal values, i.e.,

u
h
(x) = N

T
(x) u

N
T
(x) = p

T
(x) P

−1
 (7)

where N
T
 are called shape functions, that with a convex geometry coincides with the

definition found in the Finite Element Method (Zienkiewicz and Taylor, 1989).

If the set of points in the sub domain is much greater than the dimension of the basis

functions, the definition of the approximation function must be made to some criterion of

adjustment, for example, minimizing the functional of the square of the error between the

approximation function and the function value. Adopting a weighting function that allows

considering the relative importance of the points nearest arrives at the functional

Mecánica Computacional Vol XXIX, págs. 4753-4767 (2010) 4755

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

E(u, x) = P a − u()
T

W (x) P a − u()

W (x) = diag w
1
(x − x

1
) w

2
(x − x

2
) w

n
(x − x

n
)⎡

⎣
⎤
⎦

 (8)

The weighting function wi has major role in the method formulation. If the value is

nonzero only in a sub-domain, the number of points will be a function of position x, then n =

n(x). This set of points in the neighborhood of x for which wi ≠ 0 forms its domain of

influence, or support, also called cloud.

Normally it is used weighting functions that depend only on the distance between two

points, i.e.

w

i
(x − x

i
) = w

i
(d) (9)

where

d = x − x

i
 is the distance between and .

The weighting function most used is the following Gaussian spherical truncated function

w
i
(x

i
, x) = w

i
(r) =

exp(−β
2
r

2
) − exp(−β

2
)

1 − exp(−β
2
)

 (10)

In the above expression, r = di / dmi = ||x –xi|| / dmi, where dmi is the support dimension of

wi. The parameter beta affects the bell shape of the weighting function, and is usually adopted

as β = 4 (Belytschko et al.,1994), in order to nullify the derivative of the function on its

contour (r = 1). The choice of weighting function is quite arbitrary; other functions are

reported in the literature, such as spline functions and cubic B-spline, as seen in the

subsection below.

The process of minimizing the functional (8) should be done for every point x where the

value of the approximation u
h
(x) is required, hence the reference to Moving Weighted Least

Square Method.

Performing the minimization and substituting in (4), yields

u
h

(x) = p
T
(x) A

−1

(x) B (x) u = φ
T

(x) u

φ
T

(x) = p
T
(x) A

−1

(x) B (x) ; A(x) = P
T
W (x) P ; B (x) = P

T
W (x)

 (11)

where φ are the shape functions for a set of scattered points (cloud) in a sub domain Ωi.

The Moving Least Square approximation above depends crucially on how the weighting

functions are applied (Oñate et al., 1996). This weighting can be accomplished in two ways.

Initially it is assumed that there is a set of nodal points, xi, in a domain, Ω. For any point xk,

not fixed on the domain, determine the support or sub-domain Ωk, according to some

criterion, that must guarantee the existence of solution of normal equations; usually a

minimum number of nodal points within Ωk. The obtainment of the function value focused on

xk is made by using the values of the weighting function at each point xi, wk(xi). Figure 1-a

illustrates it.

The other possibility of weighting is constructed from the definition for each nodal point xi

of a support Ωi chosen so that guarantees the existence of solution of normal equations and

covering the whole domain Ω. The weighting of the squared differences between the

approximate function uh (xi) and exact function, ui, is performed using the respective value of

the weighting function determined by any moving point xk, as shown in Figure 1-b.

The derivatives of shape functions can be obtained from operating the equation (11). The

derivative of the inverse matrix can be obtained by deriving both members of the definition of

J. MORALES SANCHEZ, P. GONCALVES4756

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

inverse matrix, AA
-1

= I. So for the direction s:

φ
s

T
(x) = p

s

T
(x) A

−1
B + p

T
A

s

−1
B + A

−1
B

s
()

A
s
= P

T
W

s
(x) P ; B

s
= P

T
W

s
(x); A

s

−1
= −A

−1
A

s
A
−1

 (12)

Figure 1: Shape functions from simple support (a), and multiple support (b).

The derivative of the function, taking a second direction, t, is given by

φ
st

T
= p

st

T
A

−1
B + p

s

T
A

t

−1
B + A

−1
B

t
() +

p
t

T
A

s

−1
B + A

−1
B

s
() + p

T
A

st

−1
B + A

s

−1
B

t
+ A

t

−1
B

s
+ A

−1
B

st
()

A
st
= P

T
W

st
(x) P ; B

st
= P

T
W

st
(x)

A
st

−1
= −A

−1
A

st
A

−1
+ A

s
A

t

−1
+ A

t
A

s

−1⎡⎣ ⎤⎦

 (13)

Derivatives of higher order can be obtained by successive differentiation, the order of

differentiation being limited by the degree of continuity of the weighting function wi (x). The

expressions deduced for the derivatives depend on the inversion of matrix A. The inverse of

the derivatives of A were expressed only in terms of A
-1

. An alternative computationally

interesting, not presented here, is to determine the shape functions and derivatives obtained by

adopting a procedure of LU decomposition of matrix A and making backward substitutions

with independent terms that allow to find φ, φs and φst.

The shape functions generated using the Moving Least Square Method present

characteristics of reproducibility and continuity. These functions can reproduce any of the

functions of its base. Thus, if the constant unit function is the only function included in the

base, the shape functions are a partition of unity. These functions, known as Shepard

functions has the form

 (14)

They also replicate the functions x and y if included, an important condition to ensure

convergence.

(a)
(b)

Mecánica Computacional Vol XXIX, págs. 4753-4767 (2010) 4757

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

The other property mentioned is the high continuity obtained, which depends only on the

degree of continuity of the weighting function.

2.2 Basis Functions

From the previous item exposition it appears that the choice of basis functions is crucial in

defining an approximate function to an exact function. This basis function should contain

functions linearly independent of a complete sequence. The classes of function most

commonly found are monomials that generate polynomial approximations, sines and cosines,

and exponential functions.

So for one-dimensional problems the following basis is used

 p

T
= [1 x x

2
… x

m−1
] (15)

where m is the size of the basis function.

For two-dimensional problems the base can be represented by Pascal's triangle. For a base

of quadratic order, for example, the base has a dimension m = 6 and is given by

 p

T
= [1 x y x

2
xy y

2
] (16)

As mentioned above, other functions can form the basis, selected from the analysis of

specific problems in order to accelerate the convergence. Fleming et al. (1997) use for

fracture problems in two-dimensional elasticity, the following base

 p

T
= [1 x y r cosθ 2 r sinθ 2 r sinθ 2 sinθ r cosθ 2 sinθ] (17)

where the dimension m = 7.

Another example of enrichment of the basis functions was performed by Suleau et al.

(2000), which used sine and cosine for the analysis of problems governed by Helmholtz

equation. For the problem of wave propagation in one dimension used the following basis

with m = 3

 p
T
= [1 cos kx sin kx] (18)

In the Generalized Finite Differences Method (Liszka and Orkisz, 1980) the basis

functions can be interpreted as the terms of a Taylor series, as below

p = 1, x, y,
x

2

2
, xy,

y
2

2
,

⎡

⎣
⎢

⎤

⎦
⎥

T

 (19)

Liszka et al. (1996) include a degree of freedom of rotation to the approximation of the

point near to the contour that can be considered as a Taylor basis for the normal derivatives

p

n
= 0 n

x
n

y
xn

x
(yn

x
+ xn

y
) yn

y
⎡
⎣⎢

⎤
⎦⎥

T

 (20)

Thus the basis function is related to both, type of problem to investigate, as may be linked

to a specific numerical method.

2.3 Weighting Functions

The weighting function wi has a prominent role in the formulation of the weighted Moving

Least Square Method. By definition, the weighting function must comply with

i. wi(x) > 0 ∀ x.

J. MORALES SANCHEZ, P. GONCALVES4758

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

ii. wi should decrease monotonically with the growth of |x|.

This together with the linearly independent basis functions ensures that the matrix A(x) is

positive definite and therefore invertible.

Another important effect is the possibility of interpolation obtained if the weighting

functions satisfy the condition

iii.

w
i
→∞ if x → 0, or

w
i
(x − x

i
) →∞ if x → x

i

⎧
⎨
⎪

⎩⎪

This feature is not explored enough in Meshfree Methods in general. An exception is the

Generalized Finite Differences Method where the interpolation is essential.

The monotonic decrease suggests that the most distant points are considered less

significantly. Thus we should define a truncated weighting function, which meets

iv.
w
i
(d) > 0 for d ≤ dm

i

w
i
(d) = 0 for d > dm

i

⎧
⎨
⎪

⎩⎪

where d = x - xi is the distance between points x and xi, and dmi is the size of the support of

the weighting function that determines the domain of influence of xi. Thus the number of

points (n) within the domain Ωi may be variable for each point xi. However the number of

points must be at least greater than the size of the basis functions (m) used, in order to ensure

that the normal equations have unique solution. Thus,

v.

n ∈Ω

i
| n > m

This feature is crucial in Meshfree Methods, because once defined the support, a set of

points are defined, or vice versa, which allows to eliminate the traditional nodal connectivity.

Or, otherwise, we can say that connectivity is established mathematically, or more precisely

through computational geometry, from the support of the weighting function.

The form of support is generally circular, in two dimensions, can also be rectangular. In

this case the weighting functions are generated using the tensor product

vi.

w(x − x

i
) = w(x − x

i
) .w(y − y

i
)

These weighting functions can be advantageous for regular arrangements of nodal points.

Another important aspect in choosing a weighting function is the order of differentiability

of the expected functions to be obtained. Lancaster and Šalkauskas (1981) show that if the

basis function is of continuity class C
l
and weighting function is of class C

m
 then the shape

functions are of class C
k
, where k = min (l, m). In most cases the order of basis functions is

that controls the differentiability of the shape functions.

In general the choice of weighting function is arbitrary since it meets the requirements

listed above, which is mainly a function positive and continuous derivatives up to the desired

degree. In literature are proposed different weighting functions applied to Meshfree Methods.

Table 1 summarizes the main functions found with its expression and its bibliography.

3 CRITERIA FOR CONSTRUCTION OF THE CLOUD OF POINTS

In general, some mode of connectivity between nodes in a sub domain is adopted by

discretization methods to generate the shape functions (Figure 2). In the method of finite

differences a connection point called molecule (or star) is used. In finite element method, the

connectivity between nodes of the sub domain defines the element. This element that merges

with the sub domain is also used as domain of integration. But, in Meshfree Methods the

shape functions are obtained from nodes belonging to sub domain without consideration of

any explicit connectivity between these nodes, treated as a whole, as a cloud.

Mecánica Computacional Vol XXIX, págs. 4753-4767 (2010) 4759

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Actually what is sought is the association of a given point on the field with a set of nodal

points surrounding to enable the construction of a local approach. So we can say that both the

organization as molecule or as element is a special case of the organization by cloud.

Several criteria are used in the definition of the point cloud. In general, procedures found

in computational geometry are used due to the large amount of points and the need for

efficiency. Some methods require specific algorithms in order to realize its mathematical

definition. For example, the method Hp-Clouds, it is necessary that the whole area be covered

by an appropriate number of supports (Sánchez, 2003).

Table 1: Weighting functions.

The intention here is to build a framework with a collection of algorithms that can be tested

and compared in order to investigate which of them allows a better result with a good

J. MORALES SANCHEZ, P. GONCALVES4760

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

computational response. The details of the algorithms mentioned in the next section will be

subject of future publication.

Figure 2: Connectivity of nodal points per molecule, element and cloud.

4 SHAPE FUNCTION OBJECT MODELING

The object modeling of shape functions involves the treatment of the following

abstractions: the shape functions, the basis functions, the weighting functions and strategies

for building the nodal point clouds.

A principle of reusable object-oriented design requires that one should plan for an interface

and not an implementation (Gamma et al., 2000). An interface is a protocol with a list of

method declarations, not code, which must be realized by classes that implement this

interface. That settles inside the inheritance mechanism an important decision. It seeks to

inherit the behavior and not implementation code. The programming through interfaces is the

basis for building scalable software. Thus all classes that implement a given interface will

have similar external behavior differing by internal form they behave.

4.1 Modeling Interfaces and Classes for Shape Functions

The shape functions are built from the interface ShapeFunction. Figure 3 shows the UML

diagram (Fowley and Scott, 2000; Gentleware, 2003) with the protocol of this interface. A

class that wants to behave like a ShapeFunction should implement the code of all methods

listed. In this case, must provide methods to determine the shape functions and their

derivatives up to second order, which meets most of the problems addressed by the meshfree

discretization methods. You should tell yet what were the point cloud and the pole in

Cartesian coordinates used for its determination.

Figure 3 also shows two specializations from ShapeFunction interface, which are

FEM_SF and MLS_SF. The first will be used to define the shape functions of isoparametric

finite elements. For that it is included a method for determining the determinant of the

Jacobian. All functions in a finite element must implement both protocols ShapeFunction

and FEM_SF. These functions have a dual purpose, allowing building the finite element

method and enabling the Gaussian integration in Meshfree methods with Galerkin variant.

Figure 4 shows the isoparametric finite elements developed in this work following the

interface FEM_SF: quadrilateral elements, triangular and linear, which allow the integration

of one-dimensional and two-dimensional domains, and surface element for integration into

the two-dimensional contour. The construction aggregates data and operations common to

different elements in the abstract class (which does not create objects) called

FEM_Operations. The operations and data are transmitted by inheritance to the classes that

wish to reuse the code or part of it. The Quad class, for example, implements the interface

Mecánica Computacional Vol XXIX, págs. 4753-4767 (2010) 4761

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

FEM_SF and extends the abstract class FEM_Operations. It can be said that Quad inherits

its genetic, or rather their behavior from FEM_SF, and that it inherits or not the assets of

existing code in FEM_Operations. For simplicity were not represented the methods of the

interfaces in concrete classes nor the constructors of the classes (methods that create objects

of classes at runtime). The second derivatives of shape functions return null, once the

elements implemented are class continuity C
1
.

 Figure 3: Shape functions interfaces.

Figure 4: Model classes for isoparametric finite elements.

The interface MLS_SF, represented in Figure 5, allows creating the classes necessary to

construct shape functions for the method of Moving Least Square Method. Its interface adds

to the inherited interface ShapeFunction methods for defining the basis functions, weighting

function and strategy of construction of the point cloud, classes which are detailed below. The

class MLS_UNI determines the shape functions considering that a weighting support is set at

any point. Already MLS_MULT class follows the strategy of weighting with support set for

J. MORALES SANCHEZ, P. GONCALVES4762

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

each nodal point. Here was also created an abstract class that collects the data and common

methods that can be inherited or not by other classes. The MLS_Taylor class is a subclass of

MLS_UNI, which determines the shape functions using a basis function consisting of Taylor

series required for the Generalized Finite Differences Method. The class HPC_SF is

responsible for generating the shape functions for the hierarchical method Hp-Clouds, which

uses a partition function of the unit based on Shepard functions together with a monomial

basis.

Figure 5: Model classes for Moving Least Square Method.

4.2 Modeling Basis Functions

Computer modeling of the basis functions follows similarly to that presented to the shape

functions, by defining an interface protocol that specifies a behavior (BasisFunctions) and

the creation of an abstract class (BF_Operations) container of data and methods that can be

reused in classes that implement the interface. Figure 6 shows this structure and the concrete

classes of named Monomial and Crack. The first implements the basis functions of

monomials. Already Crack class represents the base proposed by Fleming et al. (1997) for

fracture problems in Element-Free Galerkin Method. Classes Taylor and TaylorN

implement basis functions obtained by Taylor series under the Generalized Finite Differences

Method.

Mecánica Computacional Vol XXIX, págs. 4753-4767 (2010) 4763

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

4.3 Modeling Weighting Functions

The computational modeling of objects that represent the weighting functions in the Moving

Least Square Method should cover three abstractions: the weighting functions properly, the

point cloud and the strategy for its construction. The first, most immediate, is determining the

values of the weighting function and its derivatives. All functions were parametrized with the

dimensionless radius r ranging from zero to one, corresponding to the size of the cloud of

nodal points support, dmi. Figure 7 shows the interface WeightFunction specifying the

protocol for obtaining the function and its derivatives up to second order with respect to the

radius r. Given the relative complexity of determining the first and second derivatives of the

weighted matrix with respect to Cartesian coordinates is presented also in Figure 7 the class

WFDeriv, which is used by classes that implement MLS_SF interface to determine the

weighting diagonal matrix and its derivatives.

Figure 6: Model classes for basis functions.

4.4 Strategies to Construct the Cloud of Points

The second concept or abstraction important in determining the weighting function is the

definition of the cloud of points that defines the radius of support for calculation of the

weighting function. In literature, the construction of the point cloud is performed with various

criteria with its algorithms (or strategies). Different strategies constitute the third concept or

abstraction to consider. So the two concepts have great coupling, it is important the possibility

of using the same cloud with different algorithms and would be interesting expand the number

of algorithms. In computing object-oriented the construction, which decouples objects

(classes), allowing multiple algorithms in one of these, is known as the Strategy design

pattern (Gamma et al., 2000). Thus Figure 8 shows the Cloud class which allows the

construction of nodal point clouds and getting its data such as radius of support, the set of

J. MORALES SANCHEZ, P. GONCALVES4764

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

nodal points (cloud) for a given point in the domain considering different strategies.

The connection between the class Cloud, which builds the clouds, and algorithms for

construction is done through the interface CloudStrategy. This interface defines the protocol

that allows interaction between the class Cloud and the various concrete algorithms

implemented. The operation computeStrategy(), which must be present in all concrete

strategies, is who runs the algorithm actually. As noted in Figure 8 the operation

buildCloud() in class Cloud runs the algorithm corresponding to the current strategy.

Figure 7: Model classes for weighting functions.

Figure 8 presents five strategies for setting the point cloud. Distance determines the cloud

selecting m nodal points closer to the pole, where m is the size of the basis functions used.

Due to problems of numerical instability the support of the cloud is increased by an empirical

parameter α. The criterion FixedSupport determines the cloud of point starting from a

predetermined value for the size of the support of the cloud. Both criteria allow determining

the cloud with a rectangular support for the use of weighting functions obtained by tensor

product. The third criterion presented, Cell, is actually a special feature to obtain the set of

points of integration present in a cell of integration, or if is the case in a finite element.

Other criteria can be easily implemented without changing the existing structure, for

example, a criterion that determines the cloud from a fixed number of nodal points, which is a

procedure similar to finite differences. The criterion FourQuadrants is widely used in the

generation of clouds with symmetry by both Generalized Finite Difference Method and the

Finite Point Method. The strategy MultSupport is employed in the construction of point

clouds in Hp-Clouds Method.

5 CONCLUSIONS

The use of object-oriented analysis, more than a computational tool is an important

methodology for addressing complex problems. The deduction of some Meshfree Methods

based on the Method of Weighted Residuals (Sánchez et al., 2004) and hence the construction

Mecánica Computacional Vol XXIX, págs. 4753-4767 (2010) 4765

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

of a common framework is result from the principle of seeking the highest level of abstraction

in the modeling of a phenomenon. In this way the computational classes were proposed for

modeling the shape functions for Meshfree Methods.

It is believed that a system of computational classes, studied and tested will help

consolidate the practical application of Meshfree Methods agilizing the development of robust

software. The ultimate goal of this work is to foster discussion of analysis and design of

computational objects for Meshfree Methods.

Figure 8: Classes for modeling the cloud of points and the building strategies.

ACKNOWLEDGMENTS

The authors wish to express their gratitude to the Dean for Research and Graduate Studies

at the University of Brasilia for support in developing this work. Also to the Brazilian Federal

Agency for the Support and Evaluation of Graduate Education (CAPES).

REFERENCES

Babuška, I.; Melenk, J. M. The Partition of Unity Method. Int. J. Numer. Meth. Engng., v. 40,

p. 727-758. 1997.

Beissel , S.; Belytschko, T. Nodal Integration of the Element-Free Galerkin Method. Comput.

Methods Appl. Mech. Engrg., v. 139, p. 49-74. 1996.

Belytschko, T.; Lu, Y. Y.; Gu, L. Element-Free Galerkin Method. Int. J. Numer. Meth.

Engng., v. 37, p. 229-256. 1994.

J. MORALES SANCHEZ, P. GONCALVES4766

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., & Krysl, P. Meshless Methods : An

Overview and Recent Developments. Comput. Methods Appl. Mech. Engrg., v. 139, p. 3-

47, 1996.

Dolbow, J., & Belytschko, T. An Introduction to Programming the Meshless Element Free

Galerkin Method. Archives in Computational Mechanics and Engineering, 1998.

Duarte, C. A., & Oden, J. T. An hp Adaptive Method Using Clouds. Comput. Methods Appl.

Mech. Engrg., v. 139, p. 237-262, 1996.

Fleming, M., Chu, Y. A., Moran, B., & Belytschko, T. Enriched Element-Free Galerkin

Methods for Crack Tip Fields. Int. J. Numer. Meth. Engng., v. 40, p. 1483-1504, 1997.

Fowley, M., & Scott, K. UML Distilled: A Brief Guide to the Standard Object Modeling

Language. Addison-Wesley Longman, 2000.

Fries, T.-P., & Matthies, H. G. Classication and Overview of Meshfree Methods. Institute of

Scientic Computing, Technical University, Braunschweig, Brunswick, Germany, 2004.

Garcia, O.; Fancello, E. A.; Barcellos, C. S.; Duarte, C. A. hp-Clouds in Midlin`s Thick Plate

Model. Int. J. Numer. Meth. Engng., v. 47, p. 1381-1400, 2000.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. Design Patterns: Elements of Reusable

Object-Oriented. Addison-Wesley, 1995.

Gentleware, 2009. Poseidon for UML. Disponível em http://www.gentleware.com/. Acesso

em 21 set. 2009.

Lancaster, P., & Šalkauskas, K. Surface Generated by Moving Least Squares Methods. Math.

Comp., v. 37, p. 141-158, 1981.

Liszka, T., & Orkisz, J. The Finite Difference Method at Arbitrary Irregular Grids and its

Application in Applied Mechanics. Comp. Structures, v. 11, p. 83-95, 1980.

Liszka, T., Duarte, C. A., & Tworzydlo, W. W. hp-Meshless cloud method. Comput. Methods

Appl. Mech. Engrg., v. 139, p. 263-288, 1996.

Oñate, E.; Idelsohn, S.; Zienkiewicz, O. C.; Taylor, R. L. A Finite Point Method in

Computational Mechanics. Applications to Convective Tranport and Fluid Flow. Int. J.

Numer. Meth. Engng., v. 39, p. 3839-3866, 1996.

Sánchez, J. Análise Orientada a Objetos de Métodos Numéricos de Discretização sem Malha.

Tese de Doutorado, Universidade de Brasília – UnB, Brasil, 2003.

Sánchez, J., Pulino Filho, A., & Gonçalves, P. Formulação dos métodos sem malha através do

método de resíduos ponderados. In CILAMCE - XXV Iberian Latin-American Congress on

Computational Methods in Engineering., Recife, PE, Brasil, 2004.

Sánchez, J., Pulino Filho, A., & Gonçalves, P. Análise Orientada a Objetos de Métodos

Numéricos de Discretização sem Malha. In CILAMCE - XXV Iberian Latin-American

Congress on Computational Methods in Engineering., Recife, PE, Brasil, 2004

Suleau, S.; Deraemaeker, A.; Bouillard, P. Dispersion and Pollution of Meshless Solution for

the Helmholtz Equation. Comput. Methods Appl. Mech. Engrg., v.190, p. 639-657, 2000.

Zienkiewicz, O. C., & Taylor, R. L., 1989. The Finite Element Method. MacGraw-Hill, vol. 1.

Mecánica Computacional Vol XXIX, págs. 4753-4767 (2010) 4767

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

