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Abstract

We address shape grammar parsing for facade segmen-

tation using Reinforcement Learning (RL). Shape pars-

ing entails simultaneously optimizing the geometry and the

topology (e.g. number of floors) of the facade, so as to op-

timize the fit of the predicted shape with the responses of

pixel-level ‘terminal detectors’. We formulate this problem

in terms of a Hierarchical Markov Decision Process, by em-

ploying a recursive binary split grammar. This allows us to

use RL to efficiently find the optimal parse of a given fa-

cade in terms of our shape grammar. Building on the RL

paradigm, we exploit state aggregation to speedup compu-

tation, and introduce image-driven exploration in RL to ac-

celerate convergence. We achieve state-of-the-art results on

facade parsing, with a significant speed-up compared to ex-

isting methods, and substantial robustness to initial condi-

tions. We demonstrate that the method can also be applied

to interactive segmentation, and to a broad variety of archi-

tectural styles 1.

1. Introduction

Facade parsing has received increasing attention over

the past few years, [1, 2, 3, 4, 5, 6], and can be exploited

for urban image databases such as Google Street View or

Microsoft Bing Maps; semantically labeling such images

could facilitate for instance realistic 3D content creation,

or reconstruction. The highly-structured nature of building

facades makes their treatment amenable to model-based ap-

proaches and in particular to grammatical representations,

as they can naturally capture the hierarchical structure of

facades. For instance, as opposed to flat CRF techniques,

e.g. [7], hierarchical models can enforce global constraints,

e.g. straight boundaries, or the nesting of structures.

Apart from solving the goal of facade segmentation in it-

self, grammar-based approaches hold promise for address-

ing some of the main challenges of high-level vision: scal-

ability can be addressed by reusing parts among different

objects [8], while versatility requires dealing with structure

1The work has been supported by Microsoft Research through its PhD

Scholarship program
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Figure 1. Overview of the method: a discriminative model pro-

vides probability maps for all terminal symbols of the shape gram-

mar. An agent then repeatedly segments the image using the gram-

mar by following a shape parsing policy that is learned on-line

with RL. The policy at convergence yields the final segmentation.

variation [9]. Grammars naturally address these challenges

in Natural Language Processing (NLP) [10], and one can

argue that this may also be the case for vision.

In computer vision, after the early works of [11, 12],

grammars were reintroduced in the last decade for segmen-

tation and detection tasks [1, 8, 13, 14], as well as medical

image analysis [15] and 3d reconstruction [16]. One of the

main bottlenecks in adapting NLP-based techniques to vi-

sion is that when breaking a visual structure into parts the

position of each part is a continuous 2D variable. There-

fore, adapting discrete Dynamic Programming-type algo-

rithms for parsing (e.g. CYK [10]) can be problematic,

as discretization may lead to a huge number of states. To

address this, sparse image representations were used in

[8, 13], Data-Driven MCMC techniques in [14], while [17]

used a gradual refinement of an initally limited set of la-

bel map templates. Substantial progress has also been made

in speeding up DP-based inference for continuous variables

[18, 19, 20], considering however a fixed model topology.

Instead, we pursue an approach based on Reinforcement

Learning (RL) [21] to address the parsing problem. RL

comprises a set of techniques to approximately, but effi-

ciently solve problems that are phrased as Markov Deci-

sion Processes (MDPs), including Dynamic Programming

(DP) and Monte-Carlo as extreme cases. We argue that RL
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provides us with novel tools, that are more appropriate for

the shape parsing problem, while also being more flexible

than DP. In specific, we introduce RL techniques such as

Hierarchical RL, and state aggregation to harness the com-

putational complexity of the shape parsing problem. We

also show that RL allows us to seamlessly exploit image-

based information during optimization, without necessitat-

ing a sparse representation of the image. We thus exploit

image-based guidance (contrary to DP), while at the same

time being immune to the front-end failures of sparse image

representations (unlike e.g. [13, 8]).

We develop our ideas around shape grammars (SG’s)

[22, 23, 3], which were used in [4] for building interpreta-

tion using primarily image-driven methods and in [6] using

Monte-Carlo which can be seen as a special case of RL. We

demonstrate how RL can result in 50fold speedups over [6],

while giving competitive labelling accuracies.

The paper is organized as follows: In Sec. 2 we detail

how we use shape grammars for facade synthesis. In Sec. 3

we briefly introduce the main concepts in Reinforcement

Learning and describe how solving the shape parsing prob-

lem can be formulated in RL terms. The efficient optimiza-

tion of facade grammars using RL is discussed in Sec. 4,

while we provide experimental results in Sec. 5.

2. Shape Synthesis using Shape Grammars

We start by describing 2D shape grammars, then focus

on a special case, split grammars, and then give an example

of their use as generative models for facades.

2D Shape grammars: A 2D shape grammar (SG) [22]

describes a shape configuration in terms of a dictionary of

basic shapes. Each basic shape consists of a template, a

symbol for its type (e.g. ‘d’ for door, ‘w’ for wall), and its

bounding box parameters; we describe by (c, x, y, w, h, θ) a

shape of type c at position (x, y) with width/height dimen-

sions (w, h) and orientation θ.

Complementing the dictionary is a set of replacement

rules. Each rule replaces a basic shape with other basic

shapes; for instance, one such rule may split a floor shape

into a set of alternating window and wall shapes. All rules

are of the context-free form: P → C1, . . . , Ck, where P is

the precedent and Ci are the antecedents.

A terminal is a shape that does not appear on the left-

hand side of any rule, i.e. cannot be processed further. A

special shape, the axiom appears at the beginning of any

derivation. A shape grammar starts from the axiom and it-

eratively breaks it into simpler basic shapes until all shapes

become terminals. A tree that is rooted at the axiom, has

terminals at all leaves, and has as intermediate nodes basic

shapes generated from their ancestors by replacement rules

is called a ‘derivation tree’.

The major difference with context-free grammars used

for NLP is that the replacement rules involve structures with

continuous attributes. For each term involved in a replace-

ment rule, d = 5 continuous variables are involved. Con-

sidering that each variable is quantized into m values, there

are O((md)k) possible versions of a replacement rule with

k antecedents. Moreover, k is unknown: for instance we do

not know how many floors there are in a facade.

To break this O((md)k) complexity into pieces we first

introduce split grammars, to deal with d , and then rewrite

shape grammars in binary form to deal with k.

Split Grammars: A split grammar [23] is a shape gram-

mar with rules that split shapes along one dimension at a

time. The dimensions of the children along the split di-

rection are determined by the rule, while their dimensions

along all other axes are inherited from their parent. A split

rule is thus defined by an axis and k − 1 split parameters

where k is the number of children. This reduces the num-

ber of rules from O((md)k) to O(dmk), since instead of

splitting over all the d dimensions, we split over a single

one. This makes the grammar more rigid, but is natural for

buildings as they are mostly organized in orthogonal frames.

Binary Split Grammars: Any context-free grammar can

be reduced to Chomsky Normal Form (CNF) [24], where

each rule has at most two antecedents. To apply this to

shape grammars, consider breaking up a facade into floors

and walls: instead of a single split rule that breaks the facade

in a single shot into multiple floors and walls, we use sev-

eral simple rules that break up the facade into a floor/wall

and the facade’s remainder. Such a rule would be:

A(fa,X, Y,W,H) −→
H:h,fl

B(fl,X, Y,W, h)C(fa,X, Y +h,W,H−h),

meaning that we take a shape A of type fa(cade), and split it

along the H(eight) dimension into a fl(oor) of height h and

a remainder of type fa(cade). This results in a shape B of

type floor, of height h, and the remainder C of the floor; the

union of the supports of B and C gives the support of A.

On the one hand, writing the grammar in binary form

increases from 1 to k the rules required to decompose a k-

partite structure into its constituents. As the complexity of

each rule goes from O(mk) to O(m), the overall complex-

ity stays O(mk). But now we can deal with an unknown

value of k; during parsing, computation can be shared to

parse a shape with different values of k. Moreover, the bi-

nary form allows us to phrase our task as an MDP, as de-

scribed in Sec. 3.

Facade Modelling with Shape Grammars: We demon-

strate in Fig. 2 a binary split grammar for facades. We de-

note in color the grammar terminals, i.e. walls and win-
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Parent Children Split

Axiom(W,H) Facade(0,0,W,H) None

Facade(0,Y,W,H) Floor(0,Y,W,h) Fa-Wall(0,Y+h,W,H-h) Y:h

Fa-Wall(0,Y,W,H) Wall(0,Y,W,h) Facade(0,Y+h,W,H-h) Y:h

Floor(X,Y,W,H) Wall(X,Y,w,H) Fl-Win(X+w,Y,W-w,H) X:w

Fl-Win(X,Y,W,H) Window(X,Y,w,H) Floor(X,Y,W-w,H) X:w

wall(1)

wall(1)

wall(1)

floor*(2) window(0)
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floor*(2) window(0)
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Figure 2. A toy 2D split grammar (top) and a shape generated by

it (bottom). Walls and windows are terminals; filling their domain

with the appropriate color gives the facade on the right.

dows. We omit θ as we consider that facade images have

been ortho-frontally rectified, while the splits are either

along the X or Y axis; so θ will always be zero. Finally,

we incorporate the shape’s ‘type’ in its name.

According to the grammar the facade is first split verti-

cally into an alternating sequence of floors and walls (rules

2 & 3); each floor is then split into a sequence of walls and

windows (rules 4 & 5). Note that the grammar forces the

horizontal alternation of ‘wall’ terminals and ‘floor’ shapes

and the vertical alternation of ‘wall’ terminals and ‘window’

terminals. Moreover the splits alternate directions at each

layer; facades are split vertically and floors horizontally.

There are some notable properties of the grammar: first,

the recursive form of the grammar allows us to consider any

number of elements; this is determined by the size of the

facade, and the parameters of the splits. This is well suited

to deal with structure variation. Second, the same terminal

(‘wall’) is used at two different layers of the hierarchy, both

to separate floors within a facade and to separate windows

within a floor. This is an instance of ‘reusing’ parts in a

grammar [9, 8] made here specific to shape grammars.

At the bottom of Fig. 2 we show a shape derived by using

some of the rules given at the top of the figure; windows are

shown as blue and walls as red. We can thus use our gram-

mar as a generative model for a variety of building facades

by using different parameters in its rules. We now turn to the

inverse problem of parsing a given shape with our grammar,

which amounts to finding the sequence of rules to apply on

an axiom in order to optimally fit an input image.

3. Shape Parsing via Reinforcement Learning

We now turn from synthesis with shape grammars to the

inverse problem of image interpretation. For a facade this

amounts to finding a sequence of rules that optimally break

a given image into windows, doors, walls, etc. This is sim-

(a) Input (b) m(shop) (c) m(roof) (d) m(wall) (e) m(win) (f) c (g) m(c)

Figure 3. Illustration of the objective function: (b)-(e)

are the pixel-wise merit functions for each terminal class

(shop/roof/wall/window), indicated by both color and text. (f) is a

parse of the image, indicating the labels in terms of terminal color.

(g) combination of the merits according to the parse in (f).

ilar to semantic segmentation/parsing [7, 17] in that we as-

sign a class label to each pixel. The difference is that in our

case the labeling is the result of a shape grammar derivation;

we thus refer to our labeling problem as shape parsing.

This task has two sides: first, we consider that we have an

image-driven, bottom-up merit function m(x, y, c) ∈ [0, 1]
that indicates whether pixel x, y is of class c; we consider

different variants of m in Sec. 5. For instance, as shown

in Fig. 3(b)-(e) we can use discriminatively trained classi-

fiers to score the posterior probability of different terminal

classes at the individual pixel level.

Second, the grammar injects top-down information in the

solution, for instance all terminals are axis-aligned rectan-

gles, and all windows on a floor have the same height, as

shown in Fig. 3(f). This constrains the set of possible la-

bellings in a more problem-specific manner than what could

be attained by a flat, MRF-based semantic segmentation ap-

proach.

Our goal is to come up with a grammar-based seg-

mentation of the shape that optimally fits to the bottom-

up information of m, i.e. maximizes the quantity∑
x,y m(x, y, c(x, y)), where c(x, y) is the terminal-level

labelling induced by the grammar segmentation. Defining

the merit of a terminal A(cA, x, y, w, h) of type cA as:

M(A(cA, x, y, w, h)) =

x+w∑

x′=x

y+h∑

y′=y

m(x′, y′, cA) (1)

we can recursively express the merit of a non-terminal shape

as the sum of its descendants’ merits. Pushing the recursion

to its end, we see that our task is to pick a set of grammar

rules that maximizes the merit of the ‘axiom’ shape, by pro-

viding a combination of terminals with maximal cumulative

merit.

This is challenging for two reasons: first, a structure

is not split directly into terminals; instead, for example,

a ‘floor’ part is split into a terminal ‘window’ and a non-

terminal, ‘remaining’ part. We can directly evaluate the
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window’s merit (as it is terminal) but for the remainder we

need to wait until it is further split into terminals. This prob-

lem amounts to maximizing cumulative reward (also called

return), as opposed to immediate reward.

Second, certain non-terminals are split exclusively into

non-terminals, e.g. a facade is split into floors; these need

to be further split into walls and windows before deciding

about the merit of the facade’s split. This reflects the gram-

mar’s hierarchy. This problem amounts to performing opti-

mization in a hierarchical setting.

These two problem aspects, namely optimizing cumula-

tive rewards and dealing with hierarchically defined reward

functions are common in Reinforcement Learning, where

an agent learns to optimize its behavior for a succession of

tasks, which may involve multiple subtasks, before lead-

ing to concrete rewards. We will now make this connec-

tion more concrete by introducing some necessary concepts

from Reinforcement Learning.

3.1. Reinforcement Learning Formulation

We will establish a connection between our problem and

Reinforcement Learning by introducing some basic termi-

nology of RL, and directing the reader to [21] for an excel-

lent introduction to the topic. We start by describing the

parsing problem in terms of an agent taking actions and

obtaining rewards. We then identify the Markov Decision

Process describing the interaction of the agent with its en-

vironment, and describe how RL can identify an optimal

agent policy. We then simplify the problem of determining

the optimal policy by exploiting the problem’s hierarchy.

Agent, state & actions: Our ‘agent’ is a parsing engine;

its state s = (T ,N ) is a derivation tree T together with

a pointer to the non-terminal node N that is currently pro-

cessed. The agent can use as action a at s any grammar rule

applicable to N . If the rule produces a terminal, the agent’s

immediate reward equals the terminal’s merit. Otherwise

it is zero. After applying an action a the agent moves to a

new state s′ = (T ′,N ′); T ′ is obtained from T by append-

ing to node N the children generated by applying action

a. If one or more non-terminals are produced by the rule,

N ′ moves to the leftmost non-terminal. Otherwise, N ′ be-

comes the first unprocessed non-terminal encountered while

backtracking in the tree. Our agent’s initial state has as T
the grammar’s axiom. The agent stops when there are no

non-terminals left.

Our agent essentially performs a depth-first derivation of

an image interpretation tree; its goal is to maximize the re-

ward accumulated by its actions. This amounts to finding

the derivation tree with maximal cumulative merit at its ter-

minals, i.e. solving the parsing problem outlined in the pre-

vious Section.

MDP formulation: We can formulate our agent’s inter-

action with the environment in terms of a Markov Decision

Process (MDP): the next state s′ depends entirely on the

current state s and the chosen action a. The immediate re-

ward is a function R(s, a) of the current state and action.

The agent’s actions are determined by a policy function

π(s, a) = p(a|s), giving the probability of picking action

a at state s. The expected reward V π(s) of an agent starting

at state s and then following policy π can be computed with

Bellman recursion:

V π(s) =
∑

a

π(s, a) [R(s, a) + V π(s′)] (2)

In words, we first compute the immediate reward R(s, a)
obtained by performing action a at state s. Action a leads

us (deterministically in our case) to a new state s′; by fol-

lowing policy π after s′, the agent will receive an expected

reward V π(s′). The agent’s cumulative reward for play-

ing a at s is thus the sum of its immediate, R(s, a), and

expected-to-come V π(s′) rewards. V π(s) is obtained from

the expectation under policy π(a, s) of this cumulative re-

ward R(s, a) + V π(s′).
We can alternate between the value function V π(s) and

the action-value function Qπ(s, a) as follows:

Qπ(s, a) = R(s, a) + V π(s(a)) (3)

V π(s) =
∑

a

π(s, a)Qπ(s, a) (4)

Qπ(s, a) is intuitively similar to V π(s), with the difference

that we identify a, instead of taking a summation over it.

The agent’s goal is to maximize the (expected) cumula-

tive reward obtained from its actions. This amounts to find-

ing the policy π with maximal expected cumulative reward.

Optimal Policies via RL: Reinforcement learning in-

cludes a range of techniques allowing us to find a policy

π∗(a, s) with maximal expected cumulative reward (see e.g.

[21] for details). For instance Q-learning alternates between

using the current estimate of Q(s, a) to determine π and

then following π to refine Q(s, a). For the first part (from

Q to π), at each state s, with probability 1 − ǫ, the agent

chooses a∗ = argmaxaQ(s, a). Otherwise, it picks an

action at random, thereby exploring the state space. The

so-called ǫ-greedy exploration policy is a way to tackle the

exploration-explotation trade-off:

π(s, a) = (1− ǫ)δ(a, a∗) + ǫU(a), (5)

where U is a uniform distribution and δ is the Kronecker

function.

For the second part (update of Q) the agent picks the

most promising action a′ at the state s′ resulting from its

previously chosen action, a. Q(s, a) is then updated as:
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Figure 4. State simplification for a shape parse tree being pro-

cessed in a DFS order: The agent in P needs to first fully derive

C1 before moving into the derivation of C2. For the derivation of

C1 our agent can find the optimal sequence of state-action pairs,

A∞ by relying on a local policy that ignores the part of the deriva-

tion tree lying above P . This local policy can rely on only a part

of the information contained in the state of the agent at the current

step.

∆Q(s, a) = α[R(s, a) + max
a′

Q(s′, a′)−Q(s, a)] (6)

where α is a learning rate. This can be interpreted as

bringing closer a previous estimate of Q(s, a) with the more

up-to-date estimate, R(s, a) +maxa′ Q(s′, a′). Repeatedly

applying Eq. 6 for several runs while slowly decreasing ǫ
and α results in learning an optimal policy. Once π∗ is

found, choosing at each step a∗(s) = argmaxaπ
∗(s, a) will

yield the optimal solution for an MDP.

Hierarchical Decomposition: Given an optimal policy

we could start from the ‘axiom’ state and then optimally

parse the image by greedily choosing the best action at each

state. But in practice we cannot learn this policy using RL

with the state representation described so far, since the num-

ber of states is huge -it includes all possible parse trees for

an image. However, as we will now describe, we can sim-

plify the expression of Q(s, a) based on ideas from Hierar-

chical Reinforcement Learning [25].

As noted in Sec. 3, our agent performs a depth-first

derivation. Consider, as shown in Fig. 4, that we have

just expanded a node P into two non-terminals C1, C2,

and the node to be currently processed is N = C1. Our

agent will first fully derive C1, and then C2. Consider

that it starts expanding C1 at time 1 and finishes it at time

j. It then goes on expanding C2, and backtracks when

finished with C2. To simplify Q(s, a) we break the se-

quence A = {(s1, a1) . . . (sk, ak)} of state-action pairs

starting from s1 = (T ,N ) into two subsequences A1

and A2. A1 = {(s1, a1), . . . , (sj , aj)} corresponds to the

state-action pairs involved in expanding the offspring of N .

A2 = {(sj+1, aj+1), . . . , (sk, ak)} deals with C2 and the

rest of the derivation tree, until the agent ends.

Consider a local policy that maximizes the expected

cumulative reward during A1, instead of the whole se-

quence A. Rewards in A1 are only affected by N , the cur-

rently expanded node instead of the whole tree T ; so we

only need N ’s attributes (4 continuous variables) to learn

this policy, plus the shape’s type (window/wall/floor, etc).

Moreover, what happens in A1 cannot affect the rewards∑k
i=(j+1) R(si, ai) gathered during A2. Therefore this lo-

cal policy will also be globally optimal.

Based on this approach, finding the optimal subtree be-

low N can be performed with a ‘macro’ action [25]; once

it is finished, the agent labels N ‘completed’, keeps the re-

ward
∑

(s′,a′)∈A1
R(s, a) and moves to sj+1. Within this

macro, a local Q function can thus summarize s in terms

of the attributes of N . This Q function corresponds to the

expected reward accumulated during the macro.

Regarding the action argument, a, of Q(s, a), note that

at each step the agent decides where to split a shape along

a fixed axis. We can thus represent the local Q function

within a macro in terms of N ’s attributes for s and a scalar

for a; this concludes our simplification for Q(s, a) so far.

Note that the children resulting from a split may be non-

terminals themselves. But we can use nested macros with

local policies per child. The reward accumulated during the

derivation of a child provides the reward R(s, a) resulting

from the split of the parent shape by a. These rewards can

be used to learn the local Q(s, a) functions with Q-learning.

4. Accelerated Parsing using Reinforcement

Learning Techniques

The hierarchical decomposition presented above dramat-

ically simplifies s,but we still need to perform RL for a 5-

D action-value function. We now describe two techniques

that allow us to speedup computation in ways that would be

impossible with plain DP. We first describe state aggrega-

tion, a RL technique to deal with a large number of states.

Then, we present an image-driven technique that directs our

agent’s exploration towards promising areas.

State Aggregation: State aggregation [26] reduces the

number of state-action pairs over which Q(s, a) is esti-

mated by coalescing sets of states into single states. To

motivate our approach, consider a ‘floor’ shape. Intu-

itively, the height of a floor should not affect how we split

it into windows and walls, since these are placed on the

same horizontal locations for all floors. The policy for

splitting a floor could thus be expressed by two functions

πwin/wall(x, a) quantifying how good it is to put a win-

dow/wall of width a at location x; so we go from 5D policy
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functions πwin/wall(s, a), s = (x, y, w, h) to 2D functions,

πwin/wall(x, a). Similarly, the policy to split a facade into

floors and walls should depend only on the height y.

A problem with this emerges because the policy π(s, a)
is obtained from Q(s, a), as explained in Sec. 3. In turn

Q(s, a) is learned by following the policy and observing the

rewards R(s, a) obtained over different runs. But R(s, a) is

by definition a function of (x, y, w, h), and not only of the

variable over which the split is performed. For instance,

consider a policy for splitting a floor into walls and win-

dows. Expressing Q(s, a) in terms of only x, a ignores the

y coordinate at which the floor lies, or its height h. If the

agent has misplaced the floor or under-estimated its height,

the reward R(s, a) obtained by putting a window of length

a at x will be affected. The rewards obtained from differ-

ent runs of the same algorithm for the same combinations

of x, a will thus be different.

However, RL algorithms can accommodate stochastic

rewards; if the reward R(s, a) for a state-action pair changes

over different runs, Q-learning will converge to the correct

solution under the expected reward, R̄(s, a). We can thus

learn a Q function per shape that only involves the split vari-

able, say, x by treating the changes in the rewards to the dif-

ferent values of y, w, h as random. Actually, the policy cur-

rently used by the agent induces a distribution P (y, w, h)
over the other variables y, w, h. The expected reward is:

R̄(s, a) =
∑

y,w,h

R(x, y, w, h, a)P (y, w, h) (7)

Consider for instance a floor macro. The local policy

QWin(x, a) expresses the reward we expect to gather until

the completion of a floor when starting from x, and placing

a window of length a. The expectation considers all place-

ments of the floor within the facade, while the probability

of each placement is determined by the facade policy.

Even though a formal demonstration of the convergence

of the method is still missing, we can at least intuitively

justify that this scheme converges to a correct policy as fol-

lows: consider that the high-level policy for facade splitting

starts placing floors more often at proper locations. This

will result in similar rewards over runs of the ‘floor’ macro,

and eventually lead also the local policy for floor splitting

closer to the optimal one. Similarly, if the local policy be-

comes correct, misplaced floors will get low rewards, con-

trary to properly placed ones, which will be properly split.

This leads in turn to an improvement of the high-level pol-

icy. There is thus a mutual, EM-like, reinforcement of the

correct high- and low- level policies. As in all EM-based

schemes local minima can occur, but in practice all solu-

tions we obtain look reasonably good.

The robustness of the Q-learning algorithm to initial con-

ditions can be shown empirically. For that matter, we run

200 times our method on the same image with identical pa-
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Figure 5. Evolution of the cumulative agent return as a function of

episode, averaged over 200 experiments. The mean is increasing

and the standard deviation decreases in larger episodes.
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Data Driven

Figure 6. Image-based guidance accelerates Q-learning: the gradi-

ent of the image is used to guide the stochastic exploration of ac-

tions. This results in a great speedup of the Q-learning algorithm,

as we can see in the average learning curves (average returns at

each episode over 200 experiments.)

rameters. For each experiment, we run Q-learning for 5000
episodes. We record the returns after each episode and av-

erage them all among the 200 experiments. Fig. 5 shows

the increasing learning curve of the agent, as well as the

decreasing evolution of the standard deviation over the ex-

periments.

Image-Driven Exploration: As mentioned in Sec. 3 at

each step of RL with probability ǫ our agent will choose

an action at random. This stochastic exploration allows it

to eventually optimize its policy globally, by getting it ‘un-

stuck’ from a single policy.

Our modification is that instead of having a uniform

distribution for these actions, we use image-based cues to

suggest good actions -this can be seen as an adaptation of

the DDMCMC scheme of [14] to Q-learning. For instance

when our agent is splitting a floor and is located at x, taking

an action a will lead it to place a boundary at location x+a.

We have good reason to believe that this boundary should be

close to locations with strong horizontal gradients. To avoid

locally noisy measurements due to occlusion, noise etc., we

average the horizontal gradient magnitude function along

the y axis, and form a 1D function, h(x) = Ey to indicate

proper actions, as proposed by [27]. The proposal distri-

bution for horizontal split actions is then a softmax func-

tion: P (a;x) = eh(x+a)/
∑

a′ eh(x+a′) while the policy
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Figure 7. Output of our RL-based parsing method on the Ecole

Centrale Paris dataset. We reach state-of-the art results with a

more flexible grammar than the one proposed in [6], while cutting

down the computation time by more than an order of magnitude.

becomes π(s, a) = (1−ǫ)da∗(a)+ǫP (a;x). A similar pro-

posal distribution is used for the facade’s splits into floors

and walls, but using the vertical gradients this time.

The proposal distribution favors actions that place the

boundaries close to strong gradients. Since it is non-zero for

all a’s, we can still formally guarantee that our agent will

visit all states infinitely often; but it will check promising

ones more frequently, thereby exploiting the image guid-

ance. Empirically, as we can see on Fig. 6 we observe that

the image-driven strategy results a significant speed-up, in

particular in the first phase, where with similar energy lev-

els are reached in one or two orders of magnitude less steps

than with plain ǫ-greedy search.

5. Experimental Validation

For quantitative validation we use the experimental setup

of [6]. We train a random forest based on the dataset pro-

vided by the benchmark. The class posteriors returned by

this multi-class classifier provide us with the pixel-level

m functions described in Sec. 3. In the leftmost image

of Fig. 7 we show a MAP labeling of an image from

the test set; obtained by setting the most probable class

for each pixel according to the RF-based meritl(x, y) =
argmaxcm(x, y, c). The other images are semantic seg-

mentations obtained by the proposed algorithm.

Both our new algorithm and our old one [6] aim at par-

titioning the domain of a building’s facade in a manner that

respects this bottom-up information. Our older inference

algorithm used Monte Carlo simulation of the grammar and

took approximately 10 minutes per image. In our new work,

the RL parsing algorithm requires typically 30 seconds per

image to converge on an Intel Xeon CPU W3530 2.8GHz.

For reference, a Dynamic Programming-based solution to

the same problem took almost 2 days for a single image on

the same machine. Note that even though in our exposition

so far we have been using only two layers for simplicity,

our grammar naturally accommodates more layers, which

we use to obtain our results.

Quantitatively, we achieve comparable results with the

state-of-the-art shown in [6] (see table 1). Overall, the con-

fusion matrix is slightly better, expect for balconies due to





















97 2 1 0 0 0 0

14 84 2 0 0 0 0

2 1 84 0 1 5 7

0 0 0 94 4 2 0

0 0 4 0 86 10 0

0 0 11 0 5 81 3

1 0 26 0 0 10 63





















+2 shop

+13 door

+1 wall

+0 sky

+6 roof

+0 window

−9 balcony

Table 1. Confusion matrix obtained on the benchmark of [6] with

the new RL based parsing algorithm. Element i, j represents the

percentage of pixels labeled i by the method and j in the ground

truth. We compare the diagonal with [6], giving the difference

between both methods, in green when the RL method outperforms

the old one, and in red otherwise.

the higher complexity of our new grammar (we allow a bal-

cony to appear at any floor). Not only do we achieve state-

of-the-art quantitative results, but we also achieve a speed-

up by an order of 50 in terms of running time, and 300 in

terms of generated buildings (around 3000 in our method,

against 106 in [6]). To stress the benefits of our method,

we tested it on different types of architectures, using a very

flexible grammar with 4 terminal classes. In Fig. 8, we

demonstrate segmentation results based another merit func-

tion inspired from Grab-cut [28]. The user manually selects

on the image some examples of terminal elements and we

fit Gaussian Mixture Model (GMM) made of 3 Gaussian

kernels for each class. The GMM posteriors constitute the

merit function.

Further, thanks to the use of shape grammars, the pro-

posed method is robust to occlusions, noise and illu-

mination conditions (see Fig. 9). Beside, it is flexible

and can be adapted to modern architectures, as shown in

Fig. 8(b)(right).

6. Conclusion and Future Work

We have introduced Reinforcement Learning (RL) as an

efficient method for parsing shape grammars. We demon-

strated that RL provides us with tools appropriated for the

continuous setting of vision, such as Q-learning and state

aggregation, thereby allowing us to control the computa-

tional complexity of the problem, while also exploiting

image-based guidance, in a seamless manner. We achieved

state-of-the-art performance on a challenging benchmark,

and showed the potential of the method to deal with a wide

variety of buildings. We do believe that this first application

of RL to facade parsing shows interesting perspectives in

image parsing. In future work we intend to integrate other

RL capabilities such as function approximation, and further

explore the application of RL to broader classes of image

grammars.
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(a) Classic Architecture

(b) Skyscrapers

Figure 8. Grab-Cut on some examples of classic architectures from

Barcelona and Budapest, and skyscrapers from California and

Paris. Observe the colored brush strokes on the original images,

that were used to train the GMM used as merit functions.

(a) Robustness to occlusions

(b) Robustness to illumination

Figure 9. Robustness to artificial and natural occlusions and to

challenging illuminations (cast shadows and night lighting).
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