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Abstract

We approach recognition in the framework of deformable

shape matching, relying on a new algorithm for finding cor-

respondences between feature points. This algorithm sets

up correspondence as an integer quadratic programming

problem, where the cost function has terms based on sim-

ilarity of corresponding geometric blur point descriptors

as well as the geometric distortion between pairs of cor-

responding feature points. The algorithm handles outliers,

and thus enables matching of exemplars to query images

in the presence of occlusion and clutter. Given the corre-

spondences, we estimate an aligning transform, typically

a regularized thin plate spline, resulting in a dense corre-

spondence between the two shapes. Object recognition is

then handled in a nearest neighbor framework where the

distance between exemplar and query is the matching cost

between corresponding points. We show results on two

datasets. One is the Caltech 101 dataset (Fei-Fei, Fergus

and Perona), an extremely challenging dataset with large

intraclass variation. Our approach yields a 48% correct

classification rate, compared to Fei-Fei et al’s 16%. We also

show results for localizing frontal and profile faces that are

comparable to special purpose approaches tuned to faces.

1. Introduction

Our thesis is that recognizing object categories, be they

fish or bicycles, is fundamentally a problem of deformable

shape matching. Back in the 1970s, at least three differ-

ent research groups working in different communities ini-

tiated such an approach: in computer vision, Fischler and

Elschlager [10], in statistical image analysis, Grenander

( [12]and earlier), and in neural networks, von der Malsburg

([15] and earlier). The core idea that related but not identi-

cal shapes can be deformed into alignment using simple co-

ordinate transformations dates even further back, to D’Arcy

Thompson, in the 1910’s with, On Growth and Form [30].

The basic subroutine in deformable matching takes as

input an image with an unknown object (shape) and com-

pares it to a model by: solving the correspondence prob-

lem between the model and the object, using the correspon-

dences to estimate and perform an aligning transformation

and computing a similarity based on both the aligning trans-

form and the residual difference after applying the align-

ing transformation. This subroutine can be used for object

recognition by using stored exemplars for different object

categories as models, possibly with multiple exemplars for

different 2D aspects of a 3D object.

Practically speaking, the most difficult step is the corre-

spondence problem: how do we algorithmically determine

which points on two shapes correspond? The correspon-

dence problem in this setting is more difficult than in the

setting of binocular stereopsis, for a number of reasons:

1. Intra-category variation: the aligning transform be-

tween instances of a category is not a simple param-

eterized transform. It is reasonable to assume that the

mapping is a smooth, but it may be difficult to charac-

terize by a small number of parameters as in a rigid or

affine transform.

2. Occlusion and clutter: while we may assume that the

stored prototype shapes are present in a clean, isolated

version, the shape that we have to recognize in an im-

age is in the context of multiple other objects, possibly

occluding each other.

3. 3D pose changes: since the stored exemplars represent

multiple 2D views of a 3D object, we could have varia-

tion in image appearance which is purely pose-related,

the 3D shapes could be identical

The principal contribution of this paper is a novel al-

gorithm for solving the correspondence problem for shape

matching.

We represent shape by a set of points sampled from con-

tours on the shape. Typically 50-100 pixel locations sam-

pled from the output of an edge detector are used; as we use

more samples we get better approximations. Note that there

is nothing special about these points – they are not required

to be keypoints such as those found using a Harris/Forstner
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type of operator or scale-space extrema of a Laplacian of

Gaussian operator, such as used by Lowe [18].

We exploit three kinds of constraints to solve the corre-

spondence problem between shapes:

1. Corresponding points on the two shapes should have

similar local descriptors. There are several choices

here: SIFT [18], Shape contexts [3], and Geometric

blur[4]. We use geometric blur.

2. Minimizing geometric distortion: If i and j are points

on the model corresponding to i′ and j′ respectively,

then the vector from i to j, �rij should be consistent

with the vector from i′ to j′, �ri′j′ . If the transformation

from one shape to another is a translation accompanied

by pure scaling, then these vectors must be scalar mul-

tiples. If the transformation is a pure Euclidean mo-

tion, then the lengths must be preserved. Etc.

3. Smoothness of the transformation from one shape to

the other. This enables us to interpolate the transfor-

mation to the entire shape, given just the knowledge of

the correspondences for a subset of the sample points.

We use regularized thin plate splines to characterize

the transformations.

The similarity of point descriptors and the geometric

distortion is encoded in a cost function defined over the

space of correspondences. We purposely construct this to

be an integer quadratic programming problem (cf. Maciel

and Costeira [19]) and solve it using fast-approximate tech-

niques.1

We address two object recognition problems, multiclass

recognition and face detection. In the multiple object class

recognition problem, given an image of an object we must

identify the class of the object and find a correspondence

with an exemplar. We use the Caltech 101 object class

dataset consisting of images from 101 classes of objects:

from accordion to kangaroo to yin-yang, available at [1].

This dataset includes significant intra class variation, a wide

variety of classes, and clutter. On average we achieve 48%

accuracy on object classification with quite good localiza-

tion on the correctly classified objects. This compares fa-

vorably with the state of the art of 16% from [8].

We also consider face detection for large faces, suitable

for face recognition experiments. Here the task is to detect

and localize a number of faces in an image. The face dataset

we use is sampled from the very large dataset used in [5]

consisting of news photographs collected from yahoo.com.

With only 20 exemplar faces our generic system provides a

ROC curve with slightly better generalization, and slightly

worse false detection rate than the quite effective special-

ized face detector of Mikolajczyk [21] used in [5].

1It is worth noting that this formulation is amenable to various proba-

bilistic models, maximum likelihood estimation for a product of Gaussians

among others, but we do not address this further in this paper.

2. Related Work
There have been several approaches to shape recogni-

tion based on spatial configurations of a small number of

keypoints or landmarks. In geometric hashing [16], these

configurations are used to vote for a model without explic-

itly solving for correspondences. Amit et al. [2] train deci-

sion trees for recognition by learning discriminative spatial

configurations of keypoints. Leung et al. [17], Schmid and

Mohr [27], and Lowe [18] additionally use gray level in-

formation at the keypoints to provide greater discriminative

power. Lowe’s SIFT descriptor has been shown in various

studies e.g. [22] to perform very well particularly at tasks

where one is looking for identical point features. Recent

work extends this approach to category recognition [9, 7, 8],

and to three-dimensional objects[26].

It should be noted that not all objects have distinguished

key points (think of a circle for instance), and using key

points alone sacrifices the shape information available in

smooth portions of object contours. Approaches based on

extracting edge points are, in our opinion, more universally

applicable. Huttenlocher et al. developed methods based on

the Hausdorff distance [14]. A drawback for our purposes is

that the method does not return correspondences. Methods

based on Distance Transforms, such as [11], are similar in

spirit and behavior in practice. Work based on shape con-

texts is indeed aimed at first finding correspondences [3, 23]

and is close to the spirit of this work. Another approach

is the non-rigid point matching of [6] based on thin plate

splines and “softassign”.

One can do without extracting either keypoints or edge

points: Ullman et al propose using intermediate complexity

features, a collection of image patches,[32].

For faces and cars the class specific detectors of [33, 29,

28] have been very successful. These techniques use sim-

ple local features, roughly based on image gradients, and a

cascade of classifiers for efficiency. Recent work on sharing

features [31] has extended this to multiclass problems.

3. Geometric Blur Descriptor

a. b.

Figure 1. A sparse signal S (a.) and the geometric blur

of S around the feature point marked in red (b.) We only

sample the geometric blur of a signal at small number of

locations {si}, indicated in (b.)
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a. b.

c. d.

Figure 2. Two images (a. and c.) and four oriented edge

channels derived from the images using the boundary de-

tector of [20] (b. and d. respectively). A feature point de-

scriptor is the concatenation of the subsampled geometric

blur descriptor at the feature point for each of the channels.

We use features based on a subsampled version of the ge-

ometric blur descriptor of [4]. This descriptor is a smoothed

version of the signal around a feature point, blurred by

a spatially varying kernel. The objective is to provide

discriminative information by using an extended patch of

signal, while providing robustness to geometric distortion.

There are two design choices when using geometric blur

descriptors: the signal, and the blur. The signal should be

sparse and indicate the presence of some interesting feature

such as an edge in the image. The blur is determined by the

nature of geometric distortion expected.

The experiments in this paper use one of two types of

sparse channels from which to compute geometric blur de-

scriptors: the oriented boundary detector output of [20] or

oriented edge energy computed using quadrature pairs, fol-

lowing [24]. See Figure 2 for an example of the former. In

each case the edge detector is used to produce four channels

of oriented edge responses.

Throughout we use a spatially varying Gaussian kernel

to compute geometric blur. Given one of the oriented chan-

nels discussed above as the signal, S, we compute blurred

versions, Sd = S ∗ Gd, by convolving with a Gaussian of

standard deviation d. The geometric blur descriptor around

location x0 is then

Bx0(x) = Sα|x|+β(x0 − x) (1)

Where α and β are constants that determine the amount

of blur. The intuition is that under an affine transform that

fixes a feature point, the distance a piece of the signal moves

is linearly proportional to the distance that piece was from

the feature point.

In practice the geometric blur of a signal is usually rather

smooth far from a feature point, we take advantage of this

by subsampling the geometric blur, as shown in figure 1. We

sample Bxo
(x) at a sparse set of points x = si as shown in

figure 1, so we need only compute Sd for a few distinct val-

ues of d = α|si|+β. Since the Gaussian is a separable ker-

nel and we can subsample the signal for larger standard de-

viations, extracting geometric blur descriptors is quite fast,

taking less than a second per image in our experiments.

The feature descriptor at a point is the concatenation of

the subsampled geometric blur descriptor computed at that

point in each of the channels. We compare geometric blur

descriptors using (L2) normalized correlation.

4. Geometric Distortion Costs

We consider correspondences between feature points

{pi} in model image P and {qj} in image Q. A corre-

spondence is a mapping σ indicating that pi corresponds to

qσ(i). To reduce notational clutter we will sometimes ab-

breviate σ(i) as i′, so σ maps pi to qi′ .

The quality of a correspondence is measured in two

ways: how similar feature points are to their correspond-

ing feature points, and how much the spatial arrangement

of the feature points is changed. We refer to the former as

the match quality, and the later as the distortion of a corre-

spondence.

We express the problem of finding a good correspon-

dence as minimization of a cost function defined over cor-

respondences. This cost function has a term for the match

quality and for the geometric distortion of a correspon-

dence: cost(σ) = ωmCmatch(σ) + ωdCdistortion(σ)
Where constants ωm and ωd weigh the two terms. The

match cost for a correspondence is:

Cmatch(σ) =
∑

i

c(i, i′) (2)

Where c(i, j) is the cost of matching i to j in a corre-

spondence. We use the negative of the correlation between

the feature descriptors at i and j as c(i, j).
We use a distortion measure computed over pairs of

model points in an image. This will allow the cost mini-

mization to be expressed as an integer quadratic program-

ming problem.

Cdistortion(σ) =
∑

ij

H(i, i′, j, j′) (3)

Where H(i, j, k, l) is the distortion cost of mapping

model points i and j to k to l respectively. While there are a

wide variety of possible distortion measures, including the

possibility of using point descriptors and other features, in

addition to location, we concentrate on geometric distortion

and restrict ourselves to measures based on the two offset

vectors rij = pj − pi and si′j′ = qj′ − qi′ .

Cdistortion(σ) =
∑

ij

distortion(rij , si′j′)

Our distortion cost is made up of two components:
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Figure 3. An exemplar with a subset of feature points marked (left), the novel “probe” image with all feature points in white, and

the feature points found to correspond with the exemplar feature points marked in corresponding colors (left center), the exemplar

with all its feature points marked in color, coded by location in the image (right center), and the probe with the exemplar feature

points mapped by a thin plate spline transform based on the correspondences, again colored by position in the exemplar (far right).

See Figure 7 for more examples

Cdistortion(σ) =
∑

ij

γda(σ) + (1 − γ)dl(σ) (4)

da(σ) =

(

αd

|rij |
+ βd

) ∣

∣

∣

∣

arcsin

(

si′j′ × rij

|si′j′ ||rij |

)∣

∣

∣

∣

(5)

dl(σ) =
|si′j′ | − |rij |

(|rij | + µd)
(6)

where da penalizes the change in direction, and dl penal-

izes change in length. A correspondence σ resulting from

pure scale and translation will result in da(σ) = 0, while

σ resulting from pure translation and rotation will result in

dl(σ) = 0. The constants αd, βd, µd, are all terms allowing

slightly more flexibility for nearby points in order to deal

with local “noise” factors such as sampling, localization,

etc. They should be set relative to the scale of these lo-

cal phenomena. The constant γ weighs the angle distortion

term against the length distortion term.

Outliers Each point pi, in P , is mapped to a qσ(i), in Q.

This mapping automatically allows outliers in Q as it is not

necessarily surjective – points qj may not be the image any

point pi under σ. We introduce an additional point qnull and

use σ(i) = null to allow a point pi to be an outlier. We limit

the number of points pi which can be assigned to qnull, thus

allowing for outliers in both P and Q.

5. Correspondence Algorithm

Finding an assignment to minimize a cost function de-

scribed by the terms in Equations 3 and 2 above can be

written as an Integer Quadratic Programming (IQP) prob-

lem.

cost(x) =
∑

a,b

H(a, b)xaxb +
∑

a

c(a)xa (7)

Where the binary indicator variable x has entries xa, that

if 1, indicate σ(ai) = aj . We then have H(a, b) =
H(ai, aj , bi, bj), and c(a) = c(ai, aj) from Equations 3

and 2.

We constrain x to represent an assignment. Write xij in

place of xaiaj
. We require

∑

j xij = 1 for each i. Futher-

more if we allow outliers as discussed in Section 4, then we

require
∑

i x
inull ≤ k, where k is the maximum number of

outliers allowed. Using outliers does not increase the cost

in our problems, so this is equivalent to
∑

i x
inull = k.

Each of these linear constraints are encoded in one row of

A and an entry of b. Replacing H with a matrix having

entries Hab = H(a, b) and c with a vector having entries

ca = c(a). We can now write the IQP in matrix form:

min cost(x) =x′Hx + c′x subject to, (8)

Ax = b, x ∈ {0, 1}n

5.1. Approximation

Integer Quadratic Programming is NP-Complete, how-

ever specific instances may be easy to solve. We follow a

two step process that results in good solutions to our prob-

lem. We first find the minimum of a linear bounding prob-

lem, an approximation to the quadratic problem, then follow

local gradient descent to find a locally minimal assignment.

Although we do not necessarily find global minima of the

cost function in practice the results are quite good.

We define a linear objective function over assignments

that is a lower bound for our cost function in two steps. First

compute qa = min
∑

b Habxb. Note that from here on we

will omit writing the constraints Ax = b and x ∈ {0, 1}n

for brevity.

If xa represents σ(i) = j then qa is a lower bound for

the cost contributed to any assignment by using σ(i) = j.

Now we have L(x) =
∑

a(qa + ca)xa as a lower bound for

cost(x) from Equation 8. This construction follows [19],

and is a standard bound for a quadratic program. Of note is

the operational similarity to geometric hashing.

The equations for qa and L are both integer linear pro-

gramming problems, but since the vertices of the constraint

polytopes lie only on integer coordinates, they can be re-

laxed to linear programming problems without changing the

optima, and solved easily. In fact due to the structure of the

problems in our setup they can be solved explicitly by con-

struction. If n is the length of x, each problem takes O(n)
operations with a very small constant. Computing qa for

a = 1 . . . n requires O(n2) time.
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We then perform gradient descent changing up to two el-

ements of the assignment at each step. This takes O(n2) op-

erations per step, and usually requires a very small number

of steps (we put an upper bound on the number of steps). In

practice we can solve problems with m = 50 and n = 2550,

50 possible matches for each of 50 model points with out-

liers, in less than 5 seconds.

6. Correspondence results

Given a model image P of an object, and a target image

Q, possibly containing an instance of a similar object we

find a correspondence between the images as follows:

1. Extract sparse oriented edge maps from each image.

2. Compute features based on geometric blur descriptors

at locations with high edge energy.

3. Allow each of m feature points from P to potentially

match any of the k most similar points in Q based on

feature similarity and or proximity.

4. Construct cost matrices H and c as in Section 4.

5. Approximate the resulting Binary Quadratic Optimiza-

tion to obtain a correspondence. Store the cost of the

correspondence as well.

6. Extend the correpondence on m points to a smooth

map using a regularized thin plate spline [25].

See Figures 3 and 7 for a number of examples. In the left-

most column of the figures is the image, P , shown with m

points marked in color. In the middle left column is the

target image Q with the corresponding points found using

our algorithm. A regularized thin plate spline is fit to this

correspondence to map the full set of feature points on the

object in P , shown in the middle right column, to the tar-

get, as shown on the far right column. Corresponding points

are colored the same and points are colored based on their

position (or corresponding position) in P – in P colors are

assigned in uniform diagonal stripes, the distortion of these

striped in the far right column of the figure gives some idea

of the distortion in the correspondence.

7. Recognition Experiments

Our recognition framework is based on nearest neighbors.

Preprocessing: For each object class we store a num-

ber of exemplars, possibly replicated at multiple scales, and

compute features for all of the exemplars.

Indexing: Extract features from a query image. For each

feature point in an exemplar, find the best matching feature

point in the query based on normalized correlation of the

geometric blur descriptors. The mean of these best corre-

lations is the similarity of the exemplar to the query. We

form a shortlist of the exemplars with highest similarity to

the query image.

Correspondence: Find a correspondence from each ex-

emplar in the shortlist to the query as described abive. Pick

the exemplar with the least cost.

We apply our technique to two different data sets, the

Caltech set of 101 object categories (available here [1]) and

a collection of news photographs containing faces gathered

from yahoo.com (provided by the authors of [5]). In the

experiments that follow, we utilize the same parameters for

both datasets except for those specifically mentioned.

For all images edges are extracted at four orientations

and a fixed scale. For the Caltech dataset where significant

texture and clutter are present, we use the boundary detector

of [20] at a scale of 2% of the image diagonal. With the

face dataset, a quadrature pair of even and odd symmetric

gaussian derivatives suffices. We use a scale of σ = 2 pixels

and elongate the filter by a factor of 4 in the direction of the

putative edge orientation.

Geometric blur features are computed at 400 points sam-

pled randomly on the image with the blur pattern shown in

Figure 1. We use a maximum radius of 50 pixels (40 for

faces), and blur parameters α = 0.5 and β = 1.

For correspondence we use 50 (40 for faces) points, sam-

pled randomly on edge points, in the correspondence prob-

lem. Each point is allowed to match to any of the most simi-

lar 40 points on the query image based on feature similarity.

In addition for the caltech 101 dataset we use γ = 0.9 al-

lowing correspondences with significant variation in scale,

while for the faces dataset we handle scale variation partly

by repeating exemplars at multiple scales and use γ = 0.5.
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Figure 4. For a probe or query image exemplars are

ranked according to feature similarity. We plot the percent-

age of probes for which an exemplar of the correct class

was found in the shortlist. Here the first exemplar is cor-

rect 41% of the time. Left Full curve. Right Curve up to

shortlist length 100 for detail.

8. Caltech 101 Results

Basic Setup: Fifteen exemplars were chosen randomly

from each of the 101 object classes and the background

class, yeilding a total 1530 exemplars. For each class, we

select up to 50 testing images, or “probes” excluding those

used as exemplars. Results for each class are weighted

evenly so there is no bias toward classes with more images.
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The spatial support of the objects in exemplars is ac-

quired from human labeling. The top entry in the shortlist is

corect 41% of the time. One of the top 20 entries is correct

75% of the time. (Figure 4). 2

Recognition and localization: Using each of the top ten

exemplars from the shortlist we find a good correspondence

in the probe image. We do this by first sampling 50 lo-

cations on the exemplar object and allowing each to be

matched to its 50 best matching possibilities in the probe

with up to 15% outliers. This results in a quadratic pro-

gramming problem of dimension 2550. We use a distortion

cost based mainly on the change in angle of edges between

vertices (γ = 0.9). This allows matches with relatively dif-

ferent scales (Figure 7 line 3). The exemplar with the lowest

distortion correspondence gives 48% correct classification,

at the same time providing localization. A baseline experi-

ment comparing grayscale images using SSD and 1-nearest

neighbor classification gives 16%. At press, results from the

Caltech group are 27% using discriminative methods [13].

Multiscale: We compute exemplar edge responses and fea-

tures at a second scale for each exemplar resulting in twice

as many exemplars. This improves shortlist performance by

1% or less, and does not change recognition performance.

This illustrates the lack of scale variation in Caltech 101.

The face dataset exhibits a large range of scale variation.

9. Face Detection Results

We apply the same technique to detecting medium to

large scale faces for possible use in face recognition exper-

iments. The face dataset is sampled from the very large

dataset in [5] consisting of A.P. news photographs. A set of

20 exemplar faces split between front, left, and right fac-

ing, was chosen from the database by hand, but without

care. The test set was selected randomly from the remain-

ing images on which the face detector of [21] found at least

one 86×86 pixels or larger face. We use the generic ob-

ject recognition framework described above, but after find-

ing the lowest cost correspondence we continue to look for

others. A comparison of the ROC curves for our detector

and that of [21] is found in Figure 6. Our detector has an

advatage in generalization, while producing more false pos-

itives. While not up the the level of specialized face detec-

tors, these are remarkably good results for a face detector

using 20 exemplars and a generative model for classifica-

tion, without any negative training examples.

2We note that these results are on the Caltech 101 dataset as presented

in 8, which contains some duplicates. Using the currently available dataset

[1] which has no duplicates the performance drops by approximately 3%

across all experiments, in this case to 38% and 72% respectively. For

the recognition results using correspondence performance drops from 48%

with duplicates to 45% without duplicates.
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Hand Segmentation
Automatic Segmentation

Figure 5. Illustrating automatic model segmentation:

One training image (a.) the remaining 14 training images

(b.) colors indicate how well on average feature points

match after aligning transforms to each of the other train-

ing images (c.) At lower right, the percentage of probes

for which an exemplar of the correct class was found in the

shortlist. The blue curve shows performance with hand seg-

mented exemplars, the red Curve shows performance with

automatically segmented exemplars. For hand segmented

exemplars the first exemplar is correct 41% of the time, for

automatically segmented exemplars 45%. (d.)

10. Automatic Model Building

In the recognition experiments above, exemplar objects

were hand segmented from their backgrounds. We now

show how this can be automated by finding the repetitive

aspects of objects in the example images. Ideally this would

be computed for all images simultaneously. We show that

in many cases it is sufficient to find the similar parts in pairs

of images independantly.

Starting with a set of example images {Ii} from an ob-

ject class find the support of the object in an image Ii0 as

follows. For each image Ij where j �= i0 : 1) find a corre-

spondence from Ii0 to Ij . 3 2) Use a regularized thin plate

spline to map all of the feature points in Ii0 to Ij . 3) Fore-

ach mapped feature from Ii0 , the quality of the match is the

similarity to the best matching nearby feature in Ij . The

median quality of match for a feature is the measure of how

common that feature is in the training images.

Feature points with median quality within 90% of the

best for that image are considered part of the object. Repeat-

ing the recognition experiments in Section 8, the shortlist

accuracy improves by 1-4% (Fig. 5). While the estimated

support is usually not perfect, recognition performance is

similar to that using hand segmented images, 48%.

The learned models of support reflect a region of the im-

age that is consistent across training images, as opposed to

3Here we allow 40% outliers instead of 15% as used in the recognition

experiments.
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Figure 6. Left ROC curves for our face detector using 20

exemplar images of faces (split between frontal and profile)

and the detector of Mikolajczyk [21] (similar to [29]) evalu-

ated on a dataset of ap news photos. Mikolajczyk’s detector

has proven to be effective on this dataset [5]. Our detector

works by simply finding sets of feature points in an image

that have a good correspondence, based on distortion cost,

to an exemplar. Good correspondences allow detection and

localization of faces using a simple generative model, no

negative examples were used. Right Detections from our

face detector marked with rectangles.

individual discriminative features. For instance the cheek

on a face is not by itself discriminative for faces, but when

considering faces transformed into alignment the cheek is

usually consistent. More at www.cs.berkeley.edu/˜aberg
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Figure 7. Each row shows a correspondence found using our technique described in section 5. Leftmost is an exemplar with

some feature points marked. Left center is a probe image with the correspondences found indicated by matching colors (all possible

feature matches are shown with white dots). All of the feature points on the exemplar are shown center right, and their image using

a thin plate spline warp based on the correspondence are shown in the right most image of the probe. Note the ability to deal

with clutter (1,6), scale variation(3), intraclass variation all, also the whimsical shape matching (2), and the semiotic difficulty of

matching a bank note to the image of a bank note painted on another object (5).
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