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Shape Matching of Two-Dimensional Objects

BIR BHANU, MEMBER, IEEE, AND OLIVIER D. FAUGERAS, MEMBER, 1EEE

Abstract—In this paper we present results in the areas of shape
matching of nonoccluded and occluded two-dimensional objects.
Shape matching is viewed as a “segment matching” problem. Unlike
the previous work, the technique is based on a stochastic labeling pro-
cedure which explicitly maximizes a criterion function based on the
ambiguity and inconsistency of classification. To reduce the computa-
tion time, the technique is hierarchical and uses results obtained at low
levels to speed up and improve the accuracy of results at higher levels.
This basic technique has been extended to the situation where various
objects partially occlude each other to form an apparent object and
our interest is to find all the objects participating in the occlusion. In
such a case several hierarchical processes are executed in parallel for
every object participating in the occlusion and are coordinated in such
a way that the same segment of the apparent object is not matched to
the segments of different actual objects. These techniques have been
applied to two-dimensional simple closed curves represented by poly-
gons and the power of the techniques is demonstrated by the examples
taken from synthetic, aerial, industrial and biological images where
the matching is done after using the actual segmentation methods.

Index Terms—Coordination, hijerarchical relaxation, occlusion,
optimizatior, penalty function approach, projection gradient method,
recognition, relaxation, segment matching, shape matching, stochastic
labeling, 2-D objects.

I. INTRODUCTION

HE PROBLEM of assigning names or labels to a set of
Tunits/objects is the key problem in computer vision,
image analysis, and pattern recognition. Since all the labels
are not possible for a given unit, constraints based on con-
textual information, called the world model, are used to ob-
tain a consistent and unambiguous valid assignment of the
units. Local parallel processes are a very efficient way of
assigning labels. The features of such algorithms include the
propagation of local contextual information in a paradigm
of competition and cooperation, locality, and speed. In
general, the task of assigning names to units only on the basis
of features of the units is very difficult since any segmenta-
tion based on low-level analysis is bound to contain errors
and the computed features are noisy. The solution to this
problem is to delay any firm commitment until all the con-
textual information has been used. Depending upon the
type of constraints embodying the world model, the problem
can be attacked by discrete methods (discrete relaxation) or
continuous methods (continuous relaxation, also called sto-
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chastic labeling). Recent theoretical development and surveys
on these algorithms applied to low level vision and symbolic
matching can be found in [1]-[3].

In this paper we solve the “segment matching” problem [4]
of shape matching, defined as the recognition of a piece of a
shape as an approximate match to a part of larger shape, by
using a hierarchical stochastic labeling technique [5]. The
technique explicitly maximizes a criterion function based on
the ambiguity and inconsistency of classification. The hier-
archical nature of the algorithm reduces the computation time
and uses results obtained at low levels to speed up and improve
the accuracy of results obtained at higher levels. The class
of shapes that we consider are represented by simple closed
curves and are two-dimensional in nature such as the boundary
of a region in an aerial image, outlines of biological cells, in-
dustrial parts, etc. These shapes are approximated by polygons.
The shapes are allowed to undergo translation, rotation,
scaling, and in general significant changes. Taking these vari-
ations into account is essential if one is concerned with real
images, because in practice the results of a segmentation
technique will be different when it is applied to the images of
the same scene taken under different conditions. In the next
section we present the basic hierarchical stochastic labeling
technique to do shape matching of 2-D nonoccluded objects.
Section III extends this technique to the shape matching of
partially occluded objects. Several synthetic and real examples
are presented. Finally, Section IV presents the conclusions of
the paper.

II. SHAPE MATCHING OF 2-D NoNoccLUDED OBIJECTS

Past techniques used in the shape matching of 2-D non-
occluded objects are: chain code cross-correlation, Fourier
descriptors and moments, statistical pattern recognition tech-
niques, symbolic matching, syntactic and relaxation methods.
A review of these techniques can be found in [5], [6]. We
solve the segment matching problem by extending the sto-
chastic labeling technique [7], [8] in a hierarchical manner.
The shape matching algorithm is hierarchical in the sense
that at the higher levels, there are more constraints and world
knowledge. In the following we present a two stage hier-
archical stochastic labeling method for matching the segments
of a template/model against the segments of an observed
object.

Hierarchical Stochastic Labeling Algorithm: Let T =(T,,
Ty, -, Ty)and O = (0, 0., -+, O ) be the polygonal
representation of the model and the object, respectively,
where T; and 0,- are line segments,i =1,--- ,Nandj=1,---,
L - 1. In general, L may be greater, equal to or less than V.
Model elements will be referred to as units and object elements
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as classes. We identify part of the model T within the observa-
tion 0. We are therefore trying to label each of the segments
T;(i=1, -, N)eitherasasegment 0; (j =1, --,L - ) or
as not belonging to O (label Oy, = Nil). Thus each segment T;
can have L possible labels. Using a technique described subse-
quently we compute for every segment 7; a set of L positive
numbers p{l), I =1, -+, L, forming a vector p; = [p;(1),* - -,
pi(L)]T. pdAI) can be thought of as the probability of labeling
the segment T; as Oy, so £¥, p;(1)=1 and p;(I) > 0. The set
of all vectors p; (i = 1, +  +, N) is called a stochastic labeling of
the set of units.

Initially the stochastic labeling is ambiguous (except in some
very special cases) and we make it evolve toward a less am-
biguous labeling by comparing the local structure of T and O.
From now on the indexes i are taken modulo N. To every
segment T;, we associate the two neighboring segments T;_,
and T;,,. In order to compare the local structures of T and
0, a world model is represented by two compatibility func-
tions C; and C, mapping S; X 0% and S5 X 0 into [0, 1]
where, S, and S5 are two subsets of T2 and T? defined by

8, = ((T;, Ty}, JN, j=i-lori+l
83 = {(T;, Ti-y, Ty} ,N.

The compatibility function Cy(T;, Ok, Tj, O)) (j=i-1 or
i+1) and Co(Ty, Oy, Ti-y, Oy, Tiyy, O,) will be denoted
more simply by C,{i, k,j,1) and G (i, k,i-1,1,i+1,m). In
certain situations C, and C, may have conditional probability
interpretation [1], but here they do not. C,(i, k,i - 1,[) mea-
sures the resemblance of the set {7}, T;_, } with the set {Oy,
O;}. Similarly, C,(, k,i- 1,1, i + 1, m) measures the resem-
blance of the set {T;, T;-,, Tisy } With the set {Oy, Oy, Opy }.
A good (bad) match means that the value of C, or C, is close
to 1 (0). We associate to every segment T; a compatibility
vector ¢;=[q;(1), -+, qL)]T. Intuitively, this vector
represents what the neighbors of segment T; (that is to say
segment T;_, and T;,,) “think” about the way it should be
labeled whereas p; represents what the segment T, “thinks”
about its own labeling. Mathematically speaking we compute

i:l’...

[:1,...

j=i-1,i+1
L
(k)= % C G k,j,)pi(1), i=1,--+,N 1
=1 k=1,--+,L
OMN(k)= % (Qu-1 (k) + Qize 1 (K)) (2)
0®(k) = i Cali kyi- 1,14,i+1,15)
1,03 =1
“Pi-1(11) Pyt (). 3)

Using vector-matrix notation (1), (2), and (3) can be written
more simply as

O = L(Ay1-y Bi-y + Agiey Pinr) )
QD)= pL, Bix Piuy ©

where A;; and By, are L X L matrices. The (k, I)th element
Ay and (I, I3)th element of By are C1 (i, k, j,I) and C,(, k,
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i-1, 1, i+1, I,), respectively. The numbers Ql(.l)(k) and
Q,(z)(k), k=1, ---, L are positive. The idea is that they are
large when the probabilities of the labels of the neighbors of
T; compatible with label O, are large and small otherwise.
The numbers Q{V(k) and Q®)(k) are normalized so that they
add up to 1 yielding two vectors Zi,(l) and 67,(2) such that

(n) =1,2
qf")(k) = M, n ) 7
Sopa  KThTE
=1

It is desired to decrease the discrepancy between what every
segment T; thinks about its own labeling (p;) and what its
neighbors think about it (67,(-"), n=1,2). We can therefore de-
fine local consistency as the amount of difference between p;
and C?g")(n =1, 2). A good measure of it is the angle between
these two vectors,

B q”
C,(")=c050i=m. n=1,2 (®
when p; =f7,(~"), cos 8; =1 and is smaller than 1 if p; and Z]E")

are different with a minimum value of 0 (because p; and g™

are probability vectors). Similarly, a local measure of am-
biguity can be defined as the quadratic entropy,

H=3 oD - p,@)=1- 3. ©)
I=1

Since H; is large when || g;|| is small and vice versa, we can use
Hi= g, (10)

as a local measure of ambiguity. Further, since we want to
maximize local consistency and minimize ambiguity, we can
use the product of (8) and (10) as a measure of both quan-
tities, i.e.,

=S ()]

D q;
CPHi= -k (11)
T g™,

C,(")H,' is maximum when p; = ‘71(") (maximum consistency)

and p; is the unit vector (minimum ambiguity). We can
define
SO =g, H =5 -, n=1,2 (12)

as a local measure of ambiguity and consistency. Note that
J{® is maximum for §; = ¢ and p; = unit vector. Therefore,
a good “local” measure of ambiguity and consistency is the
inner product p; - cfl(."), n=1, 2. By computing the average
over the set T of these local measures we obtain two global
criteria:

N
J® =5 g™, n=1,2. a3

i=1
The problem of labeling the segments T is therefore equiva-
lent to an optimization problem: given an initial labeling ,5,(.0).
i=1, -+, N, find a local maximum of the criteria J™(n =
1, 2) closest to the original labeling ,550) subject to the con-
straints that the p;’s are probability vectors. Since C, is a
better measure than C; of the local match between 7 and ().
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we are actually interested in finding local maxima of the cri-
terion /(. On the other hand, maximizing J(!) is easier
from the computational standpoint. We therefore use the fol-
lowing hierarchical approach: starting with an initial labeling
ﬁlfo), we look for a local maximum ﬁ}_l) of the criterion J(1?,
This labeling is less ambiguous than ﬁ,’s"" in the sense that many
labels have been dropped (their probabilities p;(k) are equal
to zero). We then use the labeling p(‘) as an initial labeling
to find a local maximum of the criterion J?). The computa-
tional saving comes from the fact that the values C,(i, k, i - 1,
Iy, i+ 1,1,) corresponding to probabilities p;_, ({;) or p;,,(I2)
equal to zero are not computed.

The problem of maximizing (13) can be efficiently solved
using the gradient projection method [9]. The gradient of
the criterion at the first stage of hierarchy is given by

CARy P S M F A I S
%, i =D, ji P~ Py
where
L
D;= hzl oY (1) (15)
and X is a L X 1 vector of 1’s,ie., x=[1,1,- -, 1]7. The

first term in (14) corresponds to the simple maximization of
the product p; - ci‘(’) in the global criterion J, and the sec-
ond term corresponds to the coupling between units through
the compatibility function C,. Note that in general C,(J, /,
i, k) # Cy(, k,J, 1) since it depends upon the manner in which
the compatibility is computed. At the second stage of hier-
archy the gradient of the criterion J@ is obtained as

a‘](2) = =(2) e ~(2)
ap) - U0 Z [0(k) - D} ;- §®1,
Jj=i-1,i+1 (16)
where
0i-1 (k)= BTy Chi-y. Qias () = Bhay DB (17)
Di‘—l = gi:(_]:) =xT Cl;i—z il+l o aafll(;:) . *TDl;in
(18)
L
Dy = z 02 (1). Dysy = z o). (19)

C and D are L X L matrices, whose (I, /;)th element is given

by Co(i- 1,1, i-2, 13,6, k)and C,(i+ 1, 11,i+2,1,, i, k),
respectively. Now the iteration of p,’s is given by
YL i=1,---,N
p("ﬂ) —p('l) + p(n) P(n) :I " (20)
_ 3p; n=1,2
where the projection of the gradient is given by
. Fasm m 1 L n
P(n) l aJ*n L a.l* SR & a./ =A(") (21)
toLap; ap; L =1 opfk)

if none of the components of p; are zero. The computation of
the projection when some of the components of p; are zero
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can be found in [7], [9]. Normally, pg") is kept constant for
all units during each iteration and is determined to have the
largest possible value such that p;’s at the (n + 1)th iteration
still lie in the bounded convex region of the LN-dimensional
Euclidean space defined by E',;=1 pi(k)=1andp;(k) =2 0,i=
1, - -+, N. However, to obtain a faster convergence rate p,("
is obtained as

p{™ = o min [max pM(K)] (22)
il

where « is a constant between 0 and 1 and can be used to con-

trol the rate of convergence. Normally it is taken as 0.99.

p,(.")(k) is given by

- oMk
pM (k)= (;
Ok
Z'(m((k)), APk < 0. (23)

A side effect of computing p‘(") for every unit is that we may
not be following the gradient exactly. However, it can be ex-
pected that we are approximately in the direction of the gradi-
ent and the criterion (13) is still maximized. It is evidenced by
a large number of experiments. Now we present the details
of the shape matching algorithm.

Polygonal Approximation and Features: Polygonal approxi-
mation for the model and object is obtained by detecting the
points of high curvature [10]. The features derived from the
polygonal approximation of the boundary of an object are:
length of a segment, intervertices distance, slope of a segment,
angle between the two segments called the interior angle, and
angle between the two segments called the exangle as shown
in Fig. 1. The exangle corresponding to a vertex is equal to
the angle between the two straight lines, where one line is ob-
tained by extending the line joining this vertex and its neigh-
boring counterclockwise vertex and the other line is obtained
by extending the line joining the two clockwise neighboring
vertices. '

Initial Assignment of Probabilities. The initial assignment of
probabilities for a unit is obtained by comparing its feature
values with the feature values of all the segments of the object.
In general, the quality of correspondence of a unit i to an
object segment k is given by

M(T,-, Ok) = (24)

S 1fip - fopl Wy

p=1

where P is the total number of features
ftp = pth feature value for the model segment
fop = pth feature value for the object segment

W

» = weight factor for the pth feature.

Note that for a perfect match M(7T;, Oy) = 0 and for a poor
match M(T;, O,) will be large. The initial probabilities chosen
proportional to 1/(1 + M(T;, Oy), for k=1, ---, L -1 are
normalized so that they sum to 1. The weights of features
are needed to account for their importance and the different
range of values.
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I ©; = O since
‘ sides (2,3) ond
| (4,5) are parallel

Fig. 1. llustration of the definition of exangle.

Computation of Compatibilities: The compatibility function
determines the degree by which the assignments of two or
three neighboring units are compatible with each other. C,
and C, take values between 0 and 1. There are at least 4 ways
of computing ths compatibilities C, and C;.

First Method: At the first stage, we compute a transfor-
mation 7R from a unit 7; to label Oy, ie., TR: T; > O;. TR
consists of scaling, rotation, and translation in the X and Y di-
rections. This transformation is applied to the unit T;(j = i -
1 ori+ 1) and the error between the transformed T;and Oy is

P
M(TR(T[)) 01)= Z Ift'p -fopl wp
p=1

(25)

where fyp = pth feature value for the transformed unit, and
the other quantities are similar to those defined in (24).

Note that here the features may be slope and length of a seg-
ment, so we shall need the weights for these features. How-
ever, it is possible to avoid these parameters if we use only the
distance between the ends of O; and transformed T as the
matching error between two segments, i.e., matching error
M(TR(T}), O)) = AB + CD [refer Fig. 2(a)]. In practice we
have used this approach for computing the matching error.
The compatibility at the first stage is given by

. 1

Gl kLD = T MTRT), 09
The problem with this method of computing the compati-
bilities is that they are not symmetric, ie., C,(i, k, j, ) #
Cy(J, I, i, k). As we have seen, the computation of the gra-
dient requires C,(j, I, i, k), so if this method is used we shall
also require the computation of C,(j, I, i, k). Moreover,
since we are using only one transformation, compatibilities
so obtained will not be very accurate compared to the other
three methods described below.

Second Method: Unlike the first method, here we find two
transformations TR1 and TR 2 such that

TR1: Tg_’ok and TR2: T]_)Ol
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Now the average rotation, average scale and average transla-
tion of these two transformations are computed. The trans-
formation associated with these parameters called TV, is now
applied to the unit i and unit j and the matching errors be-
tween the transformed units and the segments O, and O; are
computed as in the first method and finally,

1

C\(k,jhHys ———.
JCLAY 1 + total error

At the second stage instead of finding two transformations, we
find three transformations and take the average of these values.
This average transformation is then applied tounits i, i - 1,7 + 1
and the total error between the transformed units and object
segments k, [,, and /, is computed to get C,(i, k, i~ 1,1,
i+ 1,1;) as in the first stage compatibility computation.

Third Method: This method is similar to the second method
in that we compute two transformations TR1 and TR2. Now
TR1 is applied to T; giving matching error M(TR I(T}), O))
and TR?2 is applied to T; giving matching error M(TR2(T;),
0;). Average of this error is taken and

I

C\G k,j)=—"-—
(k71 1 + average error

At the second stage, we will find three transformations and the
average error will be the average of six error terms and the
compatibility

I

Ci(ik,i- 1,1 ,i+]l, )= ———
2 b 2) 1 + average error

Fourth Method: In this method we compute mathematically
the best transformation from units / and j such that the sum
of the squares of the error between the transformed units and
the object segments is minimum. Here we can use only the
distance in the computation of the matching error (unlike the
first three methods where in principle we could use a combina-
tion of slope and length) so that the error criterion is quadratic
and linear least squares techniques can be applied. For ex-
ample, let the beginning and end coordinates of the segments
i,j, k, and ! be given by (X1, Y1), (X2, Y2), (DX, DY),
(DX2, DY2),(R1,S81),(R2,52),(Ul,¥V]1)and (U2, V2), re-
spectively, then

MX=b
where

DX1 -DY1 1 0 U1
DYl DX1 0 1 V1
DX2 -DY2 1 0 X cos 6 U2
DY2 DX2 0 1 A sin 6 2

M= Xt -yr 1o o Xo | b= Rl
YI X1 01 Y, S1
X2 -Y2 10 R2
Y2 X2 01 52|

and A is a scaling factor, 6 is the rotation, and X, and Y, are
the translations in the X and Y directions, respectively. The
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(a)
oBJECT
TR '.—Ok
5.2) 19.2)
3.4
i2,6)
(48
(4.10) 8.10}
() MODEL omJECT
METHOD FIRST SECOND THIRD FOURTH
itk 3,0
121, %26, 329,15
Tranaformation- TR:T —~0 TR1, Same asTR| TR! and TR2 Least Squares
(Scale, Rotation, (o.1§,-|§o' TR2:TqwOg as in the Heat Tranafe-
X-Trans., 9.75.10.5) (0.79,-161.56°| second metnod| rwation,
T-Trans.) 9.25,11.75) fram T, to O
Avg. Trans,,TV and Tq to Og
(0.77,-170.78° €0.17,-173.29°
9.50,11.12) 9.77,11.18)
Tranaformation 9 1,9 ™ to 9 1,9
Appliad to TRZ to 1
Units
Baginning 4 unie § Undt 1 unit 9 Unte 1
End Coordinates (7.5,7.5), (5.9%,8.98), (1.5,7.5), (6.09,9.18),
(X,Y) of the (6.9) (2.91,8.59) 6,9 (3,8.81)
Tranaformed Unit 9 Unit 1 Unit 9
Units (1.71,71.71), (6.9), (7.81,7.81),
(5.9%,8.98) (3.8} (6.09.9.18)
Total Error 0.707 1.013 1.707 o.8nn
Betwveen tha
Tranaformed Units
and object Labels
Avarage Error 0.8145
Compatibility 0.586 0.%92 0.5%0 0.522
Caltuk, 11,2y,
tel, £,), 1x1, k=6,
4=5, LaT)
Tranaformation- TR a3 above TR1 and TR2 TRY, TR2 and Least Squarea
{Scale,Rotation, a3 ebove TR aa tn the Best Tranafo-
X-Trans., TRI:T, -0, Secand Method |rmatten,
Y-TRans.) (0.6,-180", from T, to O,
8.1,10.2) Tqto Ogand
Avg. Trans.,TV Tato 0y
(0.72,-173.85°, (0.72,-179.2°
9.13,10.81) 9.63,10.48)
Tranaformation 9,2 1,9,2 TRI t0 9,2 1.9.2
Applied to TR2 to 1,2
Units TR3 to 1,9
Reginning & unit 9, unit 1 ™ unit 1
E£nd Coordinates Sama as (5.73,9.01), Unit 9 (6.03,9.19)
(X,Y) of the Above, (2.9.8.71) (7.5.7.5),(6,9)] (3.13,9.15)
Transformed Unit 2 Unit 9 Unit 2 Unit 9
Units 13.9) (7.11.7.75), (3,9),(3,5.25) | (7.29,1.7¢6),
(3,5.25) (6.73.9.01) TR2: (6.03,9.19)
Unte 2 Uate Unit 2
(2.9,8.11) (6,9),0(3.8) (3.13,9.15)
{3.28.5.16) Unte 2 (3.1,5.53)
(3,9),(3,5.25)
TR3:
Unit 1
(5.%,9),(3,9)
unit §
(6.6,7.0),
(5.%,9)
Total Error 1,487 2.7%2 5.820 1.856
Between the
Transformad Units
and object Labels
Avarags frrar a.970
Compatibiftty 0.807 a.267 a.508 0.350

Fig. 2. (a) Matching distance error = 4B + CD.

(b) An example il-
lustrating the four methods of computing compatibilities C, and C,.
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previous set of equations is an overdetermined system. It can be
transformed as MTMX =MTb which can usually be uniquely
solved for A, 8, Xy, Yo. This computed transformation can
then be applied to obtain compatibilities at the first stage by
using the approach used in the second method. At the second
stage M is a 12 X 4 matrix and b a 12 X 1 column vector. It
can be solved exactly as in the first stage case to obtain the
best transformation and compatibilities at the second stage.
This method requires more computation time than any of the
other methods. Note that the transformations used in this
method allow polygons to undergo rotation, translation and
scaling deformations only. However, a more general transfor-
mation can be easily computed. Also note that the second,
third, and fourth method lead to symmetric compatibilities.
In practice we have chosen the third method. Fig. 2(b) dem-
onstrates the four methods of computing C; and C, on a
specific example.

Initial Probability and Compatibility for the Nil Class:
pANil) is assigned a small constant value, depending upon the
a priori information that we may have about the possible
number of matches. Normally, we have taken p(Nil) between
0.05 to 0.30. The actual value is not critical, however, it af-
fects the convergence of probabilities, hence the number of
iterations. The compatibilities involving the Nil class are as-
signed as follows.

Ci(i,k,i- 1,Nil)=C,(i, k,i+ 1, Nil)
=Cy(i, k,i- 1,Nil, i + 1, Nil)
=pi(k)

Ci(i,Nil,i- 1,)=Cy(i,Nil, i+ 1,0)
=Cy(i,Nil,i- 1,0,,i+1,13)

= p,(Nil)
Cg(l., k,i‘ 1, Nll,l+ 1,12)=C1(i, k,i+ 1,12)

Cy(i,k,i-1,1,i+1,Ni)=C,(i,k,i-1,1).

Strategies That Lead to Faster Computation:

1) We set a probability value p;(k) to zero if it is less than
a specified percentage (normally 5 percent) of the largest com-
ponent of p; at a given iteration. When some of the com-
ponents of p; become zero, we do not compute the gradients
and compatibilities for them.

2) We set a probability vector p; to the unit vector if any of
the components of p; becomes greater than a certain thresh-
old (normally 0.9). The compatibilities and gradients are not
subsequently computed for this unit.

3) We compute compatibility and gradient for a limited
number of most likely assignments of neighbors (normally
1 or 2) for a given unit.

Control of the Stochastic Labeling Process: Two critical
questions related to any relaxation process in general [11]
are: 1) how do we evaluate the progress of the labeling process?
and 2) how many iterations do we need and how do we stop?
The answer to the first question is provided by the formula-
tion of our technique. It guarantees that consistency will
increase and ambiguity will decrease as the process progresses.
This is not true for many relaxation schemes which often con-
verge to results which are quite poor although the first few
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iterations provide significant improvement. To answer the
second question, the number of iterations at the first and
second stages are determined such that all the units are firmly
assigned. The process then stops.

Examples: In using the shape matching algorithm in principle
it does not matter whether we match an object with the model
or vice versa. Generally, it may be preferred to label the seg-
ments of the object or model, whichever has the smaller num-
ber of segments, because in that case the labeling of a smaller
number of units is required. We show the matching results
in the form of a table. Only the label and the probability of
the most likely assignment are shown.

Example 1: Fig. 3 shows a model and an object. The perim-
eter is shown as dotted points. Note that the upper portion
of the model is a noisy version of the object so their polygonal
approximations are different. This makes the matching prob-
lem somewhat more complicated than in [12] where Davis
introduces the noise after the polygonal approximation so
that the number of segments remains the same before and
after the introduction of noise. Table I shows the results of
labeling. Only the interior angle is used in the initial proba-
bility assignment. The results of labeling are good. Label 11
is the Nil class. Table II shows the results when only 6 itera-
tions of the first stage are used. Now the label of unit 4 is
wrong. This illustrates the need for the second stage which
corrects the mistakes of the first stage. Subsequent examples
support this fact.

Example 2: Fig. 4 shows two models and an object. Model
1 and Model 2 occlude each other to form an apparent object
shown in Fig. 4(c). Note that there is a change of scale for the
Model 1 in the apparent object. Tables III and IV show the
results of labeling for Model 1 and Model 2. Note that all the
assignments of Model 1 and Model 2 are correct except the as-
signment of unit 1 for Model 2. Although the probability of
assigning label 19 to unit 1 increases, label 1 is finally assigned
to this unit. Label 19 is the Nil class. This example is also
described in Section III to illustrate the occlusion algorithm.
There it will be seen that unit 1 of Model 2 is not assigned to
label 1.

Example 3: Fig. 5 shows three regions consisting of the
golden gate park obtained by using the recursive region splitting
method [13] of segmentation applied to two color images of
San Francisco. Regions in Fig. 5(a) and (b) are obtained
from the same image with slightly different parameters in the
segmentation scheme. Fig. 5(c) shows the region obtained
from the image taken at a different time and rotated with
respect to the other image. Since the region in Fig. 5(c) did
not change with slightly different parameters, we consider it
as the model and regions in Fig. 5(a) and (b) as objects. In
order to reduce the computational complexity we reduce the
regions shown in Fig. 5 by a factor of 14. The polygonal
approximations of the reduced regions are shown in Fig. 6.
We want to match the shape of objects [Fig. 6(a) and (b)]
against the model [Fig. 6(c)], so object segments are units
in this example. These shapes appear to be very different
from each other. The left side of the golden gate park in Fig.
5(a) and (b) did not close, whereas in Fig. 5(c) it is closed.
This is typical of shape matching complexity when we deal
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Fig. 3. (a) Model, perimeter = 21, number of segments = 6. (b) Ob-
ject, perimeter = 38, number of segments = 10.
TABLE
LABEL OF UNITS OF THE MODEL. EXAMPLE |.

Units of the Labels at different iterations
todel o] 1 3 1 4
1 1(.38) 1(.48) 1(.70) 1(.81) 1(1.0)
2 5(.31) 5(.30) 2(.41) 2(.63) 2(1.0)
3 7(.53) 7(.55) 11(.61) 11(1.0) 11(1.0)
4 1(.44) 1(.42) 1(.60) 11{.61) 9(1.0)
5 4(.32) 4(.29) 11(.33) 11(.46) 10:(1.0)
6 12(.75) 10¢.83) 10{(1.0) 19(1.0) 10(1.0)
Value of

e = - .71 1.42 .93 1.14
Criteria

Total Computation Time = 18.27 seconds

with real images. There is a clue of similarity of shapes in
Figs. 5 or 6. Segments 13 and 17 of object 1 match with seg-
ments 7 and 14 or 16 of the model respectively. Similarly
segments 10 and 15 or 16 of object 2 match with the segments
7 and 14 or 16 of the model. Results of shape matching are
shown in Tables V and VI. Most of the assignments are very
reasonable and correct although a few are incorrect. Label 30
is the Nil class.

From the results of labeling, the relative rotation between



BHANU AND FAUGERAS: SHAPE MATCHING OF 2-D OBJECTS 143

TABLE 11
LABEL OF UNITS OF THE MoDEL. EXAMPLE |.

i s Labels at i i i
Units of the el different iterations

model 0 1 k] 5 €

1 1(.38) 1(.48) 1(.70) 1(1.0) 1(1.0)
2 5(.31) 5(.30) 2(.41) 2(1.0) 2(1.0})
3 7(.53) 7(.55) 11(.61) 11(1.0) 11(1.0)
4 1(.44) 1(.42) 1(.60) 1(1.0) 1(1.0)
5 4(.32) 4(.29) 11(.33) 9(.75) 9(1.0)
6 10(.75) 10(.83) 10(1.0) 10(1.0) 10(1.0)

value of

Criterion .71 1.42 1.70 2.03

RARY

Total Computation Time = 4.24 seccnds

©)

Fig. 4. (a) Model 1, perimeter = 34, number of segments = 0. (b) Model 2, perimeter = 35, number of segments = 9.
(c) Object, perimeter = 67, number of segments = 18.
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"TABLE 111
LABEL OF UNITS OF THE MODEL 1. EXAMPLE 2.
Units of Labels at different iterations
the Model 1 a 1 3 1 3 6
1 1(.20) 1(.33) 1(.50) 1(.53) 1(1.0) 1(l.0
2 2(.51) 2(.62) 2(1.0) 2(L.0) 2(1.0) 2(1.0)
3 3(.63) 3(.74) 3(1.0) 3(1.0) 3(1.0) 3(1.0)
4 4(.28) 4(.43) 4(.71) 4(1.0) 4(1.0) 4(1.0)
5 19(.15) 19(.24) 19(.30) 19(.33) 19(.37) 5(1.0)
6 19(.15) 19(.21) 19(.27) 19(.31) 19(.45) 19(1.%)
7 19(.15) 19(.26) 16{(.39) 16(.51) 16(.74) 16(1.0)
8 17(.30) 17(.43) 17(1.0) 17(1.0) 17(1.0) 17(1.0)
9 18{.,29) 18(.46) 18(.68) 18(1.0) 18(1.0) 18(1.0)
Value of
< . .44
cetrerta 1.03 1.56 1.33 1.44 1.4
J(1) J(2)
Total Computation Time = 52.79 seconds
TABLE IV
LaBEL OF UNITS OF THE MODEL 2. EXAMPLE 2.
Units of Labels at different iterations
the Model 2 Q 1 3 1 3 5
1 19(.15) 19(.26) 19(.36) 13(.43) 19(.65) 1(1.0)
2 10(.15) 19(.20) 19(.24) 19(.30) 19(.45) 19(1.0)
3 9(.24) 9(.56) 9(1.0) 9(1.0) 9(1.0) 9(1.0)
4 10(.67) 10(1.0) 10(1.0) 10(1.0) 10(1.0) 10(1.9)
S 11(.66) 11(1.0) 11(1.0) 11(1.0) 11¢1.9) 11(1.0)
6 12(.65) 12(1.0) 12(1.0) 12(1.0) 12(1.0) 12(1.0}
7 13(.66) 13(1.0) 13(1.0) 13(1.0) 13(1.0) 13(1.0)
8 19(.15) 19(.22) 19(.27) 19(.32) 14(.42) 14{(1.0)
9 1(.16) 1(.23) 1(.33) 1(.36) 19(.40} 19(1.9)
Value of
Criteria - 1.81 2.89 2.74 2.36 3.19
1Y M

Total Computation Time = 42.9 seconds

the model and the object can be computed. This is done by
using the following formula:

average relative rotation

slope of the ith unit—slope of the
i=1 assigned label to the /th unit
label & Nil

" number of units not assigned to Nil class (26)

where N is the number of units. The idea behind this formula
to compute the rotation is that although some labels may be
wrong, it is expected that the slope of the matching segments
will not be widely different. In practice we consider two cases
when using this formula.

Case 1: If it is given that the relative rotation is small (< 90°),
we subtract any term greater than 180° in the summation of
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Fig. 5. Regions obtained using a recursive region splitting technique of
segmentation. Regions in (a) and (b) are obtained from the same
aerial image of San Francisco with slightly different parameters in
the segmentation scheme. Region in (c) is obtained from another
image, taken at a different time, by using the same parameters used to
obtain (a) and (b). Regions shown are at different scales. (a) Size =
299 rows by 258 columns. (b) Size = 297 rows by 261 columns. (c)
Size = 381 rows by 253 columns,

(26), from 360°. So all the terms contributing to the sum in
(26) will be less than 180°.

Case 2: If the relative rotation is greater than 90°, we do
not subtract any term in the summation of (26) from 360° as
in case 1, but we neglect the terms contributing less than 30°
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Fig. 6. Polygonal approximation of the regions shown in Fig. § after
reducing them by 14 times. (a), (b), and (c) correspond to Fig. 5(a),
(b), and (c), respectively. (a) Object 1, number of segments = 23.
(b) Object 2, number of segments = 23. (c) Model, number of seg-
ments = 29.

and by the same amount the number of units is reduced in the
denominator of (26).

Tables VII and VIII show calculations of the relative rota-
tion for object 1 and object 2. The relative rotation between
object 1 and the model and between object 2 and the model
are found to be 36.1° and 35.5°, respectively. The actual
rotation is 35°.

Example 4: Fig. 7(a) shows the top view of a piece of car
shock absorber and 7(b) the superposition of two such pieces,
the one below being the one of Fig. 7(a). The polygonal ap-
proximation is shown in Fig. 7(¢) and (d). From a practical
standpoint, it is important to identify in the shape of Fig. 7(d)
(the observation) the visible part of the shape of Fig. 7(c)
(the model). In this example V=L =28, Table IX shows the
results. Here the units 8, 9, 10, 11 and 26, 27, 28, 1 are

145
TABLE V
LABEL OF SEGMENTS OF THE OBJECT 1. EXAMPLE 3.
Segments Labels at different iterations
of the
Object 1 0 1 5 2 4 7
1 30(.08) 27(.20}) 27(1.0) 27(1.0) 27(1.0) 27(1.0)
2 28(.16) 28(.22) 28(.78) 28(1.0) 28(1.0) 28(l.0)
3 25(.08) 29(.11) 29(.25) 28(.44) 28(1.0) 28(1.0)
q 5(.08) 30(.10) 3(.33) 3(.39) 3(1.0) 3(1.0}
5 30(.08) S5(.11) 5(.23) 5(.32) 5(.51) 5(1l.0
6 30(.08) 4(.14) 4(.39) 5(.56) 5(1.0) 5(1.0)
7 6(.10) 6(.11) 6(.77) 6(1.0) 6(1.0) 6(1.0)
a 19(.10) 19(.12) 1(.25) 7(.44) 7(.67) 7(1.0)
9 30¢.08) 3(.13) 3(.30) 5(.31) 5(1.0) 5(1.0)
10 5(.09) 3(.20) 3(1.0) 3(1.0) 3(1.0) 3(1.0)
11 4(.21) 4(.35) 4(1.0) 4(1.0) 4{¢1.0) 4(1.0)
12 30(.08) 5(.15) S5(.47) 5(.79) 5(1.0) 5(1l.0
13 7(.11)  7(.20) 7(1.0) 7(l1.0) 7(1.0) 7(1.0)
14 30(.08) 8¢(.13) 8(.53) 8(l.0) 8(l.0) 8(l.0)
15 30(.08) 30(.10) 9(.16) 9(.36) 9(.50) 8(l.])
16 17(.08) 17(.14) 17(.63) 13(1.0) 13(1.0) 13(1.0}
17 30(.08) 30(.11) 30(.17) 18(.19) 16(.28) 16(1.9)
18 30(.08) 30(.12) 20(.35) 20(.71) 20(1.0) 20(1.9)
19 30(.08) 30(.12) 30(.17) 23(.26) 23(.44) 23(1.0)
20 18(.13) 2(.12) 18(.40) 30(.63) 30(1.0) 30(1.0)
21 1(.11) 21(.12) 21¢(.44) 19(1.0) 19(1.0) 19(1.0)
22 22(.14) 22(.17) 22(.53) 22(.77) 22(1.0) 22(1.9)
23 30(.08) 30(.10) 26(.24) 261(.33) 26(.53) 26(1.92)
bttt .898  2.236 1.604 1.688 1.718
Criteria
J(l) J(2)
Total Computation Time = 243.75 seconds
TABLE VI
LABEL OF SEGMENTS OF THE OBJECT 2. EXAMPLE 3.
Segments Labels at different iterations
of the
Object 2 0 1 6 1 q 6
1 1(.15) 1(.20) 1(.64) 1(1.0) 1(1.0) 1(1.0)
2 2(.11)  2(.19) 2(.49) 2(.57) 2(1.0) 2(1.0)
3 30(.08) 27(.12) 27t.36) 27(.34) 3(.40) 3(1.0)
4 28(.09) 28(.15) 28(.68) 28(.79) 28(1.0) 28 (1.9)
5 30(.08) 30(.12) 29(.31) 29(.35) 29(1.0) 29 (1.0)
6 33(.08) 2(.14) 2(.66) 2(1.0) 2{(1.0) 2(1.0)
7 3(.12) 3(.28) 3(1.0) 3(1.0) 3(1.0) 3(1.0)
a 4(.12) 4(.20) 4(1.0) 4(1.0) 4(1.0) 4(1.0)
9 30(.08) 5(.13) 5(.43) 5(.66) 5(1.0) 5(1.0)
10 7(.11}y  7(.20) 7(1.0) 7(1.0) 7(1.0} 7(1.0})
11 30(.08) 8(.11) 8(.38) 8(.42) 8(1l.2) 2(1.9)
12 11(.08) 11(.12) 9(.49) 9(.65) 9(1.0) 9(1.0)
13 30(.08) 30(.10) 12(.27) 12(.30) 11(.62) 11 (1.0)
14 30(.08) 13(.15) 13(.55) 14(1.0) 14(1.0) 14 (1.0)
15 14(.14) 14(.31) 14(1.0) 14(1.0) 14(1.0) 14 (1.0)
16 30(.08) 16(.16) 16(.61) 16(1.0) 16(1.0) 16 (1.0)
17 30¢.08) 30(.13) 17(.33) 19(.38) 19(1.0} 19 (1.0)
18 30(.08) 15(.10) 19(.20) 19(.26) 19(.45) 20(1.0)
19 18(.12) 18(.13) 18(1.0) 18(1.0) 18(1.0) 18 (1.0)
20 1(.09) 19(.18) 19¢(.80) 19(1.0) 19(1.0) 19 (1.0)
21 30(.08) 23(.13) 22(.41) 20(.63) 20(1.0) 20(1.0)
22 23(.08) 23(.11) 23(.44) 23(.49) 22(.61) 22(1.0)
23 18(.11) 29(.11) 23(.35) 29¢(.72) 29(1.0) 29 (1.0)
value of 0.917 1.985 1.606 1.658 1.672
Criteria
S S
Total Computation Time = 219.20 seconds

assigned to the same labels because of the great similarity of
their local structure. The labeling could correctly identify the
visible part of the model within the observation. The rela-
tive rotation is found to be 6.3°. The actual rotation is 5°.

III. SHAPE MATCHING OF 2-D OccLUDED OBIJECTS

Matching of occluded objects is one of the prime capabilities
of any shape analysis system. We view the occlusion problem
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TABLE V11
COMPUTATION OF THE RELATIVE ROTATION BETWEEN THE OBIECT 1
AND THE MoDEL. EXAMPLE 3.

Slope of the

Units of the units of object 1

Label of the

Slope of the

segments of the la=bi

object 1 in degrees gg]l:f:taf labels in degrees in degrees
1 297 27 225 18
2 243 28 252 9
3 315 23 252 63
4 33.7 3 63.4 26.7
5 135 5 45 90
6 45 5 45 0.0
7 351 6 346 5
8 225 7 90 180
9 26.6 5 45 18.4
10 56.3 3 63.4 7.1
11 0.0 4 0.0 0.0
12 26.6 5 45 18.4
13 117 7 99 27
14 90 [ 45 45
15 135 2] 45 90
16 107 13 90 17
17 297 16 180 27
18 180 20 135 45
19 219 23 225 6
20 349 30 - -
21 191 19 162 29
22 270 22 243 27
23 315 26 270 45
Relative Rotation = 796.6:22 = 16.1° Sum = 796.6
TABLE VIII
COMPUTATION OF THE RELATIVE ROTATION BETWEEN THE OBIECT 2
AND THE MoDEL. EXAMPLE 3.
Slope of the o . Slope of the
Units of the  units of object 2 @8l of tne segments of the la-bi
object 2 in degrees units of labels in degrees in dearees
3 object 2 b
1 191 1 180 11
2 292 2 297 50 .
3 270 3 63.4 206.6
4 288 28 252 36,
5 15.9 29 337 321.1
6 288 2 297 9
7 78.7 3 63.4 15.3
8 0.0 4 0.0 0
9 26.6 5 45 18.4
10 117 7 90 27
11 90 8 45 45
12 135 9 90 45
13 98.1 11 90 8
14 90 14 153 63
15 166 14 153 13
16 225 16 180 45
17 180 19 162 18
18 180 20 1395 45
19 333 18 284 49
20 194 19 162 32
21 225 20 135 90
22 207 22 243 36
23 351 29 337 14

+ . .
The contribution of these terms in the sum will be 360-value

Relative rotation =

Sum = 8 17.1

817.1:23 = 35.5°

in 2-D basically as a boundary matching problem [14], [15].
However, compared to the previous studies, the framework
presented here provides a firm mathematical basis for the solu-
tion of the occlusion problem. The occlusion problem treated
as a segment matching problem involves matching the seg-
ments of two or more actual objects with the apparent object,
which is formed by the occlusion of these objects. Some seg-
ments of the actual objects may not match with any of the
segments of the apparent object. Also the matching algorithm
should not assign the same segment of the apparent object to
segments of different actual objects. In this section we extend
the algorithm presented in Section II such that several hier-
archical processes are executed in parallel for every object
participating in the occlusion and are coordinated in such a
way that the same segment of the apparent object is not
matched to the segments of different actual objects. This is

done by combining the gradient projection method with the
penalty function approach [16]. In the following we formu-
late this problem as an optimization problem, discuss the oc-
clusion algorithm and present several examples in which 2 or
3 objects partially occlude.

Problem Formulation: Consider a general case in which
M(>2) actual objects, called models (X, - - -, X,r) occlude
one another to form a single apparent object called the object.
Let a model X,, be represented by X,, = (T, Ta, -+ -, Tn,,)
where N,, is the number of segments in the polygonal path
representation of the model X,,,. Similarly, let O =(0,, 0,,
-+, O _y) be the polygonal path representation of the object.
The object has L - 1 segments. We want to match the seg-
ments of the models against the segments of the object such
that the following two conditions are satisfied.

1) None of the segments of the different models are assigned
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(d)

Fig. 7. (a) An automobile piece. (b) Superposition of two such
pieces. (c) Model, number of segments = 28. (d) Object, number of
segments = 27.
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TABLE IX
LABEL of UNITS OF THE MODEL. EXAMPLE 4.

units of Labels at cifferent iterations
the dodel 0 1 3 2
1 28(.25) 10.49) 1(1.0) 1(1.0)
2 281(.25) 28(.54) 281(.72) 28{1.0)
3 26(.25) 2310.49) 28{.68) 28 (1.0)
4 281(.25) 281(.54) 28(.67) 28 (1.0)
3 281(.25) 28(.47 28(.73) 28(1.0)
6 281(.25) 28(.54) 28(.67) 28 (1.0)
7 28(.25) 26(.57) 28(.10) 28(1.0)
8 281(.25) 28(.51) 28(.52) 25(1.0}
9 28(.25) 281(.37) 26(.60) 26(1.0}
10 274(.46) 27(.65) 27(1.0} 27(1.0)
11 28(.25) 28(.37) 26{(.53) 1(1.0
12 2€(.25) 28(.51) 26(.59) 8(1.0)
13 28(.25) 2€(.43) 28(.62) 28(1.0)
14 25(.25) 28(.65) 28(1.0) 28(1.0)
15 28¢(.25) 28(.51) 28(1.0) 23(1.0)
16 26(.25) 28(.66) 28(1.0) 28(1.0)
17 28(.25) 28(.55) 26(.76) 28(l.0)
18 28(.25) 26(.77) 28(l1.0) 28(1.0)
19 28(.25) 28(.62) 28(1.0) 28(1.0)
20 28(.25) 28(.56) 28(l.0) 28(1.0)
21 28(.25) 28(.59) 28(1.0) 28(l1.0)
22 28¢(.25) 28(.59) 28(1.0) 28{(l.0
23 28(.25) 28(.58) 28(.73) 22{(1.0)
24 28(.25) 23(.52) 23(1.0) 23(1.0)
25 24(.43) 24(.67) 24(1.0) 24(l1l.0)
26 25(.44) 25(.62) 25(1.0) 25(1.0)
27 26(.46) 26(.67) 26(1.0) 26(1.0)
28 27(.46) 27(.62) 27(1.0) 27(1.0)
Value of
Criterion - 3.14 12.67 14.23
J(1) J(2)

Total Computation Time = 74.56 seconds

to the same segment of the object. This is called the occlusion
condition. It is necessary for the labeling to be unambiguous.

2) Those segments of the models which do not match to any
of the segments of the object are assigned to the Nil class.

We are thus trying to identify parts of the models within
the object. We designate the object segments as classes, and
the model segments as units. As discussed in the last section
the global criterion that measures the consistency and am-
biguity of the labeling over the set of units of a model X,, is
given by

3(n)

“qim, n=1,2 (27)

Nm
Jr(r':) = Z ﬁim
i=1
where n denotes the first or second stage of the hierarchy. Let
D, be the vector of RE=RL X --- X R (P=N,, L) equal to
(Pim»Bam»" ", DPn,,)- Then (27) can be written as

Nm
JP =5 IM (@) (28)
i=1
where

{; . _ 2 -
IO Bpn) = Bim -4,

Now the total criterion of consistency and ambiguity for all
the M models is given by

n=1,2.

. - - M Nm (n)»
F(Ulyv2y...,UM)= Z Z Jim(”m): h=

1, 2. (29)
m=1 i=1
The occlusion condition can be written as
- - - M-1 M - -
G(Ul.’v2"")UM)= Z Z g(sbs[):O (30)

i=1 j=i+1
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where §; is obtained from #; with the elements corresponding
to the Nil class set equal to zero for all the units of the model
X;and g(§;, §) is given by

+ @ Ni - \ N"' -
gGLd=(2 &7-(z,w)
k=1 I=1

with gki b [pk,-(l), e ,pki(L - l):O]T

What this condition essentially means is that if a unit k£ of a
model X; matches the class O; (where [ 5 L), then the sum of
the inner product of the probability vector of this unit g;
with the probability vectors of all the units of all the other
models should be zero. The Nil class components have been
excluded by using §; rather than ; because one or more seg-
ments of different models may match to the Nil class. Now
the occlusion problem viewed as a segment matching problem
can be stated as follows.

Problem Statement (A): Given an initial labeling 17(10),
o, -, 5,(‘,‘;) for the set of M models (X, X3, - - -, Xps), find
the labeling @, , #,, - - * , tiy; that corresponds to the local max-
imum of the criterion (29) which is closest to o), 3, - - -,
5 subject to the following constraints.

a) If tp, = (Bim, Pam> " *» PN,,m) then Pp,y, is a probability
vector for I=1,2,-- -, N, andm=1,2,---, M. For a par-
ticular unit y of the model X,,,, this means that if

ﬁym 3 [pym(l)a pym(z)a T :pym(L)]T,
then

L
> Pym()=1 and py,,(I) =0, for/=1,--- L.
=1

b) G(0,, U2, - -, Uyy) as defined by (30) is equal to zero.

Note that criterion (29) is nonlinear. Constraint a) involves
linear equality and nonnegativity restriction, and constraint b)
is nonlinear. In order to solve this optimization problem we
use the penalty function concept [16] and extend the hier-
archical shape matching technique of Section II.

Occlusion Algorithm: To solve problem (A) using the
penalty function approach, we define the penalized objective
function as

wC(GI»BZ,'.'aaM)=F(61162».'
M-1

v

i=1

%)

M .

2. diyoyle(si, )] (3D
j=i+l

where ¢;; is a penalty function and {d;} are penalty con-
stants. Since the constraint b) given by (30) is an equality
constraint, the penalty functionis taken as the simple quadratic
loss function, i.e.,

¢;(a) & -a*. (32)

Now problem (A) becomes equivalent to that of maximizing
(31) subject to the constraints a). It can be solved by using
the gradient projection method applied to the linear con-
straints as it has been used in the last section. The maximiza-
tion of (31) subject to the constraints a) is equivalent to
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maximizing
{ ngax F(ﬁl) +S(61, Tt i;M)

B3
max F(0;) + Sy, ", Uar)
v2

\max F@y) +S@,, -+ oa)
Um

(33),

where S(0,, - -, Uyy) corresponds to the second term of (31).
Thus in effect there is a hierarchical process for every model
participating in the occlusion. These processes are executed
in parallel and coordinated in such a way that the occlusion
condition is satisfied. The algorithm has been implemented in
a serial fashion on the computer, first we maximize with re-
spect to 0;, then with respect to 0, and so on. The main
modification of the shape matching algorithm presented in
Section II with respect to the occlusion problem is the compu-
tation of the gradient relating to the second term in (33).
In general, to solve (33) by maximizing with respect to v; the
algorithm can be stated as follows.

1) Pick an initial estimate of (v{, 2, - - -, U(A‘})). This is
the initial assignment of probabilities to the units of the
models.

2) Pick the penalty constants {d,,-} so that it provides a
suitable balance between the associated first and second terms
of (33). This is done automatically and will be described in
the following. Penalty constants affect the convergence rate
of the algorithm.

3) Determine the maximum ﬁf,’l'”) (m=1,2,---,M)of the
penalized objective function (33) subject to the constraints a)
by using the value at the present iteration 55”:) and the gradient
projection method.

4) Pick new penalty constants {d;} in order to rebalance
the magnitude of the penalty terms. The magnitude of the
penalties should be increased to force a closer approach to -
the boundary; replace n by n + 1 and return to 3.

Under the assumption -of the continuity of function £ in
(29) and constraints (30) inherent in (31), the sequence of
maxima {80*V} form =1, -, M generated by the above al-
gorithm approaches a constrained maximum of the problem
defined in (A). The iteration is terminated when all the units
of the models are firmly assigned. Since we are seeking only
local maxima, ill-conditioning problems near the boundary
do not occur [16].

Examples: In the examples presented here we have taken
penalty constants associated with various terms in (31) to be
the same. We determine its value at every iteration such that
the penalty term (second term) of (33) is a fixed percentage
(between 10-90 percent) of the first term in (33). Since the
criterion increases at every iteration, the penalty constant also
increases and when the occlusion condition is satisfied, the
penalty constant effectively becomes infinite. In Example
4 of Section II, we identified a partial view of a model within
the object. In the examples presented in the following we
know g priori all the models which are occluding one another
and we want to identify all of them based on their partial
views.
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TABLE X
ASSIGNMENT OF THE UNITS OF MODEL X, USING THE OCCLUSION
ALGORITHM. EXAMPLE 5.
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Labels at different iterations
Units of First Stage Second Stage
Model xl 0 1 3 1 4 7 10 11
1 1(.20) 1(.22) 1(.23) 1(.24) 1(.34) 1(.56) 1(1.0) 1(1.0)
2 2{.51) 20.62) 2(.68) 2(1.0) 2(1.0) 2(1.0) 2(1.0)y 2(1.0)
3 3(.63y  3(.72)  3(.75) 3(1.0) 3(1.0) 3(l.0) 3(1.0) 3(l.0)
4 4(.28) 4(.32) 4(.33 4(.37) 4(.56) 4(1.0) 4(1.0) 4(1.0)
5 19(.15) 19¢.19) 19(.20) 19(.21) 19¢(.23) 19(.33) 5(.43) S(1.0)
6 19¢.15) 19(.19) 19(.20) 19¢(.23) 19(.32) 19(.50) 15(.77) 15(1.0})
7 19¢(.15) 19(.18) 19(.19) 19(.20) 19(.27) 16(.47) 16(1.0) 16(1.0)
8 17(.30) 17(.34) 17(.38) 17(.46) 17(1.0) 17(1.0) 17(1.0) 17(1.0)
9 18(.29) 18(.31) 18(.33) 18(.37) 18(.58) 18(1.0) 18(1.0) 18(1.0)
First term of
the objective - 1.037 1.252 1.095 1.243 1.352 1.516 1.323
function
Penalty terms
of objective - L9334 1.127 . 9862 1.119 0 0 0
function
Criterion - .1037 1252 .1095 L1243 1.352 1.516 1.323
Penalty Constant . 1009 1.071 2.758 16738.4 - - -
TABLE XI
ASSIGNMENT OF THE UNITS OF MODEL X; USING THE OCCLUSION
ALGORITHM. EXAMPLE 5.
Labels at different iterations
Units of First Staae Second Stage
Mcdel )(2 0 1 3 1 4 7 10 11
1 19(.15) 19(.20) 19(.22) 19(.25) 19(.28) 19(.45) 19(.71) 19(1.0]}
2 10(.15) 19(.17) 19(.20) 19(.21) 19(.25) 10(.39) 7(1.0) 7(1.0)
3 9(.24) 9(.29) 9(.31) 9(.34) 9(.36) 9(1.0) 9(1.0) 9(1.0)
4 10(.67) 10(1.0) 10(1.0) 10(1.0) 10(1.0) 10{(1l.0) 10(L.Q) 10(l1.0)
S 11(.66) 11(1.0) 11(1.0) 11(1.0) 11(1.0) 11(1.0) 11(1.0) 11(1.0;
6 12(.65) 12(1.0) 12(1.0) 12(1.0) 12(1.0) 12(1.0) 12(1.0) 12(1.0]
7 13(.66) 13(1.0) 13(1.0) 13(1.0) 13(1.0) 13(1.0) 13(1.0} 13(1.0!}
8 19(.15) 19(.17) 19(.20) 19(.25) 19(.27) 14(.79) 14(1.0) 14 (1l.0;
9 1(.16) 19(.22) 19(.24) 19(.29) 19(.31) 19(.71) 19(1.0) 19(l.0}
First term of
the objective = 1.812 2.581 2.312 2,388 1.974 2.202 2.212
function
Penalty term
of objective - 1.631 2.323 2.081 2.149 0 0 0
function
Criterion - L1812 .2581 L2312 .2388 1.974 2.202 2.212
Penalty Constant e .1764 2.207 5.320 32158.9 - - =

Example 5: Fig. 4 shows two models X, and X, which
occlude each other to form an apparent object. This is the fig-
ure used in Example 2. Here we use the occlusion algorithm
to identify models X, and X, within the apparent object.
The results of labeling the units of the models are shown in
Tables X and XI. Here we have used the same parameters as
the ones used to obtain Table III and Table IV. We also
show values of the unpenalized objective function and penalty
function terms [first and second terms of (31)], criteria and
penalty constants at various iterations. Note that the criteria
and penalty constants increase with the iterations. The as-
signment of the units of both models are correct and the con-
flicting labeling of the two units which occurred in Tables III
and IV does not occur (unit ! of both X, and X, are assigned
to the label 1 in the Tables III and IV). The total computation
time for the results shown in Tables X and XI is 235 s.

Example 6: Fig. 8 presents a'synthetic example, where three
models X, X,, and X, occlude one another to form an ap-
parent object. We want to identify each of the models within
the apparent object. The problem is a kind of “jig-saw puzzle.”
The labeling results are shown in Tables XII-XIV. All the
lables of all the units of Xy, X2, and X5 are correct. The total
computation time for matching is 152.7 s,

Example 7: Fig. 9 shows 512 X 512, 8 bits gray scale images
of industrial parts which occlude each other to form an ap-
parent object. The images in Fig. 9(a) and (b) are reduced by
a factor of 16 and the image in Fig. 9(¢) by a factor of 18.
The reduced images are thresholded and their polygonal
approximation are shown in Fig. 9(d)-(f). Only the rotation
and scale invariant features are used in the initial probability
assignment. Label 25 is the Nil class. The results are shown
in Table XV and XVI. Note that all the key assignments of
the units are correct. The units 5, 6, 7, 8 of model X, are not
matched to the segments 9, 10, 11, 12. The reason for this is
the presence of ambiguity between segments 5 to 17 of Fig.
9(d) and 8 to 16 of Fig. 9(f); the number of segments is dif-
ferent as a result of change in scale. The total computation
time for this example is 530 s.

Example 8: This example is provided in order to critically
evaluate the occlusion algorithm when the segmentation is
difficult and the polygonal approximation is crude. Fig. 10
shows two 128 X 128, 8 bit images of cells. These images
have been taken 15 minutes apart. The background in these
images consists of human skin cancer cells and the small cir-
cular shaped objects are human lymphocytes and red blood
cells. One cancer cell in the image of Fig. 10(a) is undergoing
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(d)

Fig. 8. (a) Model X, number of segments = 6. (b) Model X, number of segments = 7. (c) Model X3, number of seg-
ments = 9. (d) Apparent object, number of segments = 14,

TABLE XII
RESULTS OF LABELING FOR THE MODEL X, USING THE OCCLUSION
ALGORITHM. EXAMPLE 6.

Units of
Model Xl First Stage
0 1
1 4(.17) 15(.23)
2 1(.20) 1(.24)
3 15(.15) 15¢.33)
4 15(.15) 15¢(. 30)
5 15(.15) 15(.23)
6 15(.15) 15¢.29)
First term of
the objective - .5183
function
Penalty term
of the objective - . 1554
function
Criterion - . 3628
Penalty Constant - .00624

Labels at different iterations

Second Stage

3 1 q 6
15¢(. 34) 15¢.37) 15(.68) 15(1.00
1(.30) 1(.34) 10,71 1(1.0)
15(.47) 15(.54) 15(1.0) 15(1.0)
15¢(.36) 15(.41) 15(1.0) 15(1.0)
15(.27) 15(.33) 15(.60) (1.0}
15(.3%) 15(.40) 15(1.0) 15(1.0)
.9785 1.074 1.6071 2.437
L2935 L3223 L4321 Q
.6849 L7522 1.125 2.437
.0427 L0758 1.131 -

mitosis. In the image of Fig. 10(b), the cell of Fig. 10(a) un-
dergoing mitosis (parent cell) has been divided into two cells
(daughter cells). Note that significant changes in shape have
taken place. We use a gradient relaxation technique of seg-
mentation [17] to obtain the cell boundaries. Fig. 10(c)-(e)
show the polygonal approximation. We want to match the
daughter cells of Fig. 10(c) and (d) with the parent cell of Fig.

10(e). The results of labeling are shown in Table XVII and
XVIII. The assignment of units 18 and 19 of model X, are
correct, but the label 23 of unit 20 is wrong. The unit 13
should have been labeled as 23, but a careful examination of
this figure shows that the local structure of unit 20 matches
23 better than to 13. Other units are assigned to the Nil
class. All the assignments of the units of model X, are correct



BHANU AND FAUGERAS: SHAPE MATCHING OF 2-D OBJECTS

TABLE XIII
RESULTS OF LABELING FOR THE MODEL X; USING THE OCCLUSION
ALGORITHM. EXAMPLE 6.

Labels at different iterations

Units of
Model X, First Stage Second Stage
< 0 1 3 1 4 6
1 4(.17) 4(.33) 4(.42) 4(.48) 4(1.0) 4{(1.0)
2 S(.31) S(.53) 5(.73) 5(1.0) 5(1.0) 5(1.0)
3 6(.40) 6(.62) 6(.77) 6(1.0) 6(1.0) 6(1.0)
4 15(¢.15) 7(.40) 7(.55) 7(.56) 15(1.0) 15(1.0)
5 13¢.20) 13(.30) 13(.38) 13(.39) 15(.68) 15(1.0)
6 15¢(.15) 15(.50) 15(.71) 15(1.0) 15(1.0) 15(1.0)
7 15(.15) 15(.20) 15(.33) 15(.44) 15(.61) 3(1.0)
First term of
the objective - .3197 1.5709 1.3875 2.7729 3.451
function
Penalty term
of the objective = .2459 .4712 .4162 .8318 0
function
Criterion - .5738 1.0996 L9712 1.9410 3.451
Penalty Constant - .009875 .0685 L0979 1.953 -
TABLE XIV
RESULTS OF LABELING FOR THE MODEL X3 USING THE OCCLUSION
ALGORITHM. EXAMPLE 6.
Labels at different iterations
:23;? ?(f First Stage Second Stage
2 0 1 3 1 4 6
1 4(.16) 15(.26) 15¢.32) 15¢(.39) 15(.52) 15(1.0)
2 5(.21) 15(.33) 15(.46) 15(.52) 15(1.90) 15 (1.0)
3 13(.17) 15(.33) 15(.49) 15(.53) 15(.59) 13(1.0)
4 1(.19) 15(.35) 15(.44) 15(.47) 15(.56) 15(1.0)
S 2(.22) 15¢(.28) 15(.37) 15(.41) 15(.61) 15 (1.0)
6 9(.66) 9(.77) 9(1.0) 9(1.0) 9(1.0) 9 (1.0)
7 10(.63) 10(.73) 10(1.90) 10(1.0) 10(1.0) 10 (1.0)
8 11(.63) 11(.76) 11(1.0) 11(1.0)} 11(1.0) 11 (1.0)
9 14(.16) 15(.20) 15¢(.25) 15(.29) 12¢(.40) 12 (1.0)
First term of
the objective - 1.721 3.031 3.079 4.100 3.692
function
Penalty term
of the objective - .5165 .9095 .92137 1.230 0
function
Criterion - 1.205 2.122 2.155 2.870 3.692
Penalty Constant - .0207 L1323 L2172 2.887 *re

except the assignment of unit 9 which is matched to the label
21. This is again because of the close resemblance of the local
structure. The total computation time for this example is
1100s.

IV. CONCLUSIONS

The success or failure of the hierarchical stochastic labeling
technique can be measured on the basis of two facts: 1) the
final labeling should be as unambiguous as possible and 2} it
should be consistent with any a priori knowledge that we may
have about the set of possible labelings. The matching results
are not “perfect,” and some wrong labels or multiple assign-
ments do occur. However, the key assignments are correctly
obtained. In the case of multiple assignments, an interpreta-
tion of the results may be required. In the examples presented,
our objective has been to evaluate how well the technique per-
forms when the segmentation results are very different and the
polygonal approximation is very crude rather than providing

some simple examples like the island examples of Davis [12]
which are claimed to be trivially solved by the syntactic shape
analyzer of Pavlidis [18]. In such situations, the technique
depends to some extent on the similarity of the local struc-
tures of the model and object. Many times an incorrect label
occurs because the local structure of the incorrect match is
more similar than that of the correct one. In cases where an
object/model segment is broken into more segments, the algo-
rithm is not able to account for it completely. But, the tech-
nique is quite robust and effective when applied to real images
and it is able to cope to a certain extent with common prob-
lems in scene analysis such as noisy features, extra and missing
segments and a large number of segments [5]. Moreover, in
this regard the algorithm works better than the Hough trans-
form technique of Davis [19] and Ballard [20]. The first
stage does not correct all the mistakes of the initial assignment
because it uses less world knowledge and some correct assign-
ments are not among the early candidates. The second stage
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Fig. 9. (a) An industrial piece.
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()

(b) An industrial piece. (c) Partial occlusion of industrial pieces in (a) and (b). (d) Model

X1, number of segments = 26. (e) Model X,, number of segments = 14. (f) Apparent object, number of segments = 24.

corrects mistakes in the labeling of the first stage, and since
it uses more world knowledge, it increases the confidence in
the matching results. It is possible to generalize the shape
matching algorithm to include higher levels of hierarchy at
the expense of increased complexity. The technique has been
extended for the shape matching of 3-D objects [21].

The shape matching technique is truly hierarchical in the fol-
lowing sense: at the first or second stage the criterion J< or
J@ increases of course, but at the first stage if we compute
the criterion J® or at the second stage if we compute the
criterion J(l), it also continually increases with the iteration.
This has been verified experimentally. Thus our computation
of compatibilities is sound. The algorithms are implemented
in SAIL and the computation time varied from 4 s to 20 min
on a PDP-10 (KL-10 processor, which performs about 1.8
million operations/s) for matching of varying complexity and
number of occluding objects. It includes the timing for seg-
mentation, boundary following, feature computation, match-
ing and several I/O operations. About 70 percent of this time
is spent in computing the gradient. The computation of the
gradient at the second stage is the most expensive. In the
present implementation of the programs we do not store the
compatibility values when we compute the compatibility vec-

tor. We recompute them when the gradient is needed. The
computation time can be reduced by 60 percent if we store
compatibility values. It can also be reduced in certain situa-
tions if we assume that the objects are rigid bodies. Further
savings come by allowing the global maximization of the
criteria J™(n = 1, 2) by local computations only, i.e., a pro-
cessor for a unit communicates only with the neighboring
processors to compute the gradient and the projection oper-
ator. Thus a large amount of parallelism can be introduced.
The gradient of the criteria can be computed in two sequential
steps. Within each step the processors can work in parallel.
In the first step we determine the compatibility vectors and
in the second step actually compute the gradients. A processor
associated with a unit performs simple operations mostly in
parallel while the sequential process of going from one itera-
tion to the next allows these processors to work towards the
final goal in a coordinated fashion. The amount of compu-
tation per processor is of the order of L2, where L is the num-
ber of classes. It is difficult to develop any useful absolute
model for the complexity of the stochastic labeling process,
because as the procedure iterates, many labels for a unit be-
come zero and the complexity goes down. As aresult the com-
putation time per iteration for the later stages of the process is



BHANU AND FAUGERAS: SHAPE MATCHING OF 2-D OBJECTS

153

TABLE XV
RESULTS OF LABELING FOR THE MODEL X, UsING THE OCCLUSION

ALGORITHM.

ExAMPLE 7.

Labels at different iterations

Units of :
First Stage Second Stage

Model Xl 0 1 3 1 3
1 5(.25) 5(.37) 5(.62) 5(1.0) 5(1.0) 5(1.0)
2 6(.26) 6(.42) 6(.60) 6(.64) 6(1.0) 6(1.0)
3 25(.20) 25(.25) 7(.34) 25(.39) 7(.55) 7(1.0)
4 25(.20) 25(.23) 8(.59) 8{(.61) 8(l.0) 8(1.0)
5 25(.20) 25(.23) 25(1.0) 25(1.0) 25(1.0) 25(1.0)
6 25(.20) 25(.23) 25(1.0) 25(1.0) 25(1.0) 25(1.0)
7 25(.20) 25(.23) 25(1.0) 25(1.0) 25(1.0) 25(1.0)
8 25(.20) 25(.23) 25(1.0) 25(1.0) 25(1.0) 25(1.0)
9 25(.20) 25(.23) 25(1.0) 25(1.0) 25(1.0) 25(1.0)
10 25(.20) 25(.23) 25(1.0) 25(1.0) 25(1.9) 25(1.0)}
11 25(.20) 25(.23) 25(1.0) 25(1.0) 25(1.0) 25{(1.0}
12 25(.20) 25(.23) 25(1.0) 25(1.0) 25(1.0) 25(1.0)
13 25(.20) 25(.23) 25(1.0) 25(1.0) 25(1.0) 25(1.0
14 25(.20) 25(.23) 25(1.0) 25(1.0) 25(1.0) 25(1.0)
15 25(.20) 25(.23) 25(1.90) 25(1.0) 25(1.0}) 25¢(1.0}
16 25(.20) 25(.28) 25(.32) 25(.51) 14(1.0) 14(1.0)
17 25(.20) 25(.33) 25(.51) 25(.74) 25(1.0) 25(1.0)
18 25(.20) 25(.29) 25(.41) 25(.73) 25(1.0) 25(1.0}
13 25(.20) 25(.23) 25(1.0) 25(1.0) 25(1.0) 25(1.0)
20 25(.20) 25{.23) 25(1.0) 25(1.0) 25(1.0) 25(1.0)
21 25(.20) 25(.23) 25(1.0) 25(1.0) 25(1.0) 25(1.0)
22 25(.20) 25(.23) 25(1.0) 25(1.0) 25(1.0) 25(1.9)
23 25(.20) 25(.23) 25(.80) 25(1.0) 25(1.0) 25(1.0)
24 14(.22) 14(.31) 14(.51) 14(.56) 14(1.0) 14(1.0)
25 25(.20) 25(.28) 25(.51) 25(.60) 25(1.0) 25(1.0)
26 25(.20) 25(.28) 4(.39) 25(.40) 25(1.0) 25(1.0)

First term

of the .

objective - 3.350 4.715 16.21 17.04 17.20

function

Penalty term

of the

objective - 0.3350 .4715 1.621 0 0

function

Criterion - 3.015 4.244 14.59 17.04 17.20

Penalty = N -

Constant .0025 .0085 1.696

TABLE XVI
RESULTS OF LABELING FOR THE MODEL X; USING THE OCCLUSION
ALGORITHM. EXAMPLE 7.
Labels at different iterations

Units of First Stage Second Stage

Model X, 0 1 3 1 3 5
1 25(.20) 25(.31) 25(.50) 25(.S51) 25(1.0) 25(1.0)}
2 25(.20) 25(.34) 25(.44) 25(.47) 23(.54) 23(1.0)
3 25(.20) 25(.32) 25(.52) 25(.55) 25(.62) 25(1.0}
4 25(.20) 25(.28) 25(.38) 25(.39) 25(.44) 25(1.0}
S 25(.20) 25(.28) 25(.39) 25(.49) 25(1.0) 25(1.0)
6 25(.20) 25(.30) 25(.39) 25(.42) 25(.44) 15(1.0)
7 25(.20) 25(.29) 18(.44) 18(.49) 18(1.0) 18(1.0)
8 25(.20) 25(.33) 25(.49) 25(.57) 25(1.0) 25¢(1.0)
9 25(.20) 25(.23) 25(1.0) 25(1.0) 25(1.0) 25(1.0)
10 25(.20) 25(.23) 25(1.0) 25(1.0) 25(1.0) 25(1.0)
11 25(.20) 25(.23) 25(1.0) 25(1.0) 25(1.0) 25(1.0)
12 25(.20) 25(.28) 25(.36) 25(.51) 25(.54) 19(1.0)
13 25(.20) 25¢(.33) 25(.64) 25(.75) 22(1.0) 22(1.0)
14 25(.20) 25(.30) 25(.43) 25(.44) 25(1.0) 25(1.0)

First term

of the = 4=

objective - 1.377 2.821 S5.684 5.450 7.136

function

Penalty Term

of the

objective - L1377 .2821 .5684 0 0

function

Criterion - 1.239 2.539 5.116 5.450 7.136

Penalty - -

Constant - .00103 .09511 .5947 -

less than the early iterations. Normally, for 42 units and 31
classes, we never needed more than a total of 15 iterations of
the first and second stages of stochastic labeling. In the worst
case, only one label is set equal to zero at every iteration.

We also presented an extension of the hierarchical stochastic
labeling technique to do shape matching of partially occluded
2-D objects by combining the gradient projection method and

the penalty function approach. Penalty constants are chosen
in an automatic manner. The computation time varies linearly
with the number of objects occluding one another. If the ob-
jects are rigid as has been mostly assumed in the past work,
matching will be relatively simple. After matching actual ob-
jects with the apparent object, it will be easier to track them
and carry out the motion analysis.
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(a) (b)

(e)

Fig. 10. (a) The cancer cell undergoing mitosis. (b) The cell in (a) is divided into 2 daughter cells after 15 min. (c) Model
Xy, number of segments = 21. (d) Model X,, number of segments = 20. (e) Apparent object, number of segments = 28.
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TABLE XVII
RESULTS OF LABELING FOR THE MoODEL X; USING THE OCCLUSION
ALGORITHM. EXAMPLE 8.

Labels at different 1terations

Units of
Model xL First Stage Second Stage
Q 1 3 1 7

1 29(.25) 29(.32) 29(.47) 29(.50) 29(1.0)
2 29 (.25) 29(.29) 29(.44) 29(.47) 29(1.0)
3 29(.25) 29(.31) 29(.47) 29(.48) 29(1.0)
4 29(.25) 29(.36) 29(.46) 29(.47) 239(1.0)
5 29(.25) 29(.32) 29(.53) 29(.54) 29(1.0)
6 29(.25) 29(.31) 29(.48) 29(.49) 29(1.0)
7 29(.25) 29¢(.33) 29(.45) 29(.49) 29(1.0Q)
8 29(.25) 29(.29) 29(.41) 29(.42) 29(1.0)
9 29(.25) 29(.30) 29(.37) 29(.40) 29(1.0)
10 29(.25) 291(.32) 29(.42) 29(.43) 29(1.0)
11 29(.25) 291(.31) 29(.45) 29(.47) 29(1.0)
12 29(.25) 29(.31) 29(.40) 29(.43) 29(1.0
13 29(.25) 29(.29) 29(.36) 29(.40) 29(1.9
14 29(.25) 29(.31) 29(.51) 29(.%4) 29(1.0)
15 29(.25) 29(.32) 29(.41) 29{(.44) 29(1.0)
16 29(.25) 29(-.31) 23(.37) 29(.38) 29{1.0)
17 29(.25) 29(.28) 29(.41) 29(.43) 29(1.0)
18 29{(.25) 29(.30}) 29(.36) 29(.38) 26(1.0)
19 29(.25) 29(.31) 29(.45) 29(.49) 26(1.9)
20 29(.25) 29(.30) 29(.48) 29(.5€) 23(1.0)
21 29(.25) 29(.29) 29(.44) 29(.45) 29(1.9;

First term

of the

objective - 1.862 3.137 3.755 15.99

function

Penalty term

of the

objective - 1.490 2.509 3.004 0

function

Criterion - L3725 L6274 L7511 15.99

Penalty _ _

Constant L0206 .5420 15.44

TABLE XVIII

RESULTS OF LABELING FOR THE MODFI. X» USING THE OCCLUSION
ALGORITHM. ExaMPLE 8.

Labels at differenz 1terations

;g;;f 3; First Staecc Second Stage
3 1 3 1 7

1 29¢.25) 29(.56) 29(.74) 29{.77) 29(1.0)
2 29(.25) 29(.55) 29¢1.0)  29(1.0) 29(1.0)
3 29(.25) 29(.39) 29(.52) 29({.54) 29(1.0)
4 29(.25) 29(.50) 23 (.73 291(.75) 29(1.0)
5 29(.25) 23 (.37} 291(.553) 29(.54) 9(1.0)
6 29(.25) 29(.40) 29:.68) 25(.74) 29(1.0)
7 29(.25) 29(.4ly 29(.60) 29(.63) 29(1.0)
8 29(.253) 29{(.41) 29(.53) 29(.56) 14(1.0)
9 21(.43) 21(.51) 21(.56) 21(.61) 21(1.0}
13 14(.47) 14(.54) 14(.56) 29(.60) 29(1.0)
11 21{(.43) 21¢(.49) 21(.54) 2¢(.79) 29(1.0)
12 14¢(.26) 29¢(.36) 291(.42) 29(.43) 14(1.0)
13 29(.25) 29 (.37 29(.52) 29(.56) 15(1.0)
14 29¢(.25) 29(.57) 23(1.0Q) 29(1.0) 29(1.0)
15 29(.25) 29(.54) 29(1.0) 29(1.0) 29(1.0)
16 29(.25) 29(.53) 29(.72) 29(1.0) 29(1.0}
17 29(.29) 23(.46) 29(.60) 29(.63) 29(1.0)
18 29(.25) 29(.50) 29(1.0) 29(1.0) 29(1.0)
192 29(.25) 29(.60) 29(.72) 29(.80) 29(1.0)
20 29(.25) 23(.46) 29(.62) 29(.67) 29 (1.0}

First term

of the

objective - 1.676 5.210 8.169 11.00

function

Penalty term

of the

objective - 1.341 4.168 6.535 0

function

Criterion - . 3352 1.042 1.633 11.00

Penalty _

Constant - .0185 .9002 33.59
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A Representation for Shape Based on Peaks and
Ridges in the Difference of Low-Pass Transform

JAMES L. CROWLEY, MEMBER, IEEE, AND ALICE C. PARKER, MEMBER, IEEE

Abstract—This paper defines a multiple resolution representation for
the two-dimensional gray-scale shapes in an image. This representation
is constructed by detecting peaks and ridges in the difference of low-
pass (DOLP) transform. Descriptions of shapes which are encoded in
this representation may be matched efficiently despite changes in size,
orientation, or position,

Motivations for a multiple resolution representation are presented
first, followed by the definition of the DOLP transform. Techniques
are then presented for encoding a symbolic structural description of
forms from the DOLP transform. This process involves detecting local
peaks and ridges in each bandpass image and in the entire three-dimen-
sional space defined by the DOLP transform. Linking adjacent peaks in
different bandpass images gives a multiple resolution tree which de-
scribes shape, Peaks which are local maxima in this tree provide land-
marks for aligning, manipulating, and matching shapes. Detecting and
linking the ridges in each DOLP bandpass image provides a graph which
links peaks within a shape in a bandpass image and describes the posi-
tions of the boundaries of the shape at multiple resolutions. Detecting
and linking the ridges in the DOLP three-space describes elongated forms
and links the largest peaks in the tree.

The principles for determining the correspondence between symbols
in pairs of such descriptions are then described. Such correspondence
matching is shown to be simplified by using the correspondence at
lower resolutions to constrain the possible correspondence at higher
resolutions.

Manuscript received January 26, 1983; revised May 17, 1983 and
August 25, 1983. This work was supported in part by the Robotics
Institute, Carnegie-Mellon University, in part by the National Science
Foundation under Grant APR75-08154, and in part by the Naval
Electronics System Command under Grant N00039-79-2-0169.
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Index Terms—Correspondence matching, difference of Gaussian, dif-
ference of low-pass transform, image pyramid, multiresolution represen-
tation, shape matching,

I. INTRODUCTION

REPRESENTATION is a formal system for making ex-

plicit certain entities or types of information, and a
specification of how the system does this [20]. Representa-
tion plays a crucial role in determining the computational
complexity of an information processing problem.

This paper describes a representation for two-dimensional
shape which can be used for a variety of tasks in which the
shapes (or gray-level forms) in an image must be manipulated.
An important property of this representation is that it makes
the task of comparing the structure of two shapes to deter-
mine the correspondence of their components computationally
simple. However, this representation has other desirable prop-
erties as well. For example, the network of symbols that de-
scribe a shape in this representation have a structure which,
except for the effects of quantization, is invariant to the size,
orientation, and position of a shape. Thus a shape can be com-
pared to prototypes without having to normalize its size or
orientation. An object can be tracked in a sequence of images
by matching the largest peak(s) in its description in each image.
This representation can also describe a shape when its bound-
aries are blurred or poorly defined or when the image has
been corrupted by various sources of image noise.

This representation is based on a reversible transform referred
to as the “difference of low-pass” (DOLP) transform. From
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