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Abstract: Graphene is one of most exceptional type of
nanocarbon. It is a two-dimensional, one atom thick,
nanosheet of sp2 hybridized carbon atoms. Graphene
has been employed as nanofiller for shape memory poly-
meric nanocomposites due to outstanding electrical con-
ductivity, mechanical strength, flexibility, and thermal
stability characteristics. Consequently, graphene nano-
structures have been reinforced in the polymer matrices
to attain superior structural, physical, and shape recovery
properties. This review basically addresses the important
class of shape memory polymer (SMP)/graphene nano-
composites. This assessment is revolutionary to portray
the scientific development and advancement in the field
of polymer and graphene-based shape memory nano-
composites. In SMP/graphene nanocomposites, polymer
shape has been fixed at above transition temperature and
then converted to memorized shape through desired external
stimuli. Presence of graphene has caused fast switching of
temporary shape to original shape in polymer/graphene
nanocomposites. In this regard, better graphene dispersion,
interactions between matrix-nanofiller, and well-matched
interface formation leading to high performance stimuli-
responsive graphene derived nanocomposites, have been
described. Incidentally, the fabrication, properties, actuation
ways, and relevance of the SMP/graphene nanocomposite
have been discussed here. The potential applications of these
materials have been perceived for the aerospace/automotive
components, self-healing nanocomposites, textiles, civil
engineering, and biomaterials.

Keywords: stimuli-responsive, graphene, nanocomposite,
actuation, application

1 Introduction

Shape memory polymers (SMPs) form a continuously
evolving class of smart materials (1). The SMPs possess
propensity of shape recovery effect (2,3). Characteristi-
cally, the SMPs display shape change in response to
heat, light, electricity, pH, moisture, and other external
stimuli. SMPs retain two or three shapes, and the transi-
tion between the shapes is induced by the temperature
(4,5). Besides the temperature change, the shape change
in SMPs can also be triggered by an electric or magnetic
field, light, or solution media. The shape memory effect
depends on the structural units constituting the poly-
mers. Efficient SMPs based on the physically/covalently
cross-linked polymeric materials have been developed.
Both the thermoplastic and thermosetting polymers have
been used in SMPs. Among polymers, the epoxy (6), seg-
mented polyurethane (7), polyester (8), polystyrene (PS)
(9), and natural polymers (10) have the capability of shape
recovery. Consequently, the SMPs show thermo-respon-
sive (11), electro-active (12), photo-active (13), magnetic-
active (14), water/moisture-active (15), pH-sensitive (16),
ion-sensitive (17), and other effects (18). The SMPs have
found applications in aerospace, automotive, engineering
structures, electronics, and biomedical fields (19–22). Among
all the SMPs, the thermo-responsive and electro-active
effects have been most extensively considered in literature
(23). To develop the stimuli-responsive nanocomposites, the
SMPs have been reinforced with various nanoparticles such
as graphene (24), carbon nanotube (25), nanodiamond (26),
and several metal and inorganic nanoparticles (27). Gra-
phene is an important two-dimensional nanocarbon nano-
filler employed for the stimuli-responsive nanocomposites
(28). Graphene is one atom thick nanosheet of sp2 hybridized
carbon atoms (29,30). Initially, the single-layer graphene
was theoretically studied by Wallace in 1947 (31). It has
been pondered as the thinnest material on Earth. The sp2

hybridized carbon atoms are hexagonally packed in the hon-
eycomb crystal lattice structure. Graphene possesses out-
standing optical transparency, electrical conductivity, thermal
stability, mechanical strength, and thermal conductivity
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properties. The word “graphene” is derived from graphite
with the suffix “-ene”. The graphene nanosheets stack
together via weak van der Waals forces. High performance
SMP/graphene nanocomposites have been attained due to
the large specific surface area, and exceptional physical
properties of graphene (32). Inclusion of graphene not only
endorses the shape memory actuation, but also improves
themechanical properties, thermal stability, glass transition
temperature, electrical properties, and thermo-mechanical
properties of the nanocomposites.

In this review, the imperative class of SMP/graphene
nanocomposites has been discussed. Essential aspects
of the SMPs, nanocomposites, polymer/graphene nano-
composites, and relevant solicitations have been sightseen
(Figure 1). Hence, this is an all-inclusive and up-to-date
review on the SMP/graphene nanocomposites portraying
essential aspects on the synthesis/properties-to-technical
potential. To the best of knowledge, the polymer/graphene
nanocomposites have been scarcely reviewed comprehen-
sively in literature. Therefore, the review article is a ground-
breaking contribution in the field of shape memory
graphene-basednanomaterials. Subsequently, the forthcoming
progressions in the field of SMP/graphene nanocomposites
are not possible for the researchers before getting the prior
knowledge of accumulated literature on these nanomaterials.

2 SMPs

SMPs are a type of stimuli-responsive or smart polymer
(33). Initially, the SMPs have been recognized for the
shape recovery from the temporary shape to the perma-
nent shape upon the application of an external stimuli of
heat, light, electricity, magnetic field, pH,moisture, etc. (34).
Conventional SMPs have been studied for the shape change
in response to heat (35). Such SMPs are referred as ther-
mally induced or thermo-responsive polymers. The thermo-

responsive polymers revealed chain movements at the tran-
sition temperature (Ttrans), i.e., usually above the glass tran-
sition temperature of the polymer (Tg) (36). The temporary
shape of the sample is fixed by heating, molding, and
cooling at low temperature (37,38). The original shape of
the sample is recovered by heating the temporary shape at
Ttrans (39). Figure 2 reveals important steps involved in the
shape memory effect.

The polymer shape is fixed at temperature above Tg,
i.e., shape fixity process (40). Subsequently, the fixed
shape returns to the memorized shape through heating
at Ttrans (41). The segmented polymers have been consid-
ered as the most successfully used polymers for shape
memory. During the shape memory, usually polymer net-
work is formed between the polymer chains to form the
switchable segments (42). Polyurethane is a significant
type of segmented SMP (43). Polyurethanes possess the
thermo-elastic phase transformation at their Tg (44). Var-
ious other polymers have also been used as the SMPs
such as the epoxies, polyesters, polyamide, PS, etc.,
(45,46). The SMPs have found potential applications in
electronics, motors, aerospace, civil engineering (47),
packaging, textiles, biomedical, and other technical rele-
vant fields (48).

3 Stimuli responsive polymeric
nanocomposites

Significant thermoplastic SMPs recognized are poly-
urethane and PS (49,50). High-performance epoxy-derived
SMPs have also been stated (51,52). These polymers are
thermo-responsive (53), electro-active (54), light-active (55),
pH sensitive (56), and moisture sensitive (57). The stable
shapememory network is formed in the polymers to recover
the original shape (58,59). The SMPs possess the optimal

Figure 1: Schematic of the overview of shape memory polymer/graphene nanocomposites.
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melting transition temperature, glass transition tempera-
ture, crystallization temperature, and liquid crystal transi-
tions (60). In addition to the SMPs, the shape recovery
nanocomposites have also been focused. Diverse fillers
and nanofillers have been used with the SMPs to form the
composites and nanocomposites (61). Figure 3 shows the
thermo-mechanical cycle of a thermo-responsive SMP. The
important steps involved are the formation of sample ori-
ginal shape, heating above Ttrans, deformation through an
external force, shape fixing, and heating for the original
shape recovery. Figure 4 shows shape memory process of
the bisphenol A diglycidyl ether epoxy and epoxy matrix
composite filledwith the glass fiber filler. Inclusion of 50wt%
glass fiber in the epoxy matrix led to the high shape recovery
rate (41).

A notable way of improving the shape memory effect of
the polymers is the incorporation of nanoparticles like
carbon nanotube, graphene, nanoclay, and inorganic nano-
particles. The carbon nanoparticles have been used to sup-
plement the electro-active and thermo-responsive effects
(62). In this regard, the homogeneous nanofiller dispersion
is a challenging factor to develop the high-performance shape
memory materials. The solution mixing, melt blending, and
other processing techniques have been used to form these
nanocomposites (63). The nanocarbon functionalization
improves the compatibility between the SMPs and the nano-
particles (64). The nanocarbon functionalization processes

have been used to improve the shape memory effect
through improved cross-linking reactions (65). Increase
in the nanofiller contents also enriches the shape memory
effect of the materials (66). Among nanocarbons, carbon
nanotube has promoted the dispersion and prevented
the aggregation or coagulation in the shape memory
matrices. Carbon nanotube has been efficiently rein-
forced in the epoxy-based nanocomposites to enhance
the stress relaxation at Tg (67). The poly(vinyl alcohol)/carbon
nanotube nanocomposites have also been prepared and stu-
died for the thermo-responsive and electro-active effects
(62,68). In the polymer/nanocarbon nanocomposites, the
traditional shape memory can be triggered by the direct
heating (69), electro-active effect (70), light-active response
(71), water/moisture actuation (72), and pH sensitive effect
(73). The SMP/nanocarbon nanocomposites have found
applications in the aerospace, energy devices, civil struc-
tures, and biomedical devices (74–76).

4 Graphene

Graphene is an exclusive type of nanocarbon nanostruc-
ture. Graphene is made up of sp2 hybridized hexagonally
arranged carbon atoms in a single layer (77,78). The two-
dimensional graphene layers stack together through van der

Figure 2: Shape memory steps: (1) memorized shape after molding and cooling; (2) free deformation due to rubber elasticity of amorphous
portion by heating over Tg under an applied force; (3) shape fixity by cooling below Tg; and (4) shape recovery by heating over Tg (40).
Reproduced with permission from Elsevier.

Figure 3: Schematic of shape memory effect during typical thermo-mechanical cycle (41). Reproduced with permission from Elsevier.

Shape memory polymer/graphene nanocomposites  167



Waals forces (79). Graphene has been prepared by top-down
and bottom-up methods including graphite exfoliation, gra-
phite mechanical cleavage, chemical vapor deposition, and
organic synthesis routes (80,81). Graphene owns the range
of fascinating structural and physical features. Graphene is
transparent in nature (82). Graphene has high electron
mobility and thermal conductivity of 200,000 cm2·V−1·s−1
and 3,000–5,000W·mK−1, respectively (83,84). Graphene
also has high tensile strength and Young’s modulus of
130 GPa and 1 TPa, respectively (85). Graphene oxide (GO)
is an important modified form of graphene with epoxide,
hydroxyl, carbonyl, and carboxyl surface functionalities.
Graphene has been used in significant electronics, energy
devices, and composite related applications. Nanofillers
have been used to progress the electrical conductivity,
thermal conductivity, thermal stability, and mechanical
properties of the polymers (86). The polymer/graphene
nanocomposites have found applications in the electronics
(87), energy devices (88), and sensors (89).

5 Stimuli responsive polymer/graphene
nanocomposites

Graphene has been incorporated in the polymers to augment
the shape memory and self-healing properties of the nano-
composite (90). In high performance polymer/graphene
nanocomposites, 0.005–0.5 wt% graphene nanofillers
have been reinforced. The shape memory performance of

the nanocomposites depends on the chemical composition
of the polymers, nanocomposites, and macroscopic pro-
perties of the nanocomposites (91). The formation of the
interlinked network in the polymer/graphene interface
plays an important role in the shape recovery properties.
Epoxy, a thermoset, has been used as an excellent SMP
due to ideal thermo-mechanical properties (92). Lu et al.
(93) developed the epoxy nanocomposite with graphene
nanofiller. The carbon fiber was covalently grafted with
the graphene nanosheets to form the modified reinforce-
ment (94). The graphene related carbon fiber filler was
capable of forming the interfacial bonding with the epoxy
matrix. Martin-Gallego et al. (95) prepared the epoxy mate-
rials with the functional graphene nanosheets and cured
using cationic photo-polymerization. Inclusion of the
1.5 wt% graphene contents enhanced the Tg of the nano-
composites by 40°C, relative to the neat epoxy. Scann-
ing electron microscopy (SEM) and transmission electron
microscopy (TEM) were used to study the fine dispersion
state of the graphene nanofillers in the matrix. D’Elia et al.
(96) designed the shape memory epoxy/graphene nano-
composites. The sample was heated through the Joule
heating effect. The epoxy/graphene nanocomposite with
<1 wt% revealed fine shape recovery in response to the
electric voltage of <10 V. Figure 5 shows the shape recovery
through the joule heating effect. The application of voltage
of9 V for 1min increased the temperature to58°Candcaused
theshaperecovery.Theshapememorybehaviorhascredited
to the formation of graphene network in the epoxy matrix
(97). The sample was developed in a tight ring shape and

Figure 4: Shape recovery of neat polymer (top row) and reinforced shape memory composite (bottom row) (41). Reproduced with permission
from Elsevier.
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fixed inanopen ring shape. Theoriginal tight ring shapewas
attained under few seconds of joule heating effect. The
recovery of original shape also strengthened the ring shape
to lift a heavyobject. Theflexuralmodulusof the samplewas
increased to2.8±0.1 GPa.Wangetal. (98)developedelectro-
active epoxy/reduced GO-derived shape memory nano-
composite. The applied voltage was found to boost the
shape recovery effect. Figure 6 shows the shape memory
behavior of epoxy/reduced GO nanocomposite. The sample
was bent to ‘U’ shape at 113°C. The epoxy/reduced GO paper
had thicknessof0.1 cmandsurfaceareaof6.5 cm2. Theshape
recovery of the epoxy/reduced GO paper was obtained in 5 s
at a voltage of 6 V and temperature of 240°C.

Yang et al. (99) fabricated thermo-responsive shape
memory graphene filled vitrimer epoxy nanocomposite.
The vitrimer/graphene nanocomposites revealed superior
shape retrieval properties with the graphene loading. The
shape recovery was attained in 80 s for 1 wt% graphene

loaded nanocomposite. The graphene loading also enhanced
the yield strength and breaking strain of the nanocomposites
to 23MPa and 44%, respectively. The highmechanical and
thermo-responsive shapememory properties were credited
to the interactions between the nanocomposite constitu-
ents (100). Wang et al. (101) studied the electro-actuation
in the hydro-epoxy/graphene nanocomposites. The nano-
filler loading promoted the processability and shape
recovery of the nanocomposite. The original shape was
rapidly recovered within 72 s for the 3 wt% graphene
loaded nanocomposite, relative to the 2 wt% loaded
nanocomposite (90 s).

Polyurethane is a multi-purpose engineering material.
The segmented polyurethanes have been usually devel-
oped using the polyol, isocyanate, and chain extender. Park
et al. (102) produced the shapememory polyurethane/graphene
nanocomposites. The shape recovery effect was improved
through the nanofiller loading. Kim et al. (103) prepared

Figure 5: Infographic showing the behavior of epoxy nanocomposite subject to potential of 9 V. The composite coils back to pre-set shape
after 60 s of Joule heating. The increase in temperature of sample to 58°C activated shape-memory effect (96). Reproduced with permission
from Elsevier.

Figure 6: Shape recovery process of epoxy/reduced graphene oxide paper-based shape memory nanocomposite under applied voltage of
6 V (98). Reproduced with permission from Elsevier.
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the allyl isocyanate modified graphene and filled in the
polyurethane matrix. The allyl isocyanate-modified gra-
phene formed better compatibility with the polyurethane
matrix to enhance the mechanical and shape memory
properties of the nanocomposites (104). The polyurethane
was prepared through the condensation of 1,3-butanediol,
polypropylene glycol, and 4,4′-methylene diphenyl diiso-
cyanate. The modified graphene nanofillers was loaded in
the 0–2.5 phr. Figure 7 shows the preparation process for the
polyurethane/graphene nanocomposite. N,N-Dimethylforma-
mide was used as solvent. Figure 8 shows the thermomecha-
nical cyclic behavior of polyurethane/graphene with the
2.5 phr nanofiller loading.

The polyurethane nanocomposite revealed the shape
fixity and shape recovery of 96% for the first cycle. The
shape fixity and shape recovery were maintained >90%,
even after the fourth cycle. The modified nanofiller acted as
cross-linker for the polyurethane chains and caused reinfor-
cing effect. Sofla et al. (105) prepared the thermo-responsive
and electroactive shape-memory polyurethane/graphene
nanocomposites. The polyurethane was prepared using
the polycaprolactone diol, hexamethylene diisocyanate
(HDI), and 1,4-butanediol through the solution method.
The shape memory properties and the thermo-mechanical
cyclic behavior of polyurethane and polyurethane/graphene
nanocomposites have been studied. The cyclic behavior of

the polyurethane and polyurethane/graphene nanocompo-
sites is given in Figure 9. The results of the shape memory
behavior are given in Table 1.

The polyurethane/graphene nanocomposite with 3wt%
nanofiller loading showed 100% shape recovery during
the thermo-responsive and electro-active actuations. The

Figure 7: Scheme for preparation of polyurethane/graphene nanocomposite (103). HEA – hydroxyethylacrylate; DMF – N,N-dimethylfor-
mamide; GO – graphene oxide; 1,3-BD – 1,3-butanediol; PPG – polypropylene glycol; MDI – 4,4′-methylene diphenyl diisocyanate. Repro-
duced with permission from Wiley.

Figure 8: Thermomechanical cyclic behavior of polyurethane/gra-
phene 2.5 phr (103). N – number of cycles. Reproduced with per-
mission from Wiley.
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polyurethanenanocompositewith the 3wt%graphene showed
shape recovery in 60 s. Whereas, the neat polyurethane had
no shape memory behavior. The thermo-responsive effect
was observed at 60°C, although the electro-active effect
was observed at 75 V. Abbasi et al. (106) prepared the
polyurethane/graphene nanoplatelet nanocomposites. The
polyurethane was formed using poly(ε-caprolactone)diol,
castor oil, and HDI through the in situ polymerization. Figure 10
portrays the TEM image of the polyurethane/graphene
nanoplatelet nanocomposite with 1.5 wt% nanofiller. The
graphene nanoplatelet was found consistently dispersed in
the polyurethane matrix. Figure 11 designates the stress-
strain curves of the polyurethane and polyurethane/graphene
nanoplatelet nanocomposites. The nanofiller addition aug-
mented the tensile stress of the nanocomposites due to
the matrix-nanoparticle connections. However, the strain
was decreased with the graphene nanoplatelet inclusion
due to the stiffness of the polymer chains. The inclusion of
the graphene nanoplatelet-based nanocomposites revealed
the high shape fixity of ∼96% and shape recovery of ∼99%.
Patel and Purohit (107) developed the shape memory
polyurethane/graphene nanoplatelet nanocomposites by

the melt mixing. The graphene nanoplatelet was loaded
in the range of 0–2 phr. The shape memory was induced
using the microwave irradiation technique. The shape
recovery of the nanocomposites relies on the microwave
frequency and nanofillers content.

Among other shape memory matrices, poly(methyl
methacrylate) (PMMA) has been used with graphene.
PMMA is an important thermoplastic polymer with fine
chemical, weathering, and corrosion resistance features
(108,109). Eshkaftaki and Ghasemi (110) reported the
thermo-responsive PMMA/graphene nanocomposite obtained
from the melt mixing method. The heating was performed in
the range of 65–100°C. The shape recovery of 97% was
attained at 100°C. Ji et al. (111) formed the PMMA/thermally
reduced GO-based nanocomposite using solution method.
The shape recoverywas experiential usingUV-curingmethod.
The storage modulus of the nanocomposite was found at
∼30–140°C. Shape memory poly(lactic acid) has been filled
with the graphene nanofiller (112). The nanofiller was uni-
formly dispersed in the poly(lactic acid) matrix to enhance
the crystallization ability and shape memory properties of the
polymer (113,114). The shape memory properties of the poly-
ethylene elastomer were also improved with the octadecyl-
amine-modified GO (115). The modified GO loading of the
0.25–1.0wt% considerably enhanced the shape memory

Figure 9: Thermo-mechanical cyclic behavior of polyurethane and
polyurethane/graphene nanocomposites (105). Reproduced with
permission from Elsevier.

Table 1: Shape memory properties of polyurethane and polyurethane/graphene nanocomposites (105). Reproduced with permission from
Elsevier

Sample Shape fixity (%) Shape recovery (%) (thermal 60°C) Shape recovery (%) (electrical 75 V; 60 s)

Polyurethane 65 ± 2 90 ± 2 Not recovered
Polyurethane/graphene 1 wt% 71 ± 3 94 ± 2 Not recovered
Polyurethane/graphene 1.5 wt% 78 ± 2 94 ± 3 Not recovered
Polyurethane/graphene 2 wt% 82 ± 4 98 ± 2 95
Polyurethane/graphene 3 wt% 83 ± 1 100 100

Figure 10: TEM image of polyurethane/graphene nanoplatelet 1.5 wt%
nanocomposite (106). Reproduced with permission from Wiley.
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properties of the nanocomposites due to the hydrogen
bonding between the polymer/graphene interfaces (116).
The shape memory polyacrylonitrile/graphene nanocom-
posites have been developed (117). The cross-linking in the
nanocomposite constituents improved the shape recovery
properties of the polyacrylonitrile/graphene nanocom-
posites (117). Hence, the effects of the graphene nano-
fillers on the shape memory properties of the polymeric
nanocomposites have been established in literature. The
most commonly studied polymers with the graphene nano-
fillers are epoxy, polyurethane, and PMMA. The commonly
observed shape memory effects include, Joule heating
effect, electro-activity, thermal response, and radiation
triggered actuation. Table 2 displays the specifications of
the stimuli-responsive polymer/graphene nanocomposites
discovered so far.

Shape memory polyamide matrices have been reported
(118). The hydrogen bonding associations between the
polymer chains and crystallization have led to the optimum
switching/transition temperature and toughness of the
shape memory polyamides. Li et al. (119) developed the
shape memory polyamide having triple-shape memory
behavior. The Tg and Ttrans of the polymer were found at
∼125°C and ≥200°C, respectively. The shape recovery rate of
the polyamide was found to be ∼82%. Figure 12 reveals the
steps involved in the multi-step shape memory process. The
torsion tests were applied to cause the strains and stresses
in the rectangular bar sample. Consequently, the shape
deformation, fixation, and recovery steps in the shape
memory have been studied. Figure 13 shows the semicrys-
talline, crystalline, and covalent cross-links in the polymer
structure. The overall semicrystalline structure has caused
the feasible switching during the shape memory effect.

Yan et al. (120) formed the solution processed rapidly
responsive shape memory polyamide. The responsive time
was found around 6–8 s and the recovery rate was 99.5%.
Consequently, the shape memory polyamide/graphene

nanocomposites have been produced (121). Ma et al. (122)
developed the polyamide and graphene-based nanocom-
posites through the in situ chemical polymerization. The
polyamide/graphene nanocomposites own photo-electrical
responsive shape memory effect.

PS is an aromatic thermoplastic polymer used for the
shape memory materials (123). The thermo-responsive
and electro-active shape memory behavior have been
observed in PS. Shape memory PS/graphene nanocom-
posites have also been focused (124). The PS has been
chemically cross-linked with the nanofillers. Li et al.
(125) prepared the electro-active PS/graphene oxide-octa-
decylamine (PS/GO–ODA) nanocomposites. The SEM and
TEM analysis depicted the homogeneous dispersion of
GO–ODA in PS, while the pristine GO has revealed aggre-
gated morphology (Figure 14). The electro-active shape
memory effect was perceived due to the high electrical
conductivity of the PS/GO–ODA nanocomposite. Figure 15
shows higher electrical conductivity of 9.2 × 10−4 S·m−1, for
the GO–ODA nanocomposite. The fine nanofillers distribution
and interface formationwith thematrix produced the superior
electrical conductivity and electro-actuation features.

The bio-based polymers such as lignin, cellulose,
and lyocell fibers form an important category of the nat-
ural polymers (126–128). The shape memory lignin-poly
(N-methylaniline)/graphene oxide nanocomposites have
been designed using in situ polymerization (129). The
three dimensional self-assembled lignin-poly(N-methyla-
niline)/GO hydrogel revealed the dye and ion adsorption
capacities. The lignin–PNMA–rGO had high adsorption
capacity for methylene blue and Pb2+ ion as 201.7 and
753.5 mg·g−1, respectively. The new lignin-based adsor-
bent is low-cost, environmentally benign, and is an attrac-
tive adsorbent for the wastewater treatment. Bai and Chen
(130) formed the shape memory hydroxyethyl cellulose
and GO-based nanocomposites. The hydroxyethyl cellu-
lose/GO nanocomposites showed moisture active behavior
within 14 s. Such natural polymer-based shape memory
materials have been applied in water responsive sensors,
actuators, and biomedical devices (131,132).

6 Combination polymers and
graphene dispersion in shape
memory nanocomposites

Various polymers have been employed to form the shape
memory graphene-based nanocomposites (133). Among
frequently used thermosetting and thermoplastic polymers
are epoxies, polyurethanes, PMMA, polyamides, and PS.

Figure 11: Typical tensile stress-strain curves of polyurethane/gra-
phene nanoplatelet nanocomposites (106). PU – polyurethane.
Reproduced with permission from Wiley.
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The choice of the polymer determines the rate of shape
recovery and rapid response time. Graphene has thin
nanosheet nanostructure and large specific surface area
often leading to agglomeration. The poor dispersion
and aggregation of graphene deteriorated the shape
memory performance. Consequently, the graphene disper-
sion in various polymers is an important factor to determine
the recovery properties and performance of the nanocom-
posites. Most importantly, the strength, toughness, and
flexibility properties of the polymer/graphene nanocom-
posites have been affected due to the poor graphene
dispersability. Moreover, the nanoparticle accumulation
influenced the electrical properties of the electro-active

polymer/graphene nanomaterials. The electron conduc-
tion through the system depends on the formation of the
percolation network in the matrix, which was affected by
the aggregation. The graphene dispersion techniques
such as the ultrasonication and in situ method need to
be adopted in this regard. In addition to the fine graphene
dispersion, the interfacial links and miscibility with the
polymers have been found as essential factors to improve
the shape memory properties (134). The superior interfa-
cial connections between the polymer and graphene
have yielded high mechanical properties and electrical
conductivity. Incidentally, the surface modification of
graphene must be developed to prevent the nanoparticle
masses and improve the dispersal in the polymer.
The plasticizers have been applied for cross-linking
between the graphene and polymers (135). Formation
of graphene network in the matrix not only enhanced
themicroscopic properties, shape fixity, and shape recovery
rate but also supported the technical performance of
polymer/graphene nanocomposite. Hence, the choice of
polymer, nanofiller content, nanofiller modification, disper-
sion, andprocessing technique contribute to the shapememory
property increments in the technical polymer/graphene
nanocomposites.

7 SMP/graphene nanocomposites:
Potential applications

SMPs are smart materials having ability to return from the
deformed shape to the original shape. SMPs have been
used as the beneficial materials, compared with the
shape memory alloys (136). The thermoplastic and ther-
moset polymers have the ability to reveal shape memory
behavior. Among the thermoplastic polymers, polyur-
ethane, PMMA, polyacrylonitrile, polylactic acid, PS, etc.,
have been used as SMPs (137,138). In thermosets, epoxies
and polyesters reveal shape memory effect (139,140). The
segmented polymers such as polyurethanes have switch-
ing segments in the backbone to display Ttrans (141). The
switching segments cause the recovery of the temporary
shape to the original shape (142). An important factor here
is the cross-linking of polymer chains and the formation
of the switchable polymer-nanofiller network. The cross-
linking allows the polymer chains to maintain the chemical
and physical features, in addition to the shape recovery
(143). The polymer chains can be physically or covalently
associated to reveal the shape memory behavior (144). The
crystallization, viscoelastic behavior, strain recovery, and

Figure 12: Illustration of shape deformation, fixation, and recovery
cycle of multi-shape memory effect in torsion mode (119). Repro-
duced with permission from ACS.

Figure 13: Molecular representation of the semicrystalline poly-
amide. Crystalline polymer (dark blue) is embedded in an amor-
phous matrix (light blue), and red dots represent covalent cross-link
points (119). Reproduced with permission from ACS.
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shape fixity of the SMPs can be altered using the fillers or
nanofillers (145). Consequently, the polymer/graphene nano-
composites have been developed with tendency towards
heat, electric, and radiation actuation. The SMP/graphene
nanocomposites have found applications in aerospace and
automobile components (145–147).

In the motorized engineering, these nanocomposites
can be applied in the outer body, seat assemblies, lenses,
and interior components (148,149). The aerospace and auto-
mobile engineering desire further research to substitute the
traditional structural materials for future advances (150). For
the aerospace components, the polymer/graphene nano-
composites have been considered due to fine processability,
chemical resistance, strength, non-flammability, electrical
conductivity, heat stability, thermal conductivity, radiation
shielding, and lightning strike resistance. Nevertheless, the
future advancements have been needed to overcome the
challenges related to the employment of the SMP/graphene
nanocomposites in the automotive/aerospace vehicles (151).

Figure 14: Digital photographs of (a and b) PS/3wt% GO and (c and d) PS/3wt% GO–ODA nanocomposites; SEM photographs of (e) PS/3wt%
GO and (g) PS/3 wt% GO–ODA nanocomposites; TEM photographs of (f) PS/4wt% GO, and (h) PS/4wt% GO–ODA nanocomposites (125).
PS – polystyrene; GO–ODA – graphene oxide-octadecylamine. Reproduced with permission from Elsevier.

Figure 15: Electrical conductivity of polystyrene based nanocomposites
as a function of filler content (125). PS/GO–ODA–polystyrene/graphene
oxide-octadecylamine; PS/GO–polystyrene/graphene oxide. Repro-
duced with permission from Elsevier.
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The self-healing polymer/graphene nanocomposites
have been developed (152). Usually very low graphene
content has been reinforced in the polymers to gain the
self-healing properties. The polymer is usually cross-
linked with the modified graphene via hydrogen bonding
to generate the self-healing properties. The shape memory
and self-healing polymer/graphene nanocomposites have
been studied for the sensors, actuators, and microelectro-
nics, to some extent (153).

Besides, the graphene-filled shape memory nano-
composites have been employed in the smart textiles,
fabrics, and spy garments (154). Novel self-healing effects
render the textile material to reconcile its original proper-
ties. Moreover, such textiles have capability to sense the
damaged place and recover the damaged fabric part.

Graphene has expanded the application of the SMPs
to the civil engineering field (155). Thus, the civil engi-
neering features of stimuli-responsive graphene-based
nanomaterials have been focused (156). In this regard,
the mechanically robust graphene-based actuation sys-
tems allow the instantaneous bending and fluctuation of
the materials (157,158). For the civil engineering applica-
tion, the polymer/graphene nanocomposites have large
recoverable strains (159). The insertion of the graphene
nanosheet in the SMPs has considerably increased the
mechanical response, recovery, and other mechanical
properties for the civil engineering structures (160).

The SMP/graphene nanocomposites also possess poten-
tial for the biomedical devices, actuated implants for human
body, and drug delivery (161,162). The artificial implants
(regenerative tissues, bones, skin, arteries, etc.) have been
prepared by taking the advantage of the shape recovery

properties of polymer/graphene nanomaterials. PMMA and
polyurethanes have been used in the SMPs-based bio-
implants. Precisely, the segmented polyurethane-based
SMPs have been applied in the drug delivery systems
owing to biocompatibility, in situ compatibility, and che-
mical interactions with the biological parts.

However, research in the aerospace, automotive, tex-
tile, electronic, and biomedical area need future explora-
tions to establish the impact of the polymer/graphene
nanocomposites (Figure 16). The future directions for
progress in the field of shape memory graphene-based
materials need to be focused. Advanced level research efforts
must be carried out to encounter the challenges of stimuli-
responsive nanocomposites towards various solicitations.
The foremost challenges in the use of stimuli-responsive
polymer/graphene nanocomposites involve the attainment
of better graphene dispersion, fine polymer/graphene
interfaces/compatibility, the nanocomposite process-
ability, high mechanical strains, and viscoelastic properties
required for the high-performance stimuli-responsive
polymer/graphene nanocomposites. New research direc-
tions can be discovered using the modified polymers, the
functional graphene nanofiller, and modified actuation
approaches. The advancements in the shape memory effect
in various technical fields depend on the various factors like
optimum reinforcement content and matrix/nanoparticle
miscibility. The graphene has been reinforced in the SMPs
to improve the structural stability, thermal constancy,
mechanical properties, storage modulus, shape fixity, shape
retrieval, and other physical properties. Owing to the ten-
dency of graphene aggregation, the homogeneous dispersal
has been found essential to enhance the properties of the

Figure 16: Schematic of the potentials and challenges of shape memory polymer/graphene nanocomposites.
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SMPs. Better compatibilization between the polymer/graphene
is essential to improve the crystallization, viscoelastic proper-
ties, and storage modulus of the nanocomposites.

8 Conclusion

In this review, initially a brief introduction to the SMP
and nanocomposites has been presented. Afterwards, the
SMP/graphene-based nanocomposites have been mainly
studied. In this regard, the thermo-responsive, electro-
active, photo-active, and strain-effect have been explored.
Momentarily speaking, this review presents the signifi-
cance of SMPs and the ensuing nanocomposites with gra-
phene nanofiller. Various polymers have been reinforced
with graphene to fabricate the high-performance nanocom-
posites. The polymer/graphene nanocomposites revealed
the thermo-responsive, electro-active, and photo-sensitive
behavior. Graphene dispersion and interface between the
polymer/graphene have led to the advanced actuation per-
formance. The polymeric nanocomposites have wide ran-
ging potential applications in the aerospace, automobile,
biomedical, and smart textile industries. Future advance-
ments in the SMP-based nanocomposite may lead to the
discovery of several concealed applications.
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