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Shape Metrics Based on Elastic Deformations

Matthias Fuchs · Bert Jüttler · Otmar Scherzer · Huaiping Yang

Abstract Deformations of shapes and distances be-

tween shapes are an active research topic in computer

vision. We propose an energy of infinitesimal deforma-

tions of continuous 1- and 2-dimensional shapes that is

based on the elastic energy of deformed objects. This
energy defines a shape metric which is inherently in-
variant with respect to Euclidean transformations and

yields very natural deformations which preserve details.

We compute shortest paths between planar shapes based

on elastic deformations and apply our approach to the

modeling of 2-dimensional shapes.

Keywords shape space · shape metric · shape

modeling · elastic deformation

1 Introduction

This paper is concerned with the problem of quantifying
the differences between shapes. This leads to the notion

of a shape space which is an appropriate representation
of shapes and to a shape metric on the shape space.

In general, the modeling of both, the shape space

and the associated metric, is a challenging task and

different approaches lead to diverse models whose use-

fulness is decided by the application in question. This

includes e.g. the statistical analysis of shapes used to

regularize the detection or tracking of objects in images
and movies. Also the classification of detected outlines
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involves statistical methods in shape spaces. Another

application is the modeling of shapes. Given two de-

formed states of one object, the shortest path between

the two shapes morphs the first state into the second.

The more natural these paths look, the less intermedi-
ate steps have to be defined by the designer.

There exists no common shape space or shape met-

ric which satisfies all requirements of the mentioned
applications optimally. The suitability of a certain ap-

proach depends very much on the demands in a given

situation. A property which classifies shape metrics is

their invariance with respect to certain geometric trans-

formations. Probably the simplest example is invariance
to translations. This means that two shapes are consid-
ered to be the same (and thus have distance zero) if
they are transformed translationally. In general, trans-

lational invariance is considered to be inherent to the

notion of “shape”.

The situation is less clear when it comes to more

general transformations. E.g., if the task is to classify

objects in a microscope image it makes obviously no

sense to consider the rotation of the shapes as their

positions and rotations will be randomly distributed.

For the recognition of digits, however, the correct ro-

tation is crucial to distinguish e.g. “6” and “9”. On

the other hand, the scaling of the digits should not af-

fect the result if one compares image data of different

sources. In the above-mentioned example of microscope

images, though, the size of the objects might be impor-

tant. Thus, one favors a translational and rotational in-

variant metric in the first case but would use a metric

invariant to translation and scaling but not to rotation

in the second case.

These different invariance properties are reflected in

the different approaches to shape spaces and metrics in

literature. In principle there exist two, not strictly sep-

arated, levels of incorporating invariances. First, the
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shape space can be designed in a way such that the

shape representation is independent of certain proper-

ties. E.g. representing shapes via their tangent vectors

removes information about their absolute position, nor-

malizing their perimeter makes them scale invariant.

Secondly, it is possible to design metrics which do not

consider certain transformations. Then, a shape space

might still include translated shapes but the associated
shape metric measures the distance between them as
zero. This is the approach we chose in this paper where

the shape space is only invariant to reparameteriza-

tions (a minimal requirement for a shape space) but

the shape metric maps any Euclidean transformation

to zero.

1.1 Related work

The concept of shape spaces with an associated met-

ric was first developed by Kendall [10]. There, shapes

are characterized by labeled points in Euclidean space,

so called land-marks, and the author investigates Rie-

mannian structures on this space. The drawback of this

and related approaches is that the shapes have to be

labelled before they can be processed further. On the

other hand, the associated spaces are finite dimensional

and computationally easy to handle.

More modern works are concerned with continuous

shape representations of infinite dimensions. Klassen et

al. [12] represent planar curves by their direction and

curvature functions. I.e. the shape space is a subspace

of the periodic L2-functions on [0, 2π]. Such a func-

tion corresponds to the angle of the curve tangent in

the first and the curvature at a given curve point in

the second case. Because the curves are assumed to be

parameterized by arclength, this uniquely determines

shapes. These representations are invariant to scaling

and translation and to scaling, translation and rota-

tion, respectively. The authors impose further proper-

ties such as closedness and rotation index via defin-

ing functions on the space of curves. This results in

a Riemannian manifold embedded in L2([0, 2π]) and

equipped with the induced metric, i.e. the L2-metric.

In a similar manner, Mio et al. [18] represent planar

curves by the polar coordinates of their tangent vec-

tors. I.e. the angle and the length of the tangent at a
curve are smooth functions on the unit interval. They
also impose the closure condition via defining functions

which results in a shape manifold of infinite dimension.

This manifold is Riemannian in virtue of a weighted L2-

metric on the product space of the tangent angles and

the tangent lengths. This metric measures the bending

and stretching of curves subject to an infinitesimal de-

formation. The influence of the bending energy versus

the stretching energy is controlled by a parameter.

The idea of modeling the boundary curve of a shape
as an elastic object is related to Younes [25] but the

technical approach there is different from ours. The au-

thor considers plane curves which are parameterized by

arclength and assumes a group acting transitively on

this space. Then, the transformation of one shape into

another is represented by a path in this group. Hence,

the measurement of distances between shapes is trans-

formed to the problem of defining lengths of paths in
the group acting on the shape space. This approach is
also presented in a more general manner in Miller and
Younes [17]. Invariances of the resulting metric are in-

corporated via the group action.

The shape metrics presented in Younes [25] and Mio

et al. [18] are related to the elastic energy of the bound-

ary curves of the shapes. It is important to note that

they do not consider the elastic properties of the do-

main confined by the shape boundary. This is a signifi-

cant difference to our approach as noted in Section 1.2.

Michor and Mumford [16] choose smooth embed-

dings of the unit circle in the plane as shape space

and propose a L2-metric which is regularized by the

curvature of the shape boundary. This work is partly

motivated by their observation [15] that the standard

L2-metric vanishes on this shape space. An extensive re-
view of metrics on the same shape space can be found in

Yezzi and Mennucci [23]. Not only geodesics but gra-

dient flows in general depend on the metric which is

chosen on a shape space. How different metrics affect

gradient flows of shapes is studied in Sundaramoorthi

et al. [20] and Charpiat et al. [5].

A different approach is chosen by Zolésio [26]. In this

work the author considers the characteristic functions

of measurable sets as shapes and defines tubes which

are paths between two shapes. Each tube is associated
with a time-dependent vector field that prescribes the
deformation of the tube. In this formulation lengths of

tubes can be defined by imposing norms on the associ-

ated function spaces. The idea of defining shape defor-

mations via vector fields defining deformations of the

ambient space is related to our approach as explained
in Section 3.

Charpiat et al. [4] also consider characteristic func-

tions of shapes and compare norms on these functions
to the Hausdorff distance between shapes. In contrast to
most of the other papers mentioned here, these metrics

are not originally formulated via the energy of infinites-

imal deformations. The authors derive smooth approx-

imations of the respective metrics and utilize them to

compute geodesics between shapes.
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Keeling and Ring [8,9] use the elastic energy of in-

finitesimal deformations to regularize the optical flow
between two images. They assume a time-dependent
flow defined on a rectangular image domain which de-

forms a template image into a reference image. The en-

ergy of this flow is computed by integrating the elastic

energy of the velocity vector field of the flow over the

time. This setup can be used to measure the distance
between two shapes if the two images are replaced by
the characteristic functions of the shapes. The idea is

similar to our approach as presented in Section 3. The

main difference is that they integrate the elastic energy

of the deformation of the shape and the ambient space
(i.e. of the whole image domain), whereas we only con-

sider the deformation of the shape.

For the modeling of 2-dimensional shapes, Kilian et

al. [11] propose two shape metrics which promote rigid
and isometric, respectively, deformations of a discrete
boundary mesh. They propose a multi-resolution ap-

proach both in time and in space to solve for shortest

paths between two shapes.

The present paper is also related to shape opti-

mization. There the goal is to optimize structural parts

which are exposed to certain mechanical forces. More

mathematically, one seeks a shape which minimizes its

elastic energy subject to volume and force constraints.
One approach to this problem is to compute the gra-
dient of an objective function and to deform the shape

according to the gradient flow. This procedure is sim-

ilar to the elastic deformation shape modeling in Sec-

tion 6. In shape optimization however, it is crucial to

also consider topological changes of shapes. Allaire et

al. [2] combine the traditional shape derivative with the

topological gradient which allows for the generation of

holes in shapes during the shape deformation.

1.2 Elastic deformations of shapes

In this work we also consider the space of smooth em-

beddings of the unit circle/sphere modulo reparame-

terizations and define an energy of infinitesimal defor-

mations of shapes. This allows us to define the length

of isotopies (i.e. homotopies taking embedded subman-

ifolds to embedded submanifolds) between shapes and

yields a distance measure on the shape space. The en-

ergy itself is based on the elastic energy of the shape

(i.e. the area inside the shape boundary) caused by an

infinitesimal deformation of the shape boundary. Thus,

the main characteristics of our approach are:

– The elastic deformation metric takes into account

the shape of the actual object as opposed to metrics

considering only the boundary curve.

– It is naturally invariant to rotations and transla-

tions.
– The metric applies equally to 1- and 2-dimensional

shapes.

– It is formulated for multiply connected shapes.

The first property allows us to distinguish between de-

forming thin parts of an object (which requires less de-

formation energy) and thick parts (requiring more en-
ergy). This is not possible with any formulation based
on local properties of the boundary curve, which is the

case for the majority of the approaches cited above.

1.3 Outline

This paper is organized as follows. In the next section

we define the elastic deformation energy of infinitesimal
deformations of shapes and the corresponding distance
measure. Section 3 is devoted to an alternative inter-
pretation of the elastic deformation energy. It is based

on vector fields deforming the ambient space of shapes

such that the deformation of the metric on the shape is

minimal.

The elastic deformation energy is defined via a vari-

ational formulation. In Section 4 we prove that mini-

mizers exist and that they are essentially unique. The

succeeding section is devoted to the numerical computa-

tion of shortest paths between planar shapes. Section 6

considers deformations of shapes in space from a mod-

eling point of view. This means that we do not consider

shortest paths between two objects but slowly (i.e. in-

finitesimally) deform parts of a given object and adapt

the rest of the object such that the energy of the in-

finitesimal deformation is minimal. In the final section

we give a short summary and conclude with an outlook.

1.4 Notations and preliminaries

Define Matn := R
n×n, the set of all n × n matrices. In

the following we denote the trace of a matrix by tr, i.e.
trA =

∑n
i=1 Aii for A ∈ Matn. The norm |A| is defined

as the square root of the sum of the squared components

of A, i.e. |A|2 =
∑n

i,j=1 A2
ij and the identity

|A|2 = tr(AtA) (1)

holds.

In the next section we need the notion of infinitesi-

mal rotations in 2- and 3-dimensional space. Formally,

infinitesimal rotations constitute the Lie algebra of the
respective rotation groups and form linear subspaces of

Mat2 and Mat3, respectively. These subspaces are the
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sets of all skew-symmetric matrices in the respective

spaces. They are spanned by
(

0 −1

1 0

)

(2)

in the plane and by




0 0 0

0 0 −1

0 1 0



 ,





0 0 1

0 0 0

−1 0 0



 ,





0 −1 0
1 0 0

0 0 0



 (3)

in space. Any rotation R of R
2 or R

3 can be written as

R = eΨ , where Ψ is a linear combination of the matri-

ces (2) or (3), respectively.

Finally, we denote the set of all infinitesimal Eu-

clidean motions on R
n, n = 2, 3, as

Mn := {A : R
n → R

n : A(x) = a + Ψx , a ∈ R
n,

Ψ infinitesimal rotation} .

2 Elastic Deformation Energy and Distance

In this section we propose an energy of infinitesimal
deformations of shapes based on linear elasticity and
derive a shape metric from this energy. Moreover, we

require the shapes to be smooth and to have a well

defined interior area or volume. This naturally leads to

smooth embeddings of a parameter domain into its am-

bient space. Let n = 1, 2 and assume D⊆R
n+1 (the pa-

rameter domain) to be a closed, orientable C∞-manifold
of dimension n with no boundary. We denote the em-

beddings of D in R
n+1 by Emb(D, Rn+1), the set of all

functions which are C∞-diffeomorphisms onto their im-

ages. The group of all diffeomorphic maps from D onto

itself is denoted by Diff(D). Because several embed-
dings can represent identical shapes we consider them

as equal if a smooth reparameterization can transform
one into the other. I.e. we define the space of n-dimen-

sional shapes

Sn = Emb(D, Rn+1)/ Diff(D), n = 1, 2 .

For curves or surfaces that bound simply connected do-

mains one can choose D = Sn, the n-dimensional unit

sphere. This leads to smooth embeddings of the unit

circle and the unit sphere, respectively.

Our goal is to define a distance between shapes in

Sn. For this purpose we borrow some ideas from Rie-
mannian geometry to compute distances in this space.

A Riemannian manifold is a manifold equipped with a

Riemannian metric. The Riemannian metric is an inner

product on the tangent bundle of the manifold and as

such defines angles between tangent vectors. In particu-

lar, the length of tangent vectors can be measured with

respect to a Riemannian metric.

On manifolds, the distance between two arbitrary
points is defined as the infimum of the lengths of all

differentiable paths connecting the points. The length

of a path is computed by integrating the absolute value

of its first derivative along the path, i.e. by integrating

its velocity.

The first derivative of a differentiable path on a

manifold at a given position is contained in the tangent
space at this position. If a representative
r ∈ Emb(D, Rn+1) of shape a ∈ Sn is chosen, the tan-

gent space at a is naturally given by C∞(D), i.e. by

the smooth functions on the parameter domain. The
infinitesimal deformation of a prescribed by a tangent

vector f ∈ C∞(D) with respect to r in the point r(τ) is
then given by f(τ)n(τ), τ ∈ D. Here n(τ) is the outer

unit normal at a in r(τ).

Using this convention, a differentiable path in Sn

and its velocity are defined as follows:

Definition 1. Let γ : [0, 1] → Sn. Then γ is differen-

tiable if there exists ρ : [0, 1] → Emb(D, Rn+1) satisfy-

ing these conditions:

– ρ is differentiable as a function [0, 1] → C∞(D, Rn+1),
where C∞(D, Rn+1) is a Banach space with the supre-

mum norm.

– For every t ∈ [0, 1]

γ(t) = ρ(t) in Sn .

The derivative γ̇ : [0, 1] → C∞(D) of γ is given by

γ̇(t) = 〈ρ̇(t),n(t)〉 , 0 ≤ t ≤ 1 ,

where n(t) is the outer unit normal at ρ(t). Then γ̇(t)

is a tangent vector at γ(t) ∈ Sn with respect to the

representative ρ(t) ∈ Emb(D, Rn+1).

Note that in this paper γ̇ and ∂γ/∂t always denote

the derivative of a path γ : [0, 1] → Sn as in Definition 1

and never the derivative of the shape parameterization.

To integrate the velocity of a path γ on Sn the

lengths of tangent vectors in C∞(D) must be measured.
On Riemannian manifolds this is usually done by uti-

lizing the norm induced by the Riemannian metric. In

the following, we derive a semi-norm of tangent vectors

at Sn. As stated in Remark 14 later on, this semi-norm

is induced by a Riemannian pseudo-metric on Sn. In a

first step we define the elastic energy of an infinitesimal

deformation of a domain Ω, which will later play the
role of the shape:

Definition 2. Let Ω ⊆R
n+1 be a domain with smooth,

i.e. C∞, boundary and assume parameters λ ≥ 0 and

µ > 0. Moreover let u ∈ H1(Ω, Rn+1), i.e. u is a vector
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field defined on Ω. Then the elastic deformation energy

of the deformation u on Ω is given by

E(u) =

∫

Ω

(

λ(tr e(u))2 + 2µ tr(e(u)te(u))
)

dx , (4)

where the components of the linearized strain tensor

e(u) are given by

ei
j(u) =

1

2
(∂ju

i + ∂iu
j) , 1 ≤ i, j ≤ n + 1 . (5)

This defines a map

E : H1(Ω, Rn+1) → [0,∞[ .

In physics, expression (4) is the linear elastic en-

ergy of a homogeneous, isotropic material Ω which is

displaced by the infinitesimal deformation u. The pa-
rameters λ, µ are called the Lamé parameters and char-

acterize the elastic properties of the object. It is easy
to see that E(u) = 0 if and only if u is an infinitesimal

Euclidean motion, i.e. u ∈ Mn+1.

Using (4) we are able to define the elastic energy

of an infinitesimal deformation of shapes in Sn. Such a

deformation is given by the displacements of the shape
boundary into the directions normal to the boundary.
By the definition of Sn we do not consider displace-

ments tangential to the shape boundary as they corre-
spond to a reparameterization of the shape. Thus, the
space of infinitesimal deformations of shapes in Sn is

the space of smooth functions on D, i.e. C∞(D).

Moreover, for shape modeling it turns out to be use-
ful to also consider deformations of parts of the bound-
ary of a domain. The trace operator

Tr : H1(Ω) → H1/2(∂Ω)

on Sobolev spaces (cf. [1, 5.20 and 7.56]) uniquely ex-
tends Sobolev functions on Ω to ∂Ω. This extension to

the boundary is canonical in the sense that the trace
of continuous functions on Ω corresponds to the their

continuous extension to ∂Ω. Let Ω ⊆R
n+1 be as in Def-

inition 2. We assume a non-empty part Γ ⊆ ∂Ω of the

boundary of Ω. Then we define the linear map

Trn : H1(Ω, Rn+1) → H1/2(Γ ) , u 7→ 〈Tr u,n〉 , (6)

where n denotes the outer unit normal at Ω and Tr :

H1(Ω, Rn+1) → H1/2(Γ, Rn+1) is the trace operator for

vector-valued functions restricted to Γ .

Lemma 3. The operator Trn : H1(Ω, Rn+1) → H1/2(Γ )

is continuous and surjective, i.e. for every f ∈ H1/2(Γ )

there exists u ∈ H1(Ω, Rn+1) such that

Trn (u) = f .

Proof. Since Tr is continuous H1(Ω, Rn+1) → H1/2(Γ, Rn+1)

[1, 7.56] the map Trn is continuous.

Let f ∈ H1/2(Γ ). The boundary normal n : D →
R

n+1 is of class C∞. As a consequence each component

of

f := fn : Γ → R
n+1

lies in H1/2(Γ ). Moreover, the trace operator

H1(Ω, Rn+1) → H1/2(Γ, Rn+1) is surjective [1, 7.56].

Thus, there exists u ∈ H1(Ω, Rn+1) with Tr (u) =
f .

The above considerations are concerned with a do-

main Ω and a subset Γ of its boundary. In the shape

space setting Ω is the interior of a shape. This is re-

flected in the definition of the elastic deformation en-
ergy of a shape:

Definition 4. Assume a shape a ∈ Sn and denote

Ω = the open set bounded by the image of a. (7)

Let Γ ⊆ ∂Ω and Trn be as in (6). Then the elastic de-

formation energy |f |2e,a of an infinitesimal boundary de-

formation f ∈ H1/2(Γ ) is defined by

|f |2e,a = inf
u∈H1(Ω,Rn+1)

Trn u=f

E(u) . (8)

In other words, we consider the energies of all in-

finitesimal deformations of Ω which deform the subset
Γ of the boundary in the normal direction as prescribed

by f and define |f |2e,a as the infimum of these energies.
We chose the notation |·|2e for the elastic energy because

its square root plays the role of the semi-norm induced

by the Riemannian pseudo-metric in Definition 6.

Remark 5. The variational expression (8) is very sim-
ilar to the pure displacement problem in linear elas-

ticity [6, Section 5.1], where the energy caused by an

infinitesimal vector-valued boundary deformation f ∈
H1/2(Γ, Rn+1) is given by

inf
u∈H1(Ω,Rn+1)

Tr u=f

E(u) . (9)

The difference between (8) and (9) is that in the lat-

ter formulation the infinitesimal deformation u is com-
pletely prescribed on the boundary whereas we only fix

its normal components.

Using Definition 4 to measure the magnitude of the

velocity of isotopies we can finally define the elastic

shape distance on Sn.
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Definition 6. Let a, b ∈ Sn and γ : [0, 1] → Sn piece-

wise continuously differentiable such that γ(0) = a and
γ(1) = b. The length and the energy of γ are given by

L(γ) :=

∫ 1

0

|γ̇(t)|e,γ(t) dt and (10)

E(γ) :=

∫ 1

0

|γ̇(t)|2e,γ(t) dt , (11)

respectively. Here γ̇(t) : D → R is the velocity of γ(t)

normal to γ(t), i.e. normal to the shape boundary at the

time t, 0 < t < 1, as in Definition 1. We use the notation
E(γ) for paths γ exclusively to avoid any confusion with

the elastic deformation energy E(u) of an infinitesimal

deformation u as defined in (2). Note that the elastic

deformation energy of γ̇ in (10) and (11) is given by

applying the case Γ = ∂Ω in Definition 4.

We define the elastic deformation distance d : Sn ×
Sn → [0,∞[ by

d(a, b) = inf
γ(0)=a
γ(1)=b

L(γ) , (12)

where γ : [0, 1] → Sn is as above.

Remark 7. Let d be as in Definition 6 and a, b, c ∈ Sn.

Then the following relations hold:

– d(a, b) = d(b, a) and

– d(a, c) ≤ d(a, b) + d(b, c).

In other words, the elastic deformation distance is sym-

metric and satisfies the triangle inequality.

However, the elastic deformation distance between
two shapes a, b ∈ Sn is zero if a and b only differ by a

Euclidean transformation, i.e.

d(a, b) = 0 if a and b differ only by a

translation and/or rotation.

In other words, d is only a pseudo-metric on Sn. This is

actually the reason why we avoid the notion “metric”
altogether and refer to d as a “distance”.

Unfortunately, we are not able to show that d(a, b) >

0 if a 6= b modulo Euclidean transformations.

In Remark 14 we state that the elastic deformation

energy | · |2e is induced by a Riemannian pseudo-metric

on Sn. For a path γ : [0, 1] → Sn, which connects two
shapes a, b ∈ Sn, this has following two consequences:

– L(γ) is invariant to reparameterization of γ.

– Assume that γ is such that its energy E(γ) is mini-

mal among all curves connecting a and b. Then L(γ)

also minimizes the lengths of all paths between a

and b and |γ̇|e,γ is constant along γ.

For the actual computation of distances between

shapes and geodesics connecting them several issues re-
main. The definitions in (8) and (12) are formulated via
infima of non-negative sets. This results in well-defined

values but does not necessarily imply the existence of

minimizing elements. In Section 4 we prove that the in-

fimum of E(u) in (8) is attained by a unique minimizer

in H1(Ω, Rn+1). This enables us to compute | · |2e using

a finite element approach to solve the weak formulation

of the optimality condition of the variational problem.

The existence of minimal geodesics, i.e. the exis-

tence of a γ which minimizes L(γ) in (12), is a much
harder question. In the finite dimensional setting, one

approach to this problem is the Hopf-Rinow Theorem

which states the existence of minimal geodesics on a fi-

nite dimensional manifold which is complete as a metric

space. However in the infinite dimensional case this the-

orem fails [13]. Due to these difficulties, we computed

discrete geodesics as explained in Section 5 but can not

provide analytical results concerning their existence.

3 Metric Perturbation

In this section we give an alternative interpretation of

the elastic deformation energy based on differential ge-

ometry. We derive the perturbation of the metric on a

shape which is deformed by an infinitesimal deforma-

tion and show that this perturbation is a special case

of the elastic deformation energy (8). As mentioned in

Remark 10 below, this allows for a generalization to

shapes on curved surfaces.

The basic idea is to define a Riemannian metric
on R

n+1 which reflects the deformation of this space

according to a time-dependent flow field. We then com-

pute the perturbation of this metric as the L2-norm

of the time derivative of the metric tensor at the time

zero. In the following we give a detailed description of

this approach.

Assume a time-dependent vector field x : [0, ε[→
H1(Rn+1, Rn+1), ε > 0, which is differentiable at time

zero and satisfies x(0) = Id. This flow can be inter-

preted as the trajectories of points in R
n+1 at a given

time. If one considers the space R
n+1 as a whole, then

x(t) corresponds to a deformed state of this space at
t > 0. At the time zero every point is mapped to its

initial position, i.e. the space is not deformed, whereas

for times t > 0 angles and distances between points get

distorted. In the following we quantify these distortions

in an infinitesimal setting, i.e. we consider the distor-

tion between points at arbitrarily small distances and

short times.
First note that we write Dx(t, p) for the spatial

derivative of x(t) at a fixed time 0 < t < ε in p ∈ R
n+1.
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I.e. the directional derivative of x(t) into the direction

v ∈ R
n+1 is given by Dx(t, p)(v). We choose an or-

thonormal basis (vi)1≤i≤n+1 of R
n+1 and define the

metric tensor Gx = (gij)1≤i,j≤n+1 in a point p ∈ R
n+1

at the time t ≥ 0 by

gij(t, p) =
〈

Dx(t, p)(vi), Dx(t, p)(vj)
〉

for 1 ≤ i, j ≤ n + 1 . (13)

Note that Gx(0, p) = Id for all p ∈ R
n+1. In the next

step we define the perturbation of Gx caused by an

infinitesimal deformation of a shape domain.

Definition 8. Assume a ∈ Sn and Ω as in (7). Let

Γ ⊆ ∂Ω and Trn as in (6). Then the metric pertur-

bation |f |2m,a induced by an infinitesimal deformation

f ∈ H1/2(Γ, Rn+1) is defined by

|f |2m,a = inf
Trn (ẋ(0)|Ω)=f

∫

Ω

∣

∣

∣

∂

∂t
Gx(t, p)

∣

∣

∣

2

t=0
dp , (14)

where x : [0, ε[→ H1(Rn+1, Rn+1), ε > 0 and x(0) =

Id. Note that |f |2m,a is independent of the choice of

(vi)1≤i≤n+1.

In other words, we consider time dependent defor-

mations of the ambient space of the shape a which co-

incide with the infinitesimal normal deformation f at
the time zero. The time derivatives of each such defor-

mation define a metric tensor Gx and we minimize the
L2-norm of the time derivative of the tensor on Ω. I.e.

we penalize temporal changes of the metric inside the

shape at the time zero. The next theorem proves that

the metric perturbation (14) coincides with the elas-

tic deformation energy (4) in case of Lamé parameters

λ = 0 and µ = 2.

Theorem 9. Assume a, Γ and f as in Definition 8.

Let further be λ = 0 and µ = 2 in (4). Then

|f |2m,a = |f |2e,a .

Proof. Consider a vector field x as in Definition 8 and

define u ∈ H1(Rn+1, Rn+1) by u = ẋ(0). Without loss

of generality we assume that (vi)1≤i≤n+1 is the stan-
dard basis of R

n+1. Because x(0) = Id the equality

∂

∂t

〈

Dx(t, p)(vi), Dx(t, p)(vj)
〉

∣

∣

∣

t=0
=

〈

Du(p)(vi), vj

〉

+
〈

vi, Du(p)(vj)
〉

= ∂iu
j + ∂ju

i (15)

holds for 1 ≤ i, j ≤ n + 1 and p ∈ R
n+1. Let e(u) be as

in (5), i.e.

ei
j(u) =

1

2
(∂ju

i + ∂iu
j) , 1 ≤ i, j ≤ n + 1 .

Then it follows from (13) and (15) together with the
above equation that

∣

∣

∣

∂

∂t
Gx(t, p)

∣

∣

∣

2

t=0
=

∣

∣2e(u)
∣

∣

2
= 4

∣

∣e(u)
∣

∣

2
.

Applying (1) and comparing (4) and (14) concludes the

proof.

Remark 10. The notion of the metric perturbation can

easily be extended to shapes on a manifold M . Shapes

on M correspond to elements of Emb(D,M)/ Diff(D).

The metric tensor Gx generalizes to this setting by re-

placing Dx in (13) by the covariant derivative on M
(cf. [3, Chapter VII]).

4 Existence and Uniqueness of Minimizing

Deformations

This section is devoted to the existence of unique mini-

mizers of the variational problem which defines the elas-

tic deformation energy in (8). As pointed out in the pre-

vious section this problem is very much related to the

pure displacement problem in linear elasticity and the

following results are a modification of the treatment of

this problem in [6, Section 6.4].

First we look at a problem similar to (8) but with

homogeneous boundary conditions and non-vanishing

source term. We derive a weak formulation of the cor-

responding PDE and prove existence and uniqueness

of solutions of this equation. Moreover, these solutions

also solve the original variational problem. Finally, we

adapt these results to (8).

We start with the following definitions: Let Ω ⊆R
n+1

be a domain with smooth boundary, ∅ 6= Γ ⊆ ∂Ω and

Trn as in (6). Assume λ ≥ 0, µ > 0 and g ∈ H1(Ω, Rn+1).

For u,v ∈ H1(Ω, Rn+1) define

B(u,v) =
∫

Ω

(

λ tr e(u) tr e(v) + 2µ tr(e(u)te(v))
)

dx , (16)

where

ei
j(u) =

1

2
(∂ju

i + ∂iu
j) , 1 ≤ i, j ≤ n + 1 .

In the next theorem we are concerned with the task
of minimizing a functional defined by (16) subject to
homogeneous boundary conditions. We state two dif-
ferent versions of this problem, the variational problem

and the weak formulation of the corresponding Euler-

Lagrange equations:
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Variational formulation: Find u ∈ H1(Ω, Rn+1)

such that
{

Trn (u) = 0

B(u,u + 2g) ≤ B(v,v + 2g)
(Vh)

for all v ∈ H1(Ω, Rn+1) with Trn (v) = 0.

Weak formulation: Find u ∈ H1(Ω, Rn+1) such
that
{

Trn (u) = 0

B(u,ϕ) = −B(g,ϕ)
(Wh)

for all ϕ ∈ H1(Ω, Rn+1) with Trn (ϕ) = 0.

Theorem 11. A vector field u ∈ H1(Ω, Rn+1) solves

(Vh) if and only if it solves (Wh), i.e. the two problems

are equivalent. Moreover, a solution of (Vh) and (Wh)

exists. If u,w ∈ H1(Ω, Rn+1) solve (Vh) and (Wh),

respectively, then

w = u + A ,

where A ∈ Mn+1 is an infinitesimal Euclidean motion.

Proof. We start by defining

V := {u ∈ H1(Ω, Rn+1) : Trn (u) = 0} .

First we prove the above claim on a modification

of V where we identify deformations which differ only
by an infinitesimal Euclidean motion. This allows us to

directly apply Korn’s inequality on this space. Define

Ṽ := {[u] = u + Mn+1 : u ∈ V } .

Note that this space is not a quotient space of V as

Mn+1 is not a subset of V . However, according to Lemma 12
below, Ṽ equipped with the norm

‖[u]‖Ṽ = inf
u∈[u]

‖u‖H1(Ω,Rn+1) for [u] ∈ Ṽ

is a Banach space.

The map

e : Ṽ → L2(Ω, Matn+1) , u 7→
1

2
(∂ju

i+∂iu
j)1≤i,j≤n+1 ,

is defined on Ṽ because it maps infinitesimal Euclidean

motions to 0. As a consequence, B : Ṽ × Ṽ → R is well
defined. Hence, by (1),

2µ‖e([u])‖2
L2(Ω,Matn+1)

≤ B([u], [u]) for [u] ∈ Ṽ .

(17)

Korn’s inequality [7] states that there exists C > 0 such

that

C‖[u]‖Ṽ ≤ ‖e([u])‖L2(Ω,Matn+1) for [u] ∈ Ṽ . (18)

Combining (17) and (18) yields

C ′‖[u]‖2
Ṽ
≤ B([u], [u]) for [u] ∈ Ṽ (19)

for some C ′ > 0. We define the linear functional L :
Ṽ → R by

L([ϕ]) = B([g], [ϕ]) for [ϕ] ∈ Ṽ .

Note that L is bounded in the sense that L([u])/‖[u]‖
is bounded for [u] ∈ Ṽ . Inequality (19) means that B is

V-elliptic on Ṽ in the sense of [6, Theorem 6.3-2]. The

same theorem states that there exists a unique solution

[u] ∈ Ṽ of

B([u], [ϕ]) = −L([ϕ]) for all [ϕ] ∈ Ṽ (20)

and that [u] is the unique solution of

B([u], [u]) + 2L([u]) ≤ B([v], [v]) + 2L([v])

for all [v] ∈ Ṽ . (21)

By assumption we can choose u ∈ [u] such that Trn (u) =

0. Then u solves (Wh) and (Vh).

To prove uniqueness consider two solutions u and

w of (Wh) or (Vh). Obviously [u] and [w] solve (20)

and (21), respectively. Because these problems have unique

solutions [u] = [w] and therefore u = w + A for some

A ∈ Mn+1.

Lemma 12. The space

Ṽ = {[u] = u + Mn+1 : u ∈ H1(Ω, Rn+1),Trn (u) = 0}

with norm

‖[u]‖Ṽ = inf
u∈[u]

‖u‖H1(Ω,Rn+1) for [u] ∈ Ṽ

is a Banach space.

Proof. We first consider the space

H̄1(Ω, Rn+1) := H1(Ω, Rn+1)/Mn+1

= {[u] = u + Mn+1 : u ∈ H1(Ω, Rn+1)}

with norm

‖[u]‖H̄1(Ω,Rn+1) = inf
u∈[u]

‖u‖H1(Ω,Rn+1)

for u ∈ H̄1(Ω, Rn+1) .

H̄1(Ω, Rn+1) is a Banach space as the quotient space
of a Banach space and a closed subspace [24, Section

I.11].

Moreover Ṽ ⊆ H̄1(Ω, Rn+1). To show the assertion

it suffices to prove that Ṽ is a closed subspace of H̄1(Ω, Rn+1).
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Consider [uk] ∈ Ṽ , k ≥ 0, and [u] ∈ H̄1(Ω, Rn+1), such

that

lim
k→∞

[uk] = [u] in H̄1(Ω, Rn+1) .

Without loss of generality we can assume that

lim
k→∞

uk = u in H1(Ω, Rn+1) .

Moreover there exists a sequence of infinitesimal Eu-
clidean motions Ak ∈ Mn+1, k ≥ 0, such that

Trn (uk + Ak) = 0 . (22)

Because Trn is continuous, this implies that there exists

M ≥ 0 such that

‖Trn (Ak)‖L2(Γ ) ≤ M for k ≥ 0 . (23)

On the other hand, the map

Mn+1/ ker Trn → im(Trn ) , A + ker Trn 7→ Trn A

is a linear bijection of finite dimensional linear spaces.
Thus, inequality (23) implies that the sequence (Ak +

ker Trn )k≥0 is bounded in Mn+1/ ker Trn . Without loss
of generality (by selecting an appropriate subsequence)
we conclude that there exists A ∈ Mn+1 such that

lim
k→∞

(Ak+ker Trn ) = A+ker Trn in Mn+1/ ker Trn .

Moreover, we can choose (A′
k)k≥0 such that

A′
k ∈ Ak + ker Trn for k ≥ 0 .

and

lim
k→∞

A′
k = A in Mn+1 .

Note that by (22) this implies that

Trn (uk + A′
k) = 0 .

Then, by the continuity of Trn , we have

Trn (u + A) = Trn

(

lim
k→∞

(uk + A′
k)

)

= lim
k→∞

Trn (uk + A′
k) = 0 .

In a next step we show that the existence of mini-

mizers in (8) follows from Theorem 11. For this purpose

we restate the problems (Vh) and (Wh) without source
term but with inhomogeneous boundary conditions:

Variational formulation: Find u ∈ H1(Ω, Rn+1)
such that
{

Trn (u) = f

B(u,u) ≤ B(v,v)
(Vih)

for all v ∈ H1(Ω, Rn+1) with Trn (v) = f .

Weak formulation: Find u ∈ H1(Ω, Rn+1) such

that
{

Trn (u) = f

B(u,ϕ) = 0
(Wih)

for all ϕ ∈ H1(Ω, Rn+1) with Trn (ϕ) = 0.

Theorem 13. A vector field u ∈ H1(Ω, Rn+1) solves

(Vih) if and only if it solves (Wih), i.e. the two problems

are equivalent. Moreover, a solution of (Vih) and (Wih)

exists. If u,w ∈ H1(Ω, Rn+1) solve (Vih) and (Wih),

respectively, then

w = u + A ,

where A ∈ Mn+1 is an infinitesimal Euclidean motion.

Proof. According to Lemma 3 there exists g ∈ H1(Ω, Rn+1)

such that

Trn (g) = f.

By Theorem 11 there exists u′ ∈ H1(Ω, Rn+1) which,

for g as above, solves (Wh) and (Vh), respectively. Then

u = u′+g satisfies Trn (u) = f and further solves (Wih)

and (Vih), respectively.

Moreover, assume that w ∈ H1(Ω, Rn+1) solves (Wih)

and (Vih), respectively. Then w′ := w − g satisfies

Trn (w′) = 0 and further solves (Wh) and (Vh), respec-

tively. Thus, u′ and w′ differ only by an infinitesimal

Euclidean motion and u − w = u′ − w′ ∈ Mn+1.

Remark 14. The elastic deformation energy is induced

by a Riemannian pseudo-metric on Sn. Let a ∈ Sn,

Ω and Γ be as in Definition 4 and define the inner

product 〈·, ·〉a by

〈f, g〉a = B(u,v) ,

where

{

E(u) = |f |2e,a and Trn (u) = f ,

E(v) = |g|2e,a and Trn (v) = g .
(24)

for f, g ∈ H1/2(Γ ). By Theorem 13 the inner prod-

uct (24) is well-defined and linear in each component.

Moreover it is symmetric and

〈f, f〉a = |f |2e,a

holds for f ∈ H1/2(Γ ).

Remark 15. Note that Theorem 13 not only states that
the infimum in (8) is attained in H1(Ω, Rn+1), i.e. a

solution of (Vih) exists, but also that it is uniquely (up

to infinitesimal Euclidean motions) determined by the

weak formulation (Wih). In the next section, a finite

element approach to solve (Wih) is derived.
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5 Computation of the Elastic Deformation

Energy and Shortest Paths in the Plane

The evaluation of the elastic deformation energy (8) re-

quires to numerically solve for the displacement field u

in the problems (Vih) and (Wih), respectively. The first

part of this section is devoted to the computation of u

using a finite element approach.

The second part considers the computation of a nu-

merical approximation of the elastic deformation dis-

tance as defined in Definition 6. This is done by com-

puting a sequence of discretized paths minizing E(γ) as

in (11) using a Quasi-Newton method.

In Section 5.3 we demonstrate the capabilities of this
approach. Finally, we compare paths approximating the

elastic deformation distance to geodesics with respect to

other metrics on Sn. In this section we restrict ourselves

to the case of planar shapes, i.e. n = 1.

5.1 Computation of the elastic deformation energy

Consider a shape a ∈ S1, the domain Ω ⊆R
2 defined by

a and a subset Γ ⊆ ∂Ω of the shape as in Theorem 11.
Furthermore, let f ∈ H1/2(∂Ω) and λ ≥ 0, µ > 0 be as

in Theorem 13.

We want to solve (Wih) on a finite dimensional sub-

space of H1(Ω, Rn+1). First assume that Ω is a poly-

gon defined by points {q1, . . . , qM}⊆R
2, i.e. we con-

sider discretizations of shapes. For a fixed h > 0 we

triangulate the discretized shape such that the maxi-
mal area of each triangle is smaller than h and that

boundary nodes of the triangulation coincide with the
boundary discretization q1, . . . , qM . Denote the nodes

of the triangulation as {p1, . . . , pK} ∈ R
2. Then

{q1, . . . , qM}⊆{p1, . . . , pK} .

For 1 ≤ k ≤ K, let ϕk be the unique continuous

function which is affine on each triangle of the triangu-

lation and which satisfies

ϕk(pℓ) =

{

1 k = ℓ ,

0 k 6= ℓ .

In other words, ϕ1, . . . , ϕK is the family of linear splines

with nodes {p1, . . . , pK}.
For 1 ≤ k ≤ K define the vector-valued test func-

tions

ϕ
1
k := (ϕk, 0)t and ϕ

2
k := (0, ϕk)t ,

and let

W := R〈ϕ
1
k,ϕ2

k : 1 ≤ k ≤ K〉 ,

be the R-linear hull of all test functions, i.e. the set

of all vector-valued, piecewise linear functions on the

triangulation defined by the nodes {p1, . . . , pK}.
Assume now that the boundary deformation f lies

in the trace space of W , i.e.

f = Trn g for some g ∈ W .

Because all the results in Section 4 are valid for W in-

stead of H1(Ω, R2), a solution of (Vih) in the space W

exists and the solution is unique in the sense of Theo-

rem 13.

Let u ∈ W be a solution of (Vih). By Definitions 2

and 4 and by comparison of (4) and (16), the equality

|f |2e,a = B(u,u) (25)

holds. Then

B(u,ϕi
k) = 0

for pk 6∈ Γ , 1 ≤ k ≤ K , 1 ≤ i ≤ 2 , (26)

i.e. u satisfies the weak formulation (Wih) for every test

function without support on Γ .

For every boundary discretization point pk ∈ ∂Ω,

1 ≤ k ≤ K, (i.e. for every pk such that pk = qm for

some 1 ≤ m ≤ M) we define

ϕ
t

k = ϕkt(pk) ,

where t(pk) is the outer unit normal at Ω in the bound-

ary point pk rotated by π/2. This implies that t(pk) is

tangential at ∂Ω in pk.

In the next section, ∂Ω is represented as a continu-

ously differentiable B-spline curve and the pk are points
on this curve. Thus, we can compute t(pk) at every

point on the curve. The test function ϕ
t

k then satisfies

Trn (ϕt

k)(pk) = 0, and, under the simplifying assump-

tion that the boundary normal is locally constant,

B(u,ϕt

k) = 0 for pk ∈ Γ , 1 ≤ k ≤ K , (27)

holds. By “locally constant” we mean that

Trn (ϕt

k) = ϕk〈t(pk),n〉 ≈ 0 on ∂Ω .

If ∂Ω is sampled densely enough this condition is ap-

proximately met. Moreover,

∫

Γ

Trn (u)ϕk dτ =

∫

Γ

fϕk dτ

for pk ∈ Γ , 1 ≤ k ≤ K . (28)

Now assume that

u =

K
∑

k=1

ϕk(uk
1 , uk

2)t ∈ W (29)
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for coefficients uk
1 , uk

2 ∈ R, 1 ≤ k ≤ K. If m1 is the

number of boundary vertices in Γ then equations (26),
(27) and (28) yield 2(K−m1)+m1+m1 linear equations

in the unknown coefficients (uk
1 , uk

2)1≤k≤K . Thus, (26),

(27) and (28) define a system of linear equations

Mu = f , (30)

where M ∈ Mat2K , f ∈ R
2K , and u ∈ R

2K is the col-
umn vector of the coefficients (uk

1 , uk
2)1≤k≤K . In the

implementation, the integrals over the domain Ω were

computed by evaluating the respective function in the

barycenter of each triangular element, i.e. the integral of

a function f over a triangle T given by points pk1
, pk2

, pk3

was approximated by

∫

T

f dx ≈ f((pk1
+ pk2

+ pk3
)/3) .

The integration along the boundary ∂Ω is done by

Gaussian quadrature with two nodes on each boundary

edge of the triangulation, i.e.

∫

b

f dτ ≈
1

2

(

f(b(−
√

1/3)) + f(b(
√

1/3))
)

,

where b : [−1, 1] → R
2 is the affine parameterization of

a boundary edge.

Having obtained a solution u by solving (30), we

compute the elastic energy |f |2e,γ by evaluating the in-
tegral on the right hand side of (25). Again, we use

barycentric integration on each triangle in T . Note that

(25) is an integral of a quadric in ∂ju
i, 1 ≤ i, j ≤ 2 over

Ω. As such it can be transformed into a boundary in-

tegral along ∂Ω by virtue of the divergence theorem.

The linear equation (30) is sparse and, because of
the discretization of the boundary conditions as in (27)

and (28), not symmetric. Note however that (Wh) is

a symmetric problem and that it can be symmetri-

cally discretized if the representation of u in (29) is

adapted to the domain Ω. For implementational rea-

sons we chose the presented version.

Moreover, remember that solutions of (Vih) are uni-

que only up to infinitesimal Euclidean transformations.

For most domains Ω this has no consequences because

adding an infinitesimal Euclidean transformation to a

solution u of (Vih) would violate the boundary condi-

tions prescribed on Γ . In these cases (30) has a unique

solution and we were able to solve the system of linear

equations via LU decomposition of M.

One notable exception, though, is the disc in the

plane. Any infinitesimal rotation around the center of

the disc does not change the energy of an underlying

deformation and leaves the boundary conditions unaf-

fected:

maximal # boundary energy

triangle area discret. points translation offset

1.0000 64 8.38e-04 33.423
0.2500 128 6.31e-05 33.355

0.0625 256 4.35e-06 33.336

Table 1 The elastic deformation energy of the boundary de-
formations in Figure 1 for different discretizations of the shape
domain. The first two columns refer to the maximal area of the
triangles in the FE mesh and to the number of boundary dis-

cretization points on the shape, respectively. The third and the
fourth column give the elastic deformation energy for the upper

and lower boundary deformations in Figure 1, respectively.

Example 16. Assume Ω = B1(0)⊆R
2 and ∅ 6= Γ ⊆ ∂Ω =

S1. For a function f ∈ L2(Γ, R) let u be a solution

of (Vih). Let A ∈ M2 be an infinitesimal rotation around
0. Then u+A solves (Vih). This means that we must ex-

pect (30) to be numerically underdetermined. Indeed,

it turns out to be impossible to solve (30) in a stable

way in this example. Hence, we further restrict possible

solutions by seeking a minimum-norm solution of the

coefficient vector u:
{

Mu = f , and

|u| ≤ |v| for Mv = f
(31)

Using Lagrangian multipliers, this leads to the problem

of computing a stationary point of

|u|2 + Λt(Mu − f) , (32)

where Λ ∈ R
2K . Differentiating (32) yields the following

system of linear equations for u and Λ:
(

M 0

2IK M

) (

u
Λ

)

=

(

f

0

)

(33)

In case (30) is underdetermined, the regularized formu-

lation (32) leads to a unique solution u but the sys-
tem (33) remains underdetermined (being a simple ex-

tension of (32)). However, the instability of the problem

now affects Λ but not u. In this example we were able

to solve (33) using the BiCgStab solver [21].

In Figure 1 we illustrate the vector fields minimiz-

ing the elastic deformation energy for two different in-

finitesimal boundary deformations. The first one cor-

responds to a translation of the shape and the second

one to a constant offset of the shape boundary. Obvi-
ously the energy should be zero in the first case. Table 1
shows the computed energies for both cases and their

dependency on the discretization of the shape domain.

5.2 Computation of shortest paths

This section is concerned with the computation of paths

of minimal energy connecting two planar shapes. I.e. for
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Fig. 1 Displacement fields (green) minimizing the elastic en-

ergy (8) of the infinitesimal deformation into normal direction
prescribed on the shape boundary (blue). In the top image the

boundary deformation corresponds to a translation of the shape,
in the bottom image to a boundary offset. The results were ob-
tained for µ = 2 and λ = 0 in (4).

shapes a, b ∈ S1 we compute a discrete path γ̄ such that
E(γ̄) approximates

inf
γ(0)=a
γ(1)=b

E(γ) = inf
γ(0)=a
γ(1)=b

∫ 1

0

|γ̇(t)|2γ(t) dt , (34)

for a given norm | · |a, a ∈ S1. Naturally we are mainly

interested in the case |·|a = |·|e,a but also minimize (34)

with respect to other norms for reasons of comparison.

To minimize (34) we consider a, b ∈ S1 to be peri-

odic, cubic B-spline curves determined by K ≥ 4 con-

trol points. We assume the knots of the basis splines

to be uniformly distributed on the unit circle. In other

words,

D = {p ∈ R
2 : |p| = 1} .

Moreover, we assume the paths γ in (34) to be dis-
cretized in time. I.e. for a discretization level d ∈ N,

a path γ connecting a and b is given by intermediate

shapes γ1, . . . , γd ∈ S1 each of which are again cu-

bic B-spline curves with K control points. Denoting

γ0 := a and γd+1 := b, the vectors of the B-spline

control points of γ0, . . . , γd+1 are called c0, . . . , cd+1,

respectively. Each ck, 0 ≤ k ≤ d + 1, resides in R
2K .

The time derivative γ̇ is then approximated by the

discrete derivatives forward and backward in time,

γ̇+
k : D → R

2 , τ 7→ 〈γk+1(τ) − γk(τ),nk(τ)〉 ,

γ̇−
ℓ : D → R

2 , τ 7→ 〈γℓ(τ) − γℓ−1(τ),nℓ(τ)〉 ,
(35)

for 0 ≤ k ≤ d and 1 ≤ ℓ ≤ d + 1. Here nk denotes the
outer unit normal at γk, 0 ≤ k ≤ d + 1.

Obviously, the discrete time derivatives (35) depend

on the parameterization of the respective spline curves.

To get a reasonable approximation of γ̇, the parameter-

izations of two subsequent curves γk and γk+1 must be
similar in the sense that γk(τ) and γk+1(τ) are cor-

responding points for τ ∈ D. The parameterization

of a B-spline curve is determined by its control poly-

gon, i.e. the polygon defined by a coefficient vector

ck, 0 ≤ k ≤ d + 1. Thus, if the coefficient vectors

c0, . . . , cd+1 vary smoothly, we expect (35) to be a sat-
isfying discretization of γ̇. How this was achieved in the

examples in this paper is explained below.

For the discretization level d, we define the map

Ed : R
2Kd → R by

(c1, . . . , cd) 7→
1

d + 1

d
∑

k=0

1

2

(

∫

γk

|γ̇+
k |2γk

dτ+

∫

γk+1

|γ̇−
k+1|

2
γk+1

dτ
)

.

(36)

In other words, Ed approximates the energy of the path
defined by γ0, . . . , γd+1 by replacing the derivative γ̇

with symmetric finite differences at the discretization
points. The integrals in (36) are computed by a simple
equidistant discretization of the curve parameter τ ∈
D.

We minimize Ed using the L-BFGS method [14]

with numerically computed gradients. The resulting co-
efficient vectors define the approximate shortest path γ̄.

As initial value for the minimization we chose

ck = (1− t)c0 + tcd+1 , t =
k

d + 1
, 1 ≤ k ≤ d . (37)

I.e. the starting sequence of the coefficients c1, . . . , cd

linearly interpolates the control coefficients of the shapes

a and b. In our examples this ensures that the param-

eterizations of the initial discretization γ1, . . . , γd vary

smoothly enough for (35) to approximate γ̇ well enough.

We experienced in the numerical experiments that
this property is preserved during the iterative minimiza-

tion of Ed. The reason for this behavior is that the min-

imization process tries to reparameterize γ1, . . . , γd (by

optimizing the respective control polygons c1, . . . , cd)

such that Ed is minimal. “Bad” parameterizations, how-
ever, usually lead to higher energies of the approxi-

mated derivatives (35) and hence to higher values of
Ed.
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Fig. 2 Initial configuration of two rounded rectangles rotated by
π

2
.

The initialization (37) depends on the parameteriza-

tions of the start shape a and the end shape b. In other

words, the initial correspondence between the shapes
γ0, . . . , γd+1 is determined by the parameterizations of

a and b. So far, no heuristics for an optimal alignment

of a and b have been used. During the minimization

of Ed however, the intermediate shapes γ1, . . . , γd are

potentially reparameterized as illustrated in Figure 4.

As an alternative the approach used in Section 6

later on can be considered. It is independent of the pa-
rameterization of the shape.

5.3 Numerical results

All of the following examples are concerned with ap-

proximations of shortest path between two given shapes.

The paths were computed by minimizing Ed as ex-
plained in the previous section. The number of inter-

mediate shapes was d = 4.

For all presented results we chose µ = 2 and λ = 0

in (4). The triangles in the images concerning the elas-

tic deformation distance are the triangulation and the

boundary discretization of the start shape used for the

finite element implementation of the elastic deforma-

tion energy. Note that a separate triangulation is com-

puted for each intermediate shape.

In Figures 3–6 we moved the computed shapes ei-

ther horizontally or vertically apart. Originally, the start

and end shapes lie on top of each other and are not

translated.

The first two examples illustrate the capability of

the discretization (36) to produce consistent results. In

Figure 2 the initial configuration of two shapes is il-

lustrated. Figure 3 shows the linear interpolation (37)

of the two shapes and the result of minimizing Ed. In

other words, departing from the linear interpolation the
minimization process converges to a counter-clockwise

rotation of the shape. Obviously the elastic deformation
distance between these two shapes is zero and any other
path which moves the start shape to the end shape by
means of Euclidean motions is also a minimal one.

The second example in Figure 4 is concerned with

identical start and end shapes but their parameteriza-

Fig. 3 Top: Linear interpolation (37) of the B-spline control
points of the shapes in Figure 2. Bottom: A shortest path with re-
spect to the elastic deformation energy (8) connecting the shapes
in Figure 2. The path was obtained by minimizing Ed as defined
in (36).

Fig. 4 Two paths connecting identical start and end shapes.
Each shape is surrounded by its B-spline control polygon. The
numeration of the control points of the right shape is shifted by
one. On the top, equally numbered control points are linearly
interpolated which leads to a deformation of the control polygon
and the shape. On the bottom a shortest path with respect to the
elastic deformation energy is shown. The shape is only deformed

in tangential direction, i.e. it is reparameterized.

tion is different. From the linear interpolation of the

initial shapes the minimization procedure converges to

a reparameterization of the start to the end shape. This

illustrates that the proposed algorithm is able to cor-

rectly reparameterize shapes provided the initial value

is well-chosen. Again, any other reparameterization of

the start shape to the end shape is also a minimal one.

In the following we compute shortest paths for the

elastic deformation energy and compare them to the

corresponding results for the L2-energy and the reg-

ularized L2-energy as proposed by Michor and Mum-
ford [16]. The L2-energy maps an infinitesimal defor-

mation f ∈ C∞(D) of a curve a ∈ S1 to its L2-norm,

i.e. it is defined by

|f |2L2,a :=

∫

D

f(τ)2|a′(τ)| dτ . (38)
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In [15], it is proven that the distance with respect to

the above energy between two arbitrary shapes always

vanishes and that shortest paths do not exist in general.

The authors propose to regularize (38) by the curvature

κa of a and introduce

|f |2L2
α

,a :=

∫

D

(1 + ακa(τ))f(τ)2|a′(τ)| dτ . (39)

The parameter α > 0 controls the influence of the cur-
vature term. Positive lower bounds for the distance be-

tween two different shapes with respect to this energy

exist [16].

In our experiments we compare the elastic deforma-
tion distance to the distances defined by (38) and (39).

Note that the phenomenon of vanishing distances in

case of the L2-norm is due to the infinite dimension of

Sn. In the finite dimensional setting of discrete paths
of B-spline curves, we can still compute distances with

respect to (38).

The example in Figure 5 concerns a beam-like shape

bent to the left. Again, the regularized L2-norm on the
left tries to minimize the boundary length weighted by

the curvature of the intermediate shapes. The elastic

deformation energy deforms the beam such that the

required deformation energy is minimal which results

in the bottom path.

In the last example we deformed a bone-like shape

as illustrated in Figure 6. The shape of the two ends of

the straight and the bent bone are exactly the same only

their relative position varies and the connecting bar in
the middle is deformed. For the (regularized) L2-norm

the details at the ends vanish during the deformation

while the elastic deformation energy is able to preserve

them.

Finally we want to point out that computation of

shortest paths – or geodesics – in general is a difficult

problem and that the results in this paper are mostly

intended to demonstrate the elastic deformation energy
in comparison to other shape metrics. The approach
presented here worked well for the examples at hand but

is far from being an universal strategy to compute the

elastic deformation distance between arbitrary shapes.

More complex shapes would most probably require finer

discretizations both in space and time. This however

renders the numerical computation of the gradient of

Ed very expensive as it involves numerous evaluations

of the elastic deformation energy.

Also the linear interpolation (37) of the control points

is not necessarily an appropriate initial value in every

situation and might lead to convergence to (wrong) lo-

cal minima. Moreover, the presented approach works

only for start and end shapes with the same number of

control points.

Fig. 5 Shortest paths connecting a bent, beam-like shape with
respect to the regularized L2-norm with α = 0.0001 (top) and
the elastic deformation energy (bottom).

Fig. 6 Shortest paths connecting a deformed bone-like shape
with respect to the L2-norm (top left), the regularized L2-norm
with α = 0.1 (top right) and the elastic deformation energy (bot-
tom).

6 Elastic Deformation Shape Modeling

In this section we describe how to use the elastic de-
formation energy (4) for elastic shape modeling in 3D.

Given boundary conditions for the deformation of a 3D
object represented by a tetrahedral mesh, we want to
obtain a sequence of deformed objects which constitute
a realistic animation of elastically deformable models.

More specific, we are given a (possibly time-dependent)

velocity field which prescribes the infinitesimal defor-
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mation of a shape on parts of its boundary. The task

is to find the deformation of the remaining part of the

shape such that the elastic energy of the global defor-

mation is minimal.

This problem is discretized forward in time. At a

fixed time the infinitesimal deformation of the shape

which minimizes the elastic deformation energy sub-

ject to the prescribed boundary conditions is computed.
Then we move the shape according to this deformation
multiplied by a small time step. Iterating this process

leads to a natural deformation of the shape which is

controlled by the given boundary deformations. Note

that the results turned out to be satisfactory if we pre-

scribe the complete infinitesimal deformations (not just

its normal components) on the boundary. This is re-

flected in the description of the implementation of one

time step below.

6.1 Computation of the deformation field in T-spline

space

For the elastic shape modeling in 3D, we compute the

elastic deformation energy (4) in a smooth T-spline [19]
space. We chose the approach of Section 3 and consider

the metric perturbation of a globally defined deforma-

tion field. More specifically, we define the infinitesimal

deformation field u : R
3 → R

3. Then u corresponds to

the infinitesimal displacements at the given time. In our

case, we model u using cubic T-spline functions which

means that u is twice continuously differentiable. This
way the computation of energy (4) can be discretized

without having to triangulate Ω, a task which is usually

more complicated in 3D than in 2D.

In order to define T-spline functions for u, a con-

trol grid of T-spline control points (also called T-mesh,

cf. Figure 7, top right) is constructed in the function

domain. The distribution of the T-spline control points

is adapted to the geometry of the deformable objects,

which leads to a compact representation of u. If K > 0
is the number of basis functions on the T-mesh, the in-

finitesimal deformation u of the function domain is a

linear combination of the vectors of the T-spline con-

trol points ck = (ck
1 , ck

2 , ck
3)t ∈ R

3, 1 ≤ k ≤ K, and the

vectors of the T-spline basis functions (bk)1≤k≤K (refer
to [19] and [22] for more details):

u =
K

∑

k=1

bkck . (40)

Once the T-mesh is fixed during the deformation, then

u is completely determined by the coefficients (ck)1≤k≤K .

Let f ∈ H1/2(Γ )3 be the desired infinitesimal defor-

mation on the boundary. Then the elastic energy of f

is defined by (cf. (9))

|f |2e,a = inf
c∈R

3K

Tr u=f

E(u) , (41)

where u is computed from c as in (40). In order to solve

the above constrained optimization problem in the T-
spline space, we use a penalty method to compute the
T-spline control points, i.e.

c = argmin
c∈R3K

(E(u) + F (u)) , (42)

where

F (u) = ω

∫

Γ

|Tr u − f |2 dx (43)

is the penalty function for the boundary constraint,

with a large positive weight ω > 0. Since u is a linear

function of c and (41) is quadratic in u, the T-spline

control points c can be computed by solving a sparse

linear system of equations. The displacement field u is

then obtained by (40).

6.2 Numerical results

We present two examples to illustrate the effectiveness

of elastic shape modeling. Again we chose µ = 2 and
λ = 0 in (4) when computing the elastic energy E(u).

Numerical integration is used to evaluate both E(u)

and the penalty function F (u). The penalty weight is

set to be ω = 10,000. Both examples are concerned with

a rectangular beam which is deformed according to two
different velocity distributions.

In the first example we bend the beam as illustrated

in Figure 7. The center node and the nodes at the faces

of the beam correspond to the boundary Γ where the

deformation of the beam is prescribed. The center of

the beam is fixed and the nodes at its ends are moved

along a circle perpendicular to the Z-axis.

In the second example we twist the rectangular beam

about the X-axis. The initial shape of the object and its

deformation are illustrated in Figure 8. During the de-

formation the faces of the beam are rotated in opposite

direction about the principal axis of the beam.

7 Conclusion and Outlook

We introduced the elastic deformation energy (8) of in-

finitesimal deformations of shapes based on the elastic
energy of an isotropic material. The energy is invariant
to Euclidean transformations and applies to 1- and 2-
dimensional shapes. In contrast to previously proposed

metrics on shape manifolds it considers the interior of
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Fig. 7 Top left : The initial shape. The deformation of the beam
is prescribed at its center and the red nodes at its endpoints. The
center point is kept fixed, while the ends are moved down along
the circle perpendicular to the Z-axis (in the X-Y -plane). Top
right : The coarse, blue grid is the T-spline control grid (T-mesh),
which is adapted to the geometry of the beam model depicted by
the fine, yellow mesh. Bottom: The deformed beam at two times.

Fig. 8 The initial shape is shown on the far left. The deformation
of the beam is prescribed at the faces at the ends of the beam
which correspond to the red nodes in Figure 7, top left. The faces
are rotated in opposite direction about the principal axis of the

beam. The remaining part of the beam deforms accordingly as
shown on the remaining images.

the shape instead of only the shape boundary. Thus, it

is naturally defined for multiply connected shapes. We

proved existence and uniqueness of minimizers in the

variational formulation (8) of the elastic deformation

energy.

This energy then induces the elastic deformation

distance (12). In Section 5 we presented a finite ele-

ment scheme to compute the elastic deformation en-

ergy. Moreover, shortest paths with respect to the elas-

tic deformation distance which connect planar B-spline

shapes were exemplarily computed. The use of the elas-

tic deformation energy for shape modeling in space was

illustrated in Section 6.

From the theoretic point of view several open ques-
tions remain. As mentioned in Remark 7 we are not able

to show that d(a, b) > 0 if a 6= b (modulo Euclidean

transformations). This is due to the fact that we can

not give suitable estimates for the dependence of the

constant C (Korn’s constant) in Korn’s inequality (18)

on the domain Ω. Moreover the existence of geodesics,

i.e. the existence of minimizers of L(γ) in (12), is an

open problem.
Our approach allows for general topologies of shapes

but it requires the topology to stay the same during the

evolution. However, if parts of shapes are torn apart or

merged together during their deformation, the shape

topology changes. To handle such cases the elastic de-

formation energy has to be adapted in a suitable way.

Finally, for a quantitative analysis of the proposed
shape distance, an efficient way to compute shortest

paths between shapes is necessary. In contrast to the

approach in Section 5, it should be independent of the

shape parameterization and robust enough to compare

arbitrary shapes. For this purpose the implementation

of the shape modeling problem in Section 6 could serve
as a reference. It is implicit, i.e. it does not depend on
the representation of the shape.
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