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Abstract

We present a versatile and complete free-form shape modeling
framework for point-sampled geometry. By combining unstruc-
tured point clouds with the implicit surface definition of the mov-
ing least squares approximation, we obtain a hybrid geometry
representation that allows us to exploit the advantages of implicit
and parametric surface models. Based on this representation we
introduce a shape modeling system that enables the designer to
perform large constrained deformations as well as boolean opera-
tions on arbitrarily shaped objects. Due to minimum consistency
requirements, point-sampled surfaces can easily be re-structured
on the fly to support extreme geometric deformations during inter-
active editing. In addition, we show that strict topology control is
possible and sharp features can be generated and preserved on
point-sampled objects. We demonstrate the effectiveness of our
system on a large set of input models, including noisy range scans,
irregular point clouds, and sparsely as well as densely sampled
models.

Keywords: shape modeling, point-sampled geometry, free-form
deformation, boolean operations, dynamic sampling.

1 INTRODUCTION

In computer graphics a large variety of geometry representations
has been used for reconstruction, modeling, editing, and rendering
of 3D objects. On the most abstract level, these representations fall

into two major categories: Implicit and parametric representations.
Both categories have their specific advantages and drawbacks.
Implicit representations [Velho et al. 2002] such as level sets
[Osher and Fedkiw 2002] and radial basis functions [Carr et al.
2001] have a particularly simple algebraic structure. Surfaces are
defined as zero-sets of 3D scalar fields, which are generated by a
weighted superposition of basis functions . In this
setting, surfaces with highly complex topology can be represented
easily and the global consistency of the surface is guaranteed by
construction. Extreme geometric deformations and even topology
changes can be achieved by simply modifying the weight coeffi-
cients of the respective basis functions. However, efficient render-
ing and the precise modeling of sharp features is usually a difficult
task, since individual points on implicitly represented surfaces can
only be accessed by some ray-casting technique.

Parametric representations like splines [Farin 2002], subdivi-
sion surfaces [Zorin and Schröder 2000], or triangle meshes are
based on a mapping from a (piecewise) planar domain  into .
Here the algebraic structure is usually more complicated and
tightly correlated with the complexity of the surface. Since point
samples on the surface can be obtained by evaluating a function

, parametric surfaces can be rendered quite efficiently.
Moreover, sharp creases along a curve  on the surface can be
modeled by adjusting the function  along the pre-image 
of . On the other hand, extreme deformations and topology
changes usually require changes to the domain  in order to avoid
strong distortions and inconsistencies. The shape of a triangle
mesh, for example, can be modified to a certain extend by only
changing the vertex positions, but keeping the connectivity fixed.
However, if the local distortion becomes too strong or if the sur-
face topology is to be changed, we have to update the mesh con-
nectivity while maintaining strict consistency conditions to
preserve a manifold surface structure. In practice, the necessity to
re-establish the global consistency of the mapping  makes this
kind of operations on parametric representations rather inefficient.

Figure 1: Objects created with our system. (a) boolean operations with scanned geometry, (b) an Octopus modeled by deforming and extrud-
ing a sphere, (c) a design study for a Siggraph coffee mug created by boolean operations, free-form deformation and displacement mapping.
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In this paper we propose a hybrid geometry representation that
is designed to combine the advantages of implicit and parametric
surface models. We use an unstructured cloud of point samples to
represent the mere geometric shape. As a second component, we
add an implicit surface definition based on the moving least
squares projection [Levin , to appear], which provides access to
important surface attributes such as the signed distance function or
normal information. 

We exploit this hybrid structure to integrate robust boolean
operations and constrained free-form deformations into a unified
shape modeling framework. The surface geometry can be explic-
itly accessed through the sample points, while the implicit surface
model is used for distance and normal queries. 

For boolean operations this combination allows us to reliably
recover the intersection curves of two objects and place additional
samples exactly on the resulting sharp feature line. 

For free-form modeling, we are able to perform very large sur-
face deformations using a sampling method that dynamically
inserts or deletes sample points when the local sample density
becomes too low or too high. During deformations, the point cloud
is not treated as a fixed, static representation of the underlying
manifold surface, but rather as a set of temporary samples that
evolves over time as the surface deforms. This gives the designer
great flexibility when modeling a well-defined region of the sur-
face by pulling, pushing or twisting a control handle. In addition,
the modeling tool utilizes the signed distance function to provide
strict topology control: Intersections of the deformed surface with
itself can be detected efficiently and, depending on the design
intent, surfaces can be repulsed or merged. For completeness, we
have also implemented a blending operator to create smooth tran-
sitions between two merged surface parts.

We consider our work as an integrated component of an intui-
tive modeling system for the creation of 3D content for computer
graphics applications. As opposed to industrial design applica-
tions, where geometric models are usually constructed from
scratch, the creation of 3D models for computer graphics is often
based on editing detailed models that have been acquired by some
3D scanning device. Such scanners typically provide dense sam-
plings of some physical prototype. Point-based modeling tech-
niques can directly handle this kind of input data without requiring
extensive pre-processing. Additionally, recent progress in the effi-
cient rendering of point-sampled surfaces [Zwicker et al. 2001],
[Rusinkiewicz and Levoy 2000], [Botsch et al. 2002] demonstrates
that point-based representations are well suited for interactive
applications. 

1.1 Related work

Since the pioneering report by Levoy and Whitted [Levoy and
Whitted 1985], the use of point primitives for shape modeling has
been investigated by various researchers. Szeliski and Tonnessen
introduced oriented particles [Szeliski and Tonnesen 1992] as a
physics-based framework for surface design. A similar idea has
been proposed by Witkin and Heckbert for sampling and editing
implicit surfaces [Witkin and Heckbert 1994]. We use an adapta-
tion of oriented particles to compute the blend region of two sur-
faces that have been combined in a boolean union operation.
However, we found that full-scale physics-based particle simula-
tions are computationally too involved for interactive modeling of

large point-sampled models. Nevertheless, we believe that phys-
ics-based simulation provides an expressive and intuitive approach
to surface design. 

Free-form shape deformations have been studied extensively
in the past [Barr 1984], [Sederberg and Parry 1986], [Chang and
Rockwood 1994]. Our free-form modeling tool bears some simi-
larity to the wires system of [Singh and Fiume 1998], which uses a
set of one-dimensional curves to define a smooth deformation
field. We extend this scheme by allowing arbitrary subsets of the
surface to define the underlying distance functions (see Section 4).

Similarly, surface modeling using boolean operations has been
the focus of significant research efforts. For an overview, we refer
the reader to [Hoffmann 1989]. A modeling framework based on
level sets has been presented in [Museth et al. 2002]. This system
clearly demonstrates the strength of implicit representations for
performing boolean operations and handling complex surface
topology. Interactivity is very limited, however, partly because the
model has to be converted to a triangle mesh for display.

Various researchers have addressed the problem of dynamically
adapting the sampling density of discrete surfaces in the presence
of large geometric deformations. Welch and Witkin [Welch and
Witkin 1994] have presented a shape modeling system for triangle
meshes that uses vertex split and edge collapse operators to keep
the sampling density uniform. A similar approach was taken in
[Kobbelt et al. 2000] for multiresolution meshes with dynamic ver-
tex connectivity. Our dynamic sampling method is also based on
point splitting operations. The main difference is that we do not
have to maintain the consistency of a mesh connectivity graph,
which leads to simpler code and increased performance.

2 HYBRID SURFACE MODEL

Our input data consists of an unstructured point cloud
 that approximates some underly-

ing manifold surface. Additional to the geometric position, each
sample point can also store a set of scalar attributes, such as color,
material properties or texture coordinates. 

We extend this explicit point cloud representation by the mov-
ing least squares (MLS) surface model introduced in [Levin , to
appear]. The continuous MLS surface  is defined implicitly as
the stationary set of a projection operator  that projects a
point  onto the MLS surface

. To evaluate  we first com-
pute a local reference plane

(1)

by minimizing the weighted sum of squared distances 

, (2)

where  is the projection of  onto  and  is the MLS kernel
function. After transforming all points into the local frame defined
by , a second least squares optimization yields a bivariate poly-
nomial  that locally approximates the surface. The projec-
tion of  onto  is then given as  (for
more details see [Alexa et al. 2001]). 

Per point normals can be obtained directly from the reference
plane or by evaluating the gradient of the polynomial . To
achieve a consistent orientation, we use a method based on the
minimum spanning tree, similar to [Hoppe et al. 1992]. 
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The characteristics of the surface can be controlled by the ker-
nel function . Typically, a Gaussian  is
chosen, where  is a global scale parameter that determines the
feature size of the resulting surface. As has been observed in
[Alexa et al. 2001], the MLS projection operator essentially imple-
ments a low-pass filter, where the degree of smoothness depends
on the scale parameter. This smoothing effect can be exploited for
pre-processing noisy scanner data (see also Figure 19).

Adaptive MLS projection.   Using a fixed global scale factor
can be problematic for non-uniformly sampled surfaces. If  is too
large, areas of high sampling density will be smoothed excessively,
while numerical instabilities occur in sparsely sampled regions, if

 is too small. To deal with this problem we use an extension of

the standard MLS method as proposed in [Pauly et al. 2002],
which is based on sampling density estimation. We adapt the MLS
kernel to , where  and

 is a continuous, smooth function approximating
the local sampling density. To compute , we first estimate the
local sampling density  for each  by finding the sphere
with minimum radius  centered at  that contains the -nearest
neighbors to . Then  is defined as , where our
experiments showed that  should be greater than 6 to ensure sta-
ble computations, but less than 20 to avoid excessive smoothing of
the density estimation. In a second step,  can be interpolated
using standard scattered data approximation techniques, e.g. radial
basis functions. For more details on the approximation power, sta-
bility, and implementational issues related to MLS surfaces, we
refer the reader to [Levin 1998] and [Alexa et al. , to appear].

3 BOOLEAN OPERATIONS

A common approach in geometric modeling is to build complex
objects by combining simple shapes using boolean operations
[Hoffmann 1989] (see Figure 3). In constructive solid geometry
(CSG) objects are defined using a binary tree, where each node
corresponds to a union, intersection, or difference operation and
each leaf stores a base shape. Operations such as ray-tracing, for
example, are then implemented by traversing this tree structure.
More commonly, surfaces are defined as boundary representations
(B-Rep) of solids. Here boolean operations have to be evaluated
explicitly, which requires an algorithm for intersecting two sur-
faces. Computing such a surface-surface intersection can be quite
involved, however, in particular for higher order surfaces [Krish-
nan and Manocha 1997]. 

For point-sampled geometry we can use the MLS projection
operator both for inside/outside classification as well as for explic-
itly sampling the intersection curve. The goal is to perform a bool-
ean operation on two orientable, closed surfaces  and  that
are represented by two point clouds  and , to obtain a new
point cloud  that defines the resulting surface .  consists
of two subsets  and  plus a set of newly gener-
ated sample points that explicitly represent the intersection curves.
Thus in order to perform a boolean operation for point-sampled
geometry, we need the following techniques:

• a classification predicate to determine the two sets  and , 

• an algorithm to find samples on the intersection curve, and

• a rendering method that allows to display crisp features curves
using point primitives.

3.1 Classification

For inside/outside classification we define a predicate  such
that for 

(3)

where  is the volume bounded by the MLS surface  repre-
sented by the point cloud . Let  be the closest point on 
from . It is well-known from differential geometry that for 
continuous and twice differentiable, the vector  is aligned
with the surface normal  at  [DoCarmo 1976]. If surface nor-
mals are consistently oriented to point outwards of the surface,
then  if and only if . Since we are given a
discrete sample  of the surface , we replace the closest point 
on  by the closest point  and classify  as outside if

, i.e. if the angle between  and the normal
 at  is less than  (see Figure 4 (a)). This discrete test

yields the correct inside/outside classification of the point  if the
distance  is bigger than the local sample spacing  at .
If we are extremely close to the surface, the classification could
fail, as illustrated in Figure 4 (b). In this case we compute the exact
closest point  using the MLS projection. Thus we obtain a
very robust inside/outside classification that easily handles com-

Figure 2: Adaptive MLS reconstruction of the Max Planck bust. (a)
input point cloud with 5,413 points, (b) continuous sampling densi-
ty map, (c) reconstructed MLS surface.
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Figure 3: Union, intersection and difference operations of two
complex, non-convex surfaces.
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plex, non-convex surfaces, as illustrated in Figure 3. Since we are
only interested in an inside/outside classification, we can signifi-
cantly improve the performance by exploiting local coherence:

 for all points  that lie in the sphere around 
with radius . Thus the number of closest point queries
and MLS projections can be reduced drastically, in practice up to
90 percent. Given the classification predicate , the subsets 
and  can be computed as shown in Table 1.

3.2 Intersection curves

Taking the union of  and  will typically not produce a point
cloud that accurately describes the surface , since the intersec-
tion curve of the two MLS surfaces  and  is not represented
adequately. Therefore we explicitly compute a set of sample points
that lie on the intersection curve and add them to  to
obtain the point cloud . First we find all points in  and 
that are close to the intersection curve by evaluating the distance
function induced by the MLS projection operator. Then we look at
all closest pairs  of these points and compute
a point  on the intersection curve using a Newton-type iteration.
This is done as follows (see Figure 5 (a-d)): Let  be the point on
the intersection line of the two tangent planes of  and  that is
closest to both points, i.e. that minimizes the distance

.  is the first approximation of  and can now
be projected onto  and  to obtain two new starting points 
and  for the iteration. This procedure can be repeated itera-
tively until the points  and  converge to a point  on the
intersection curve. Due to the quadratic convergence of the New-
ton iteration, this typically requires less than three iterations.

We use the sampling density estimation of Section 2 to detect
whether the sampling resolution of the two input surfaces differs
significantly in the vicinity of the intersection curve. To avoid a
sharp discontinuity in sampling density, we up-sample the coarser
model in this area to match the sampling density of the finer
model, using the dynamic sampling method of Section 5. 

Note that the above Newton scheme also provides an easy
mechanism for adaptively refining the intersection curve. We can
use a simple subdivision rule to create a new starting point for the
Newton iteration, e.g. the average of two adjacent points on the
curve, and then apply the iteration to create a new sample on the
intersection curve (see Figure 5 (e-g)).

3.3 Rendering sharp creases

For an accurate display of the intersection curves we need to be
able to render sharp creases and corners. We use an extension of
the surface splatting technique presented in [Zwicker et al. 2001].
In this method, each sample point is represented by a surfel, an ori-
ented elliptical splat that is projected onto the screen to reconstruct
the surface in image space. A point on the intersection curve can
now be represented by two surfels that share the same center, but
whose normals stem from either one of the two input surfaces.
During scan-conversion, each of these surfels is then clipped
against the plane defined by the other to obtain a piecewise linear
approximation of the intersection curve in screen space (see
Figure 6). This concept can easily be generalized to handle corners
as shown in Figure 6 (e). Figure 7 shows an example of a difficult
boolean operation of two identical cylinders that creates two sin-
gularities. While the classification and intersection curve sampling
work fine, the rendering method produces artefacts. This is due to
numerical instabilities, since the clipping planes of two corre-
sponding surfels are almost parallel. However, such cases are rare
in typical computer graphics applications, e.g. digital character
design, which are the focus of our work. As such, our algorithms
are less suited for industrial manufacturing applications, where
handling of degenerated cases is of primary concern. 

4 FREE-FORM DEFORMATION

Apart from composition of surfaces using boolean operations,
many shape design applications require the capability to modify
objects using smooth deformations. These include bending, twist-

Figure 4: Inside/outside test. For  very close to the surface, the
closest point  can yield a false classification (right image). In
this case,  is classified according to its MLS projection .

Table 1: Classification for boolean operations. 
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points in  and , (b) first estimate , (c) re-projection, (d) sec-
ond estimate , (e-g) adaptive refinement.
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ing, stretching and compressing of the model surface. For this pur-
pose we introduce a point-based free-form deformation tool that
allows the user to interactively deform a surface by specifying a
smooth deformation field.

The user first defines a deformable region  on the model
surface and marks parts of this region as a control handle. The sur-
face can then be modified by pushing, pulling or twisting this han-
dle. These user interactions are translated into a continuous tensor-
field, which for each point in the deformable region defines a
translatory and rotational motion under which the surface deforms.
The tensor-field is based on a continuously varying scale parame-
ter  that measures the relative distance of a point from the
handle. The closer a point is to the handle, the stronger will the
deformation be for that point. More precisely, let  be the
handle, also called one-region, and  the zero-region,
i.e. all points that are not part of the deformable region. For both
zero- and one-region we define distance measures  and 
respectively, as

, (4)

for . From these distance measures we compute the scale
parameter  as , where

 is a continuous blending function with
 and . Thus  for  and  for

. Using this scale parameter, we can determine the position

of a point  after the deformation as , where 
is a deformation function composed of a translatory and a rota-
tional part. We can write , where

•  with  a translation vector and

• , where  is the matrix that
specifies a rotation around axis  with angle .

Figure 8 shows a translatory deformation of a plane where the
translation vector  is equal to the plane normal. This figure also
illustrates the effect of different choices of the blending
function . In Figure 9, two rotational deformations of a cylinder
are shown, while a combination of both translatory and rotational
deformations is illustrated in Figure 13.

To perform a free-form deformation the user only needs to
select the zero- and one-regions and choose an appropriate blend-
ing function. She can then interactively deform the surface by dis-
placing the handle with a mouse or trackball device, similar to
[Kobbelt et al. 1998]. This gives our method great flexibility for
handling a wide class of free-form deformations, while still pro-
viding a simple and intuitive user interface. 

Figure 6: Rendering the intersection curve. (a) mutual clipping of
two surfels on the intersection curve, (b) boolean differences on the
bunny model, (c) zoom of the intersection curves, (d) sampling dis-
tribution, where samples on the intersection curve are rendered us-
ing two red half ellipses, (e) an example of a corner.

Figure 7: A difficult boolean difference operation. 
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Figure 9: Rotational deformations of a cylinder. (a) original, (b)
color-coded scale parameter, (c) rotation around axis , (d) rota-
tion around axis .
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4.1 Topology Control

An important issue in shape design using free-form deformation is
the handling of self-intersections. During deformation, parts of the
deformable region can intersect other parts of the surface, which
leads to an inconsistent surface representation. To cope with this
problem we need a method for detecting and resolving such colli-
sions.

Collision Detection.   Similar to boolean operations, this
requires an inside/outside classification to determine which parts
of the surface have penetrated others. Thus we can again apply the
classification predicate  defined in Section 3.1. We start by com-
puting for each sample point  the closest point .
This defines a empty sphere  around  with radius . If
the point  only moves within this sphere during deformation, it is
guaranteed not to intersect with the zero-region (see Figure 10). So
additionally to exploiting spatial coherence as for boolean classifi-
cation, we can now also exploit the temporal coherence induced by
the smooth deformation field. Only when  leaves  do we have
to re-evaluate the classification predicate , which at the same
time provides a new estimate for the updated sphere .

Collision Handling.   There are different ways to respond to a
detected collision. The simplest solution is to undo the last defor-
mation step and recover the surface geometry prior to the collision.
Alternatively, we can join the penetrating parts of the surface using
a boolean union operation to maintain the validity of the surface.
As illustrated in Figure 3, boolean operations typically produce
sharp intersection curves. In the context of free-form deformation
it is often more desirable to create a smooth blend between the two
combined surface parts. Therefore, we have implemented an adap-
tation of oriented particles [Szeliski and Tonnesen 1992] to smooth
out the sharp creases created by boolean operations. The idea is to
define inter-particle potentials  in such a way that the
minimum of the global potential function yields a smooth surface
that minimizes curvature. By summing up these potentials we
obtain a particle’s total potential energy  (see [Szeliski and
Tonnesen 1992] for details). From this potential energy we can
derive positional and rotational forces that are exerted on each par-
ticle and compute its path of motion under these forces. Addition-
ally, we apply an inter-particle repulsion force to equalize the
particle distribution, and scale all forces with a smooth fall-off
function that measures the distance to the intersection curve. Thus
we can confine the particle simulation to a small area around the
intersection curve without affecting other parts of the surface. 

Figure 11 shows an editing session, where a deformation cre-
ates a self-intersection. After performing a boolean union, the par-
ticle simulation creates a smooth transition in the intersection
region. The same blending technique can of course also be applied
to the intersection and difference operations described in
Section 3.

5 DYNAMIC SAMPLING

Large deformations may cause strong distortions in the distribution
of sample points on the surface that can lead to an insufficient local
sampling density. To prevent the point cloud from ripping apart
and maintain a high surface quality, we have to include new sam-
ples where the sampling density becomes too low. To achieve this
we first need to measure the surface stretch to detect regions of
insufficient sampling density (Section 5.1). Then we have to insert
new sample points and determine their position on the surface.
Additionally, we have to preserve and interpolate the scalar
attributes, e.g. color values or texture coordinates (Section 5.2).

5.1 Measuring surface stretch

We use the first fundamental form known from differential geome-
try to measure the local distortion of a surface under deformation.
Let  and  be two orthogonal tangent vectors of unit length at a
sample point . The first fundamental form at  is now defined
by the  matrix

. (5)

The eigenvalues of this matrix yield the minimum and maximum
stretch factors and the corresponding eigenvectors define the prin-
cipal directions into which this stretching occurs. When we apply a
deformation, the point  is shifted to a new position  and the

Figure 10: Temporal coherence for collision detection during de-
formation. The points  and  can move with the spheres  and

, resp., without intersecting the zero-region.
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two tangent vectors are mapped to new vectors  and . Local
stretching implies that  and  might no longer be orthogonal to
each other nor do they preserve their unit length. The amount of
this distortion can be measured by taking the ratio of the two
eigenvalues of (5) (local anisotropy) or by taking their product
(local change of surface area). When the local distortion becomes
too strong, we have to insert new samples to re-establish the pre-
scribed sampling density. Since Equation (5) defines an ellipse in
the tangent plane centered at  with the principal axes defined by
the eigenvectors and eigenvalues, we can easily replace  by two
new samples  and  that we position on the main axis of the
ellipse (cf. Figure 12).

5.2 Filter operations

Whenever a splitting operation is applied, we need to determine
both the geometric position and the scalar function values for the
newly generated sample points. Both these operations can be
described as the application of a filtering operator: If we apply the
operator to the sample positions, we call it a relaxation filter, while
we call it an interpolation filter, if we apply it to function values. 

Relaxation.   Introducing new sample points through a splitting
operation creates local imbalances in the sampling distribution. To
obtain a more uniform sampling pattern, we apply a relaxation
operator that moves the sample points within the surface (see
Figure 12). Similar to [Turk 1992] we use a simple point repulsion
scheme with a repulsion force that drops linearly with distance. We
can thus confine the radius of influence of each sample point to its
local neighborhood, which allows very efficient computation of
the relaxation forces. The resulting displacement vector is then
projected into the point’s tangent plane to keep the samples on the
surface.

Interpolation.   Once we have fixed the position of a new sample
point  using the relaxation filter, we need to determine its associ-
ated function values. This can be achieved using an interpolation
filter by computing a local average of the function values of neigh-
boring sample points. We need to be careful, however. The relax-
ation filter potentially moves all points of the neighborhood of .

This tangential drift leads to distortions in the associated scalar
functions. To deal with this problem we create a copy of each point
that carries scalar attributes and keep its position fixed during
relaxation. In particular, we maintain for each sample that is split a
copy with its original data. These points will only be used for inter-
polating scalar values, they are not part of the current geometry
description. Since these samples are dead but their function values
still live, we call them zombies. Zombies will undergo the same
transformation during a deformation operation as living points, but
their positions will not be altered during relaxation. Thus zombies
accurately describe the scalar attributes without distortions. There-
fore, we use zombies only for interpolation, while for relaxation
we only use living points. After an editing operation is completed,
all zombies will be deleted from the representation. Figure 13
illustrates our dynamic re-sampling method for a very large defor-
mation that leads to a substantial increase in the number of sample
points. While the initial plane consists of 40,000 points, the final
model contains 432,812 points, clearly demonstrating the robust-
ness and scalability of our method in regions of extreme surface
stretch.

5.3 Downsampling

Apart from lower sampling density caused by surface stretching,
deformations can also lead to an increase in sampling density,
where the surface is squeezed. It might be desirable to eliminate
samples in such regions while editing, to keep the overall sampling

Figure 12: Dynamic sampling. Top row: Deformation of a plane.
(a) local stretching: blue corresponds to zero stretch, while red in-
dicates maximum stretch, (b) surface after re-sampling, (c) sam-
pling distribution. Bottom row: illustration of point insertion.
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Figure 13: A very large deformation using a combination of trans-
latory and rotational motion. The left column shows intermediate
steps with the top image indicating zero- and one-regions. Each
point of the surface carries texture coordinates, which are interpo-
lated during re-sampling and used for texturing the surface with a
checkerboard pattern. The bottom row illustrates this interpolation
process, where the function values are indicated by vertical lines.

Zombie

New Samples

Deformation RelaxationSplitting Deletion of zombiesInterpolation



 

distribution uniform. However, dynamically removing samples
also has some drawbacks. Consider a surface that is first squeezed
and then stretched back to its original shape. If samples get
removed during squeezing, surface information such as color will
be lost, which leads to increased blurring when the surface is re-
stretched. Thus instead of dynamic sample deletion we perform an
optional “garbage collection” at the end of the editing operation.
To reduce the sampling density, we use the iterative simplification
method introduced in [Pauly et al. 2002], which successively con-
tracts point pairs according to a quadric error metric.

6 RESULTS AND DISCUSSION

We have implemented the algorithms presented in the previous
sections as plug-ins to Pointshop3D, a publicly available texturing
and sculpting tool for point-sampled models [Zwicker et al. 2002].
The integration of our shape modeling functionality with the
appearance modeling tools provided by Pointshop3D has been
very smooth, since both are based on unstructured point clouds as
the fundamental geometry representation.

Figure 14 shows boolean operations and deformation in connec-
tion with displacement fields to illustrate the potential for multires-
olution surface modeling [Zorin et al. 1997]. The original model
has been low-pass filtered using a large scale parameter in the
MLS kernel function (see Section 2) to create a base domain for
the multiresolution decomposition. Detail vectors can easily be
computed by projecting the points of the original model onto the
base domain using the MLS projection operator. These detail vec-
tors can then be added back to the deformed base domain to enable
intuitive editing semantics in a multiresolution sense. The same
projection method can also be used to build a spectral decomposi-
tion of a point-sampled surface to apply various filtering opera-
tions similar to [Guskov et al. 1999] or [Pauly and Gross 2001]. 

Figure 15 shows the model of the Octopus, whose shape has
been created from a single sphere entirely using the free-form
deformation tool (see also Figure 1 (b)). First a global deformation
has been applied to create an ellipsoid, then the tentacles have been
pulled out using a similar deformation as the one shown in
Figure 13. The eyes and suckers have been added using displace-
ment mapping and the model has finally been textured using the
paint tool of Pointshop3D. This example illustrates that dynamic
re-sampling is essential when dealing with large deformations. The
initial sphere contains 69,706 points, while the final model con-
tains 295,220 points. 

Figure 16 illustrates that the sharp intersection curves created
by a boolean difference operation are well preserved during a sub-
sequent deformation. The final model of the spiral consists of
69,268 points.

In Figure 17 the handle of the coffee mug (222,955 points) has
been created using the deformation tool in connection with a bool-
ean union operation and particle-based blending as described in
Section 4.1. The interior of the mug has been cut out with a bool-
ean difference and the dragon head has been added using a union
operation. Finally, the Siggraph logo has been embossed and the
model has been textured.

Figure 18 shows boolean operations with two sparsely and non-
uniformly sampled models, illustrating that our methods work well
for a wide class of input models. First the skull has been deformed
to better match the shape of the head. Then a boolean difference of
the head with a plane and a subsequent union with the skull have
been performed, yielding a model of 25,020 points.

Figure 19 demonstrates that our modeling framework is well
suited for scanned surfaces. The smoothing effect of the MLS pro-
jection has been used to de-noise the input data set. After this min-
imal pre-processing, free-form deformations and boolean
operations can be directly applied to the acquired point cloud. This
example also illustrates a typical cut-and-paste operation. The ear
has been extracted from the Max Planck model and pasted onto the
scanned surface using a boolean union, resulting in a surface con-
sisting of 100,269 points. 

Implementation.   The central computational primitive used in
our algorithms is closest points query: Given a point  find
the point(s)  such that  is minimal. For example, the
MLS projection operator uses closest point queries to determine
the initial estimate for the base point  in Equation (2) and to col-
lect all points that contribute to the least-squares optimization.

We use kd-trees for these spatial query tasks, since they feature
efficient construction and fast query response time. For example,
building a kd-tree of 300,000 points takes 0.23 seconds, while a
query for the ten closest points takes between 4.5 and 6.2 micro-
seconds (on a 2.8 GHz Pentium IV). Kd-trees are static data struc-
tures, i.e. dynamically updating point positions and inserting or
deleting points is computationally expensive. Yet the dynamic
sampling paradigm (Section 5) is at the heart of our processing
methods. A closer look at our algorithms reveals, however, that
this does not pose serious problems from an implementational
point of view:

• For boolean classification (Section 3.1), we are dealing with
static objects that can be positioned relative to each other by the
user. Since the resulting affine transformation can be incorpo-
rated into the query, no updates of the kd-tree are necessary.

• For free-form deformation (Section 4) we need closest point
queries to evaluate the distance functions  (see Equation 4)
for computing the scale factor . This is done once at the begin-
ning of the modeling session, so no dynamic updates of the kd-
tree are required while the user interactively deforms the surface.

• For collision detection (Section 4.1) we need to evaluate the
classification predicate  for dynamically varying point loca-
tions. Since performance is most critical, we restrict our algo-
rithm to only detect collisions of the deformable region with the
zero-region, which is described by a static point cloud. Thus our
current method cannot handle collisions of the deformable
region with itself.

• When dynamically sampling the surface (Section 5), we need
closest point information for samples in the deformable region to
apply the relaxation and interpolation filters. Since these sam-
ples vary in position and new samples are inserted dynamically,
we cannot use the kd-tree efficiently. Therefore we compute
these neighborhood relations at the beginning of the interaction
and cache them during deformation (see also [Linsen and
Prautzsch 2002]). When new points are inserted into the point
cloud, we can dynamically propagate existing neighborhood
information without re-computing the correct spatial relations. 

Thus updates to the kd-tree are only required at the end of an edit-
ing session, but not during interactive modeling. Note that addi-
tional structural information such as a mesh connectivity graph
would not be of much use for the above computations. Only for
relaxation and interpolation would the explicit neighborhood
information be beneficial. However, keeping the internal mesh
data structures consistent, while new samples are inserted continu-
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ously and old samples change their relative position, would be
cumbersome and inefficient. Additionally, the structural simplicity
of the point-based representation leads to a much simpler imple-
mentation and avoids most of the numerical instabilities that occur
when triangles meshes are re-meshed or boolean operations are
applied. Nevertheless, all algorithms described in this paper can
also be applied to triangle meshes, which can be understood as
point clouds with a special connectivity graph.

Performance.   Currently our point-based shape modeling sys-
tem can handle models of up to 1 million samples at interactive
rates on a desktop PC. When collision detection is enabled, the
framerate is reduced by 10% - 30% depending on the specific con-
figuration. Central to achieving such high performance is the sim-
plicity and compactness of our point-based surface representation,
which leads to concise and efficient algorithms, reduced memory
traffic and enhanced cache performance. We also exploit spatial
and temporal coherence during boolean classification (see
Section 3.1) and collision detection (Section 4.1). In our current
implementation a limiting factor regarding performance is render-
ing speed. We use the purely software-based, high quality surface
splatting renderer of Pointshop3D (see [Zwicker et al. 2001]). Our
experiments show that during deformation more than 50% of the
total computation time are devoted to rendering, so we expect sig-
nificant speed-ups if instead more efficient software renderers (e.g.
[Botsch et al. 2002]) or hardware supported renderers (e.g.
[Rusinkiewicz and Levoy 2000]) are used. 

7 CONCLUSIONS & FUTURE WORK

We have presented a shape modeling system based on a single uni-
versal geometry representation that consists of an unstructured
cloud of sample points, which lie on the surface of an object. This
raw point cloud is enhanced by an efficient tool to locally estimate
the signed distance function of the underlying surface. All the
demonstrated functionality is built on top of this hybrid representa-
tion. The main features of our system are the integration of bool-
ean operations and free-form deformations, a dynamic sampling
framework to handle large model deformations, a technique to rep-
resent, sample and render sharp corners in point-sampled models,
and an efficient method to detect self-intersection for explicit
topology control. Due to the structural simplicity of our represen-
tation, all these algorithms are efficient, easy to implement and
applicable to a wide range of input models. 

In the future we want to investigate ways to extend our surface
model to handle more complex shapes, including hairy or furry
models, or natural objects such as plants. We also believe that
dynamic simulations of virtual materials can easily be incorpo-
rated into our system and that our deformation method is well
suited for animation.
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Figure 14: Multiresolution modeling on the Igea model. (a) origi-
nal model, (b) smooth base domain, (c) deformed base domain, (d)
final model, where the displacement coefficients have been scaled
by a factor of two to achieve an enhancement effect. Additionally,
two boolean difference operations have been applied.

Figure 15: Creating an Octopus from a sphere using the deforma-
tion tool with dynamic sampling (see Figure 1 (b)).

Figure 16: Combination of boolean operations and subsequent de-
formation.

(a) (b)

(c) (d)

Figure 17: Creating the Siggraph coffee mug using boolean opera-
tions, deformation, collision detection and particle-based blending
(see Figure 1 (c)).

Figure 18: Boolean operations of the Max Planck bust, a plane and
the skull model (see Figure 1 (a)).

Figure 19: Boolean operations and deformations on scanned data:
(a) noisy range scan, (b) surface smoothed by MLS projection,
(c) surface after local deformations, (d) objects used for boolean
union, (e) surface after boolean union, (f) final textured surface.
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