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We present results from large-scale numerical simulations of a first order thermal phase transition in the

early Universe, in order to explore the shape of the acoustic gravitational wave and the velocity power

spectra. We compare the results with the predictions of the recently proposed sound shell model. For the

gravitational wave power spectrum, we find that the predicted k−3 behavior, where k is the wave number,

emerges clearly for detonations. The power spectra from deflagrations show similar features, but exhibit a

steeper high-k decay and an extra feature not accounted for in the model. There are two independent length

scales: the mean bubble separation and the thickness of the sound shell around the expanding bubble of the

low temperature phase. It is the sound shell thickness which sets the position of the peak of the power

spectrum. The low wave number behavior of the velocity power spectrum is consistent with a causal k3,

except for the thinnest sound shell, where it is steeper. We present parameters for a simple broken power

law fit to the gravitational wave power spectrum for wall speeds well away from the speed of sound where

this form can be usefully applied. We examine the prospects for the detection, showing that a LISA-like

mission has the sensitivity to detect a gravitational wave signal from sound waves with an RMS fluid

velocity of about 0.05c, produced from bubbles with a mean separation of about 10−2 of the Hubble radius.

The shape of the gravitational wave power spectrum depends on the bubble wall speed, and it may be

possible to estimate the wall speed, and constrain other phase transition parameters, with an accurate

measurement of a stochastic gravitational wave background.

DOI: 10.1103/PhysRevD.96.103520

I. INTRODUCTION

The first direct observation of gravitational waves by

the Laser Interferometer Gravitational Wave Observatory

(LIGO) in 2015 has opened a new and unexplored window

to the cosmos [1,2]. Even more excitingly, while the

original detection was related to an astrophysical process,

the merger of two black holes, gravitational waves will also

allow us to directly probe processes in the very early

Universe, such as inflation [3], topological defects [4–7],

and first order phase transitions [8]. To study gravitational

wave signals from these and other sources, the Laser

Interferometer Space Antenna (LISA) is due to launch

about a decade from now [9]. The LISA Pathfinder mission

has recently demonstrated the technological feasibility of

such a mission [10].

LISA will have particular sensitivity in the millihertz

frequency range, making it an ideal instrument to observe

gravitational wave signals from phase transitions in the

electroweak era, corresponding to roughly 10 picoseconds

after the big bang. First order phase transitions proceed via

the nucleation, expansion, collision, and merger of bubbles

of the low temperature (broken) phase. They can source

gravitational waves in a number of ways. Firstly, gravita-

tional radiation is produced by the collisions of the bubble

walls, where the scalar order parameter changes from the

symmetric to the broken phase. If the phase transition

occurred in vacuum, this would be the only source of

gravitational waves. The energy momentum tensor of this

source is well approximated by the envelope of a configu-

ration of infinitely thin shells [11–13]; this is known as

the envelope approximation [14]. It leads to a characteristic

high-wave number (UV) falloff of the spectrum propor-

tional to k−1, where k is the wave number, which has been

recently confirmed by both numerical simulations [15] and

analytic modeling [16].

If the scalar bubbles expand in a hot plasma, as expected

to be the case in the early Universe, friction from the plasma

will slow down the walls, which after initial acceleration

will expand with a constant speed vw. In this case most

energy released by the transition will be transferred from

the scalar field into the plasma. Only a tiny fraction, on the

order of microphysics scale to bubble radius at collision,

will remain in the scalar field. So the scalar field source is
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completely negligible for a thermal cosmological phase

transition.
1
The energy transferred to the medium can either

go to heat or fluid motion. Numerical simulations show that

the energy momentum tensor of the fluid after bubble

collisions corresponds to an ensemble of sound waves.

These sound waves in turn are an efficient source of

gravitational radiation [19–21]. An analytical model of

the velocity perturbations in this acoustic phase of the

transition, based on a picture of the acoustic phase fluctua-

tions as overlapping shells of sound waves, has recently been

proposed [22], in which the UV falloff of the spectrum is

roughly k−3, so distinctly different from the transition in the

vacuum case. This means that an observation of such a

gravitational wave signal with LISA could allow one to

distinguish between the two cases, giving valuable informa-

tion on the nature of the transition. For very strong

transitions it is expected that the acoustic phase turns over

into a turbulent stage [23–30]. This turbulence will continue

to produce gravitational radiation until it decays.

How do the different possible components of gravita-

tional radiation from a thermal first order phase transition

compare? Collisions of the bubble walls contribute on the

order of Rc=R�, which for electroweak bubbles is about

10−14, and therefore completely negligible.

The relativeweight of the contributions from the acoustic

phase and the subsequent turbulent phase crucially depend

on the strength of the transition. For very strong transitions,

the plasma will quickly enter the turbulent phase, which

will then have a noticeable if not dominating impact on the

resulting gravitational wave signal.

Sufficiently weak transitions will not become turbulent

before gravitational wave production is effectively switched

off by cosmic expansion. The spectrum will then be

dominated by gravitational radiation from sound waves.

This will be discussed in more detail in Sec. II C.

Magnetic fields may be present at the electroweak phase

transition, generated either earlier in the history of the

Universe [31], or by charge separation at the bubble walls

ifCP violation is present [32]. In this case, any turbulent flow

will redistribute energy between the fluid and the magnetic

field towards equipartition [33]. Magnetohydrodynamic

turbulence is expected to have its own characteristic gravi-

tational wave signal [25,28], although there is still significant

uncertainty about the shape of the power spectrum.

The peak frequencies of these different comments are

typically quite similar. For example, according to Ref. [8]

the peak frequency of gravitational waves obtained from

magnetohydrodynamics (MHD) is about a factor of 1.5

higher than that from sound waves, but given our limited

understanding of turbulence this may change as a result of

future research. Also this difference may well depend on the

parameters of the phase transition, such as the wall velocity.

In this paper we present results from extensive

numerical simulations, building on earlier work reported

in Refs. [20,21]. We model the system by a scalar order

parameter field coupled to a relativistic fluid by means of a

phenomenological friction term. The resulting Klein-

Gordon equation coupled to relativistic hydrodynamics

is solved on a lattice. We use it to study the acoustic

phase at an unprecedented level of accuracy.

We show detailed velocity and gravitational wave power

spectra, for both deflagrations and detonations, and com-

pare them to the predictions of the sound shell model. The

UV power laws agree with the model in the case of

detonations, and the prediction of an intermediate k1 power
law for wall speeds close to the speed of sound is also

corroborated. We establish that there are two length scales

in the power spectrum: the mean bubble separation, and the

width of the sound pulse around the expanding bubble wall,

the “shell” of the sound shell model. The UV power law for

deflagrations is steeper than the model prediction, with an

interesting break or knee.

We show that the gravitational wave power spectrum

for wall speeds well away from the speed of sound can be

modeled with a broken power law and an amplitude

proportional to the fourth power of the RMS fluid velocity

and to the ratio of the fluid flow length scale to the Hubble

length. We use the model to forecast the sensitivity of LISA

[9] to acoustically generated gravitational waves.

Characterizing the fluid flow length scale by the mean

bubble separation, we find that the peak sensitivity is to

transitions with a mean bubble separation of order 10−2 of

the Hubble length at a transition with critical temperature

102 GeV. Transitions generating an RMS fluid velocity of

about 0.05 (in natural units) give rise to acoustic gravita-

tional waves with a signal-to-noise ratio of about 10.

We also estimate the timescale on which the acoustic

waves become shocked due to nonlinear evolution, which

would cause the velocity and gravitational wave power

spectra to deviate from their acoustic form. A significant

part of the parameter space generating observable gravita-

tional waves is likely to feature shocks and eventually

turbulence, for which further simulation is required to

establish an accurate power spectrum.

When interfaced with a particular microphysics realisa-

tion of a phase transition to provide the main input

parameters, latent heat, bubble size, and wall velocity,

our results allow accurate estimations of the resulting

gravitational wave signal. Conversely, the differences in

the shapes we observe point the way towards estimating the

wall speed and constraining combinations of other phase

transition parameters from accurate observations of a

primordial gravitational wave power spectrum.

1
According to Ref. [17] for very strong thermal transitions,

friction from the plasma will not stop the bubbles from accel-
erating towards the speed of light (“runaway bubbles”). However,
it is expected that additional friction from higher order correc-
tions related to particle production will modify this result [18]. So
runaway bubbles are expected to correspond to very fast standard
detonations.
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In the following section we recap the physics of the

acoustic generation of gravitational waves after a first-

order thermal phase transition; in Sec. III we discuss our

numerical methods, highlighting aspects of our approach

which differ from Refs. [20,21]; our results for the fluid

velocity power spectrum can be found in Sec. IV and for

gravitational waves in Sec. V. We then compare these

results to the power law ansatz used for the LISA

Cosmology Working Group report (Ref. [8]) in Sec. VI.

Our conclusions are in Sec. VII.

II. ACOUSTIC GRAVITATIONAL WAVES

The source of the gravitational waves is shear stress in

the system, induced by the nucleation, explosive growth,

and merger of bubbles of the Higgs phase. These pertur-

bations take the form of compression and rarefaction waves

laid down around the growing bubbles—that is, the sound

of the Higgs explosions.

A. Thermodynamics

The sources of shear stress are the order parameter ϕ and

the relativistic fluid to which it is coupled. Because we need

only the transverse-traceless part of the energy-momentum

tensor, it is sufficient to consider as a source tensor

τij ¼ τ
ϕ
ij þ τfij, which is decomposed into fluid and field

pieces according to

τ
ϕ
ij ¼ ∂iϕ∂jϕ; τfij ¼ W2wViVj; ð1Þ

where w ¼ ϵþ p is the enthalpy density, ϵ is the energy

density, p is the pressure, Vi is the fluid 3-velocity, andW is

the corresponding Lorentz factor. Unless the transition is

strongly supercooled, most of the available energy of the

transition goes into thermal and kinetic energy of the fluid;

the scalar contribution is negligible.

It is useful to describe the overall amplitude of the fluid

shear stress by a root mean square (RMS) four-velocity Ūf

defined through

Ū2

f ¼
1

w̄V

Z

V

d3x τfii; ð2Þ

where V is the averaging volume and w̄ is the volume

averaged enthalpy density. One can define a similar

quantity for the scalar field

Ū2

ϕ ¼ 1

w̄V

Z

V

d3x τ
ϕ
ii: ð3Þ

Although these are not quite the magnitudes of the trans-

verse traceless part of the shear stress, they are easy to

compute, and do have a direct connection to the gravita-

tional wave amplitude for random fields, as we shall see

in Eq. (21).

The fluid energy density and pressure have a contribu-

tion from the scalar order parameter of the phase transition

ϕ, through its effective potential Vðϕ; TÞ,

pðT;ϕÞ ¼ π2

90
g�T

4
− Vðϕ; TÞ ð4Þ

ϵðT;ϕÞ ¼ π2

30
g�T

4 þ Vðϕ; TÞ − T
∂V

∂T
; ð5Þ

where g� is the effective number of relativistic degrees of

freedom.

Following [34,35], we use a simple quartic form for the

potential:

Vðϕ; TÞ ¼ 1

2
γðT2

− T2
0
Þϕ2

−
1

3
ATϕ3 þ 1

4
λϕ4: ð6Þ

The detailed form is not important: its function is to supply

a metastable state with a latent heat

LðTÞ ¼ wðT; 0Þ − wðT;ϕbÞ; ð7Þ

where ϕb is the equilibrium value of the field in the

symmetry-broken phase at temperature T. The strength of

the transition can be parametrized by the ratio of the latent

heat to the total radiation density in the high temperature

symmetric phase
2

αw ¼ LðTÞ
ϵrðTÞ

: ð8Þ

A commonly used alternative is the difference in the trace

anomaly divided by a conventional factor of 4, or

ΔθðTÞ ¼ −
T

4

d

dT
ΔV þ ΔV; ð9Þ

where ΔVðTÞ ¼ Vð0; TÞ − Vðϕb; TÞ. Expressed relative to

the energy density in the symmetric phase

αθ ¼
ΔθðTÞ
ϵrðTÞ

: ð10Þ

Other important parameters are the surface tension and

width of the phase boundary σ and l, which can be

computed straightforwardly from the parameters of the

potential [21,34]. The transition takes place at the nucleation

temperature Tn, at which the radius of the critical bubble is

denoted Rc.

2
Note that the radiation density has no unique definition in a

system with a scalar order parameter in a thermal bath: here we
follow Ref. [36] and define it as ϵrðTÞ ¼ 3wðT; 0Þ=4.
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B. Shear stress and velocity correlations

As mentioned above, the dominant source of shear stress

is the fluid, unless α ≫ 1 by the measures of the phase

transition strength outlined above, and the scalar field is so

weakly coupled with the fluid that the walls continue to

accelerate until collision. Our simulations explore the more

generic situation, α≲ 1.

One can characterize the fluid source by the unequal time

correlator (UETC) of the shear stress Π2 [37,38], defined

by projecting out the spatially transverse and traceless part

of the energy-momentum tensor

λij;klðkÞhτijf ðk;t1Þτklf ðk0;t2Þi¼Π
2ðk;t1;t2Þð2πÞ3δðkþk0Þ;

ð11Þ

where

λij;klðkÞ ¼ PikðkÞPjlðkÞ −
1

2
PijðkÞPklðkÞ; ð12Þ

and

PijðkÞ ¼ δij − k̂ik̂j: ð13Þ

The shear stresses are the result of the sound waves, which

can be characterized by the longitudinal part of the velocity

unequal time correlator Gðq; t1; t2Þ. This is defined from

the Fourier transform of the velocity field ~viq1
through

q̂iq̂jh ~viq1ðt1Þ ~v
�j
q2
ðt2Þi ¼ Gðq; t1; t2Þð2πÞ3δðq1 − q2Þ: ð14Þ

The transverse partG⊥ can be defined analogously. We will

be interested in the velocity power spectrum,

dV2

d lnðqÞ ¼
q3

2π2
ðGðq; t; tÞ þ G⊥ðq; t; tÞÞ: ð15Þ

In our simulations, the longitudinal part is always much

greater than the transverse part (see Table III), reflecting

the dominance of sound waves in the fluid perturbations.

C. Gravitational waves

The transverse traceless metric perturbation hij is

extracted by projection from an auxiliary tensor uij
satisfying the equation

□uij ¼ ð16πGÞτfij: ð16Þ

The energy density in gravitational waves is

ρgw ¼ 1

32πG
h _hij _hiji; ð17Þ

where hij is the transverse-traceless projection of uij.

It is most useful to consider the gravitational wave power

spectrum relative to the critical density, defined as

dΩgw

d lnðkÞ ¼
1

12H2

k3

2π2
P _hðk; tÞ; ð18Þ

where H is the Hubble parameter and P _h is the power

spectral density, defined from the two-point correlation

h _hijðk; tÞ _hijðk0; tÞi ¼ P _hðk; tÞð2πÞ3δðkþ k0Þ: ð19Þ

In our simulations, the expansion of the Universe is scaled

out using the scale invariance of the relativistic fluid

equations [21,39]. Nonetheless, one can still formally

compute the Hubble rate from the Friedmann equation

H2 ¼ 8πG

3
ϵð0; TÞ: ð20Þ

It was shown in Ref. [21] that, after the acoustic source

has been on for time t, the dimensionless gravitational wave

power spectrum takes the form

dΩgwðkÞ
d lnðkÞ ¼ 3Γ2Ū4

f ðHntÞðHnLfÞ
ðkLfÞ3
2π2

~PgwðkLfÞ; ð21Þ

where Γ ¼ 1þ p̄=ϵ̄ is the adiabatic index, Ūf is the

RMS fluid velocity, Hn is the Hubble rate at the bubble

nucleation temperature Tn, Lf is the characteristic length of

the fluid flow, and ~Pgw is a dimensionless spectral density

for the gravitational waves.

It was also shown that, provided that turbulence does not

develop within a Hubble time, the effective time for which

the acoustic source operates is precisely the Hubble time,

so that Hnt → 1.

The turbulence timescale, both for appearance and

decay, is the shock appearance or eddy turnover time

[40,41]

τsh ∼ Lf=Ūf : ð22Þ

The maximum duration of all our simulations is much less

that τsh, and so no turbulence develops. Our results there-

fore apply to flows for which Ūf ≪ LfHn.

With this assumption, the total gravitational wave energy

density from the acoustic phase is

Ω
ac
gw ¼ 3Γ2Ū4

f ðHnLfÞ ~Ωgw; ð23Þ

where

~Ωgw ¼ 1

2π2

Z

∞

0

dx x2 ~PgwðxÞ ð24Þ
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is a dimensionless parameter, quantifying the efficiency

with which shear stress is converted to gravitational waves.

A significant result in [21] was that this parameter is

approximately independent of the length scale and RMS

velocity of the fluid flow.

The formulas (21) and (23) are derived from general

considerations of the velocity correlation function, so one

can also estimate the relative amplitude of gravitational

waves produced during the turbulent phase. Eq. (23) arises

from a flow with RMS velocity Ūf with characteristic

length scale Lf starting when the Hubble parameter is Hn.

The turbulent phase starts when the Hubble parameter is

of order τ−1sh , with similar RMS velocity and characteristic

length scale. Hence one can estimate that the density

parameter of gravitational waves produced during the

turbulent phase is

Ω
tu
gw ∼ Γ

2Ū4

f ðLf=τshÞ; ð25Þ

a factor ðH�τshÞ−1 smaller than from the acoustic phase.

Therefore, for transitions with Ūf ≪ LfHn, the gravita-

tional wave signal from the turbulent phase can be

neglected. One reaches the same conclusion with a more

careful derivation based on Eq. (A9) of Ref. [21].

In the case of a strong phase transition, turbulence

develops in less than a Hubble time, the lifetime of both

the acoustic and turbulent phases is of order τsh. Hence,

using t ∼ τsh ∼ Lf=Ūf in (21) and integrating over wave

number, one finds

Ω
ac
gw ∼Ω

tu
gw ∼ Γ

2Ū3

f ðLfHnÞ2: ð26Þ

Hence for strong phase transitions the acoustic and turbu-

lent signals should have similar magnitudes.

III. METHODS

The system is a set of coupled partial differential

equations governing the evolution of the scalar field ϕ

and the relativistic ideal fluid with 4-velocity Uμ. We use

the techniques previously described in [21] (see also

Refs. [42,43], and the textbooks [44,45]).

The field and fluid parts of the system are coupled

together through a dissipative term that turns field stress-

energy T
μν
ϕ into fluid stress-energy T

μν
f such that,

∂μT
μν
ϕ ¼ −ηUμ∂μϕ∂

νϕ; ð27Þ

where η is in general a function of ϕ and T with mass

dimension 1. In previous work, including our own [20,21],

this was taken to be a constant. In this work we take

η ¼ ~ηϕ2=T, where ~η is a dimensionless parameter, which is

better motivated by the underlying physics [46,47]. The

fluid velocity around the expanding bubbles for a given

wall speed and phase transition strength is minimally

affected by the change, as it is determined purely by

hydrodynamics, except right at the bubble wall [36,43,48].

The parameters chosen in the numerical simulations

are given in Table I. All dimensionful quantities are

expressed in terms of the critical temperature Tc, defined

from ΔVðTcÞ ¼ 0.

We take the effective number of relativistic degrees of

freedom to be the Standard Model’s high temperature

value, although its exact value is not important.
3
The value

of Newton’s constant G is arbitrary, as we will compute

quantities which are independent of G.
We simulate at two different transition strengths, which

we label “weak” (α ∼ 10−2) and “intermediate” (α ∼ 10−1).

These have the same phase transition strengths as our

“weak” and “intermediate” simulations in Refs. [20,21],

but the different form of the field-fluid coupling term, and

the changed value of the relativistic degrees of freedom g�

TABLE I. Input parameters and derived equilibrium and non-

equilibrium quantities for our simulations. Our parameters are the

effective number of relativistic degrees of freedom g�, scalar
potential parameters [see Eq. (6)], and nucleation temperature Tn.

From these we obtain the latent heat L, phase boundary tension σ

and the thickness l. For studying phase transitions, it is useful to

also compute the equilibrium value of the scalar field at the

nucleation temperature ϕbðTnÞ, transition strength parameters αw
and αθ [see Eq. (8) and Eq. (10)], the Chapman-Jouguet speed for

detonations vCJ, and the critical bubble radii Rc. Finally, we use

Eq. (20) to compute a value for the Hubble constant Hn.

Parameter Weak Intermediate

g� 106.75 106.75

T0=Tc 1=
ffiffiffi

2
p

1=
ffiffiffi

2
p

γ 2=9 4=9

A 0.1990 0.1990

λ 0.0792 0.0396

Tn=Tc 0.86 0.80

L=T4
c 0.7013 5.6102

σ=T3
c 0.1558 0.8816

lTc 3 2.1213

ϕbðTnÞ=Tc 1.7838 3.5810

αwðTnÞ 0.010 0.084

αθðTnÞ 0.0046 0.050

vCJ 0.63 0.73

RcTc 8.1 4.3

Hn=
ffiffiffiffi

G
p

T2
c

12.686 10.978

3
From Eq. (8) and the potential Eq. (6), one can see that the

phase transition strength αw can be kept constant if g�, γ, A and λ
are all scaled by some constant C. This will change the
correlation length l and hence the bubble wall thickness by a

factor
ffiffiffiffi

C
p

but will otherwise have little impact on the position or
amplitude of the resulting gravitational wave power spectrum, so
long as Eq. (29) holds.
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mean that the simulations are not identical. The differences,

however, are minor and do not affect the results.

For both weak and intermediate categories, we simulate

at a variety of wall velocities giving both deflagrations and

detonations, including some which move at close to the

Chapman-Jouguet speed vCJ, defined as the wall speed at

which the exit velocity of the fluid in the wall frame is the

speed of sound [40]. For a deflagration, vCJ ¼ cs, while for
a detonation it depends on the strength of the transition, but

is always greater than cs (see e.g. Ref. [36]). For a weak

transition, vCJ ≃ csð1þ
ffiffiffiffiffiffiffi

2αθ
p Þ. Note that the values of the

transition strength parameter in Table I do not take into

account the small increase in the temperature of the fluid

near the moving bubble wall, and hence the stated

Chapman-Jouguet speed is slightly higher than the true

minimum speed of a detonation.

Each bubble is nucleated by inserting a scalar field

configuration with Gaussian profile, as described in

Ref. [21]. This profile is slightly larger than the critical

bubble radius Rc. The bubble expands and perturbs the

fluid, which evolves towards the scaling solution

(cf. Fig. 2).

Our bubbles are nucleated simultaneously, rather than

with a physical nucleation rate. It is possible to rescale the

results to yield the power spectrum from a more realistic

nucleation rate. This was demonstrated in Ref. [15] and is

discussed further in Sec. VI. We simulate with a variety of

bubble numbers Nb, which controls the average bubble

separation

R� ¼ ðV=NbÞ
1

3: ð28Þ

After time t, each bubble is surrounded by a sound

shell [22] of approximate thickness ΔR ¼ Δvwt, where
Δvw ¼ jvw − csj.
For near-Jouguet bubble walls the sound shell is typi-

cally quite thin relative to the bubble separation. In the

sound shell model [22], the velocity power spectrum peaks

at kΔR� ∼ 1, where ΔR� is the average bubble shell

thickness at collision.

The bubble wall speeds and bubble separations are

chosen to explore the dependence of the power spectra

on R� and ΔR�, and also to compensate for the limited

dynamic range of the simulations. The values of R� and

ΔR� are listed in Table II.

In principle we need sufficiently large lattices to explore

dx ≪ l ≪ ΔR� ≲ R� ≪ Lf : ð29Þ

In practice, the bubble wall does not need high resolution,

as the detailed dynamics of the scalar field are not

important beyond the transfer of energy to the fluid. For

the near-Jouguet transitions, we found it useful to explore

the wave number range kR� ≪ 1 and kΔR� ≫ 1 separately

by adjusting the number of bubbles. Simulations with large

R� have the advantage that the velocity field is closer to its

asymptotic self-similar form.

Velocity and gravitational wave power spectra are

computed on cubic periodic lattices with N ¼ 4200 points

per side. The lattice spacing dx, bubble number Nb, and

bubble wall speed vw, along with the field-fluid coupling

required to obtain this speed, are listed in Table II.

We generally run with dx ¼ 2=Tc which has been

established to work well for single bubble self-collisions

for a weak deflagration and R� ≈ 384=Tc [21].

Wall velocities vw depend on discretization effects,

and it is difficult to determine the final asymptotic value

from numerical simulations of limited duration. For

concreteness, our quoted vw values are determined from

spherically symmetric simulations of a single bubble with

dxTc ¼ 0.2 and are measured at time 5000=Tc. For

coarser lattice spacings the actual wall velocity will be

slightly smaller, but the difference in the cases studied

here is at most 3% (this effect is more pronounced for

faster wall velocities [49]). In our simulations, the

bubbles collide before the asymptotic profile is reached

(see Fig. 2), and this is generally more significant than

discretization effects, particularly for simulations with

smaller mean bubble separations.

For simulations with vw close to cs the lattice

discretization effects on the fluid profile were more

significant than for other cases. In the weak, vw ¼
0.59, R� ≈ 1900=Tc case, we ran simulations at both

dx ¼ 1=Tc and dx ¼ 2=Tc as a check against lattice

effects in our final results. Agreement in the velocity

power spectra is excellent until kR� ≈ 100, deteriorating

to an error of about 50% at kR� ≈ 200. The discrepancy

is more pronounced in the gravitational wave power

spectrum because it convolves the power at different

wavelengths [22].

TABLE II. Simulation parameters ~η (field-fluid coupling), Nb

(number of bubbles nucleated), and lattice spacing dx, with the

corresponding bubble wall speed vw, mean bubble separation R�,
and sound shell width ΔR� ¼ R�jvw − csj=cs. The potential

parameters and derived quantities for the “weak” and “inter-

mediate” phase transitions are given in Table I.

Type ~η Nb dxTc vw R�Tc ΔR�Tc

Weak 0.19 84 2 0.92 1918 714.4

0.35 84 2 0.80 1918 533.8

0.51 84 2 0.68 1918 289.5

0.59 11 1 0.56 1889 58.51

0.93 84 2 0.44 1918 598.7

0.51 5376 2 0.68 480 72.38

0.59 5376 2 0.56 480 14.86

0.93 5376 2 0.44 480 149.7

Int. 0.17 84 2 0.92 1918 714.4

0.40 11 1 0.72 1889 374.2

0.62 84 2 0.44 1918 598.7
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IV. RESULTS: FLUID VELOCITY

In Fig. 1 we plot Ūf and Ūϕ against time, showing the

development, completion, and aftermath of the phase tran-

sition. We divide the transition into three phases [21]: the

expansion phase before any bubble collisions take place, the

collision phase, and the acoustic phase. These can be traced

in the figures, using the fact that Ū2

ϕ is proportional to the

surface area of the phase boundaries. In the expansion phase,

Ūϕ grows linearly with time. In the collision phase, Ūϕ falls

below the initial linear behavior, peaks, and drops to zero,

marking the start of the acoustic phase. The RMS velocity

Ūf also grows with Ūϕ in the expansion and collision phase,

and levels off in the acoustic phase. We take the peak of Ūϕ

to mark the collision time of the bubbles tpc.

The RMS fluid velocity is generally constant in the

acoustic phase, as noted in Ref. [21], although some

reduction can be seen in the transitions with bubbles

expanding at near the Chapman-Jouguet speed, where

the fluid velocity profile is narrower and peaks at higher

values (see deflagrations with vw ¼ 0.56 and detonations

with vw ≃ 0.7 in Fig. 2). It is possible that this reduction

represents the beginning of turbulent transport of energy

to the lattice dissipation scale; the time for shocks and

turbulence to appear is in these cases τsh ∼ 105=Tc, only a

factor of order 10 longer than the simulation time.

Figure 2 also shows how the fluid profiles evolve as the

bubbles expand. The profile takes some time to settle to its

asymptotic self-similar form, and we plot both this and

the profile at the peak collision time tpc. The difference is

particularly noticeable for small bubble separations where

collisions happen much earlier (see Fig. 2(b)); the fluid

profiles are smooth and do not have the characteristic sharp

edges at the wall position. This affects the high wave number

behavior of the velocity power spectra, as we shall see.

In Table III we list the maximum RMS fluid velocity

Ūmax
f , along with the transverse component Ūmax

f;⊥ . We also

give theoretical values for the mean square fluid velocity

estimated in two ways. Firstly, Ū1D
f is obtained by integrat-

ing the numerical 1D fluid profiles out to t ¼ 7000=Tc,

according to (see Refs. [21,36])

ðŪ1D
f Þ2 ¼ 3

v3w

Z

dξ ξ2W2v2; ð30Þ

where ξ ¼ r=t is the scaled radius, vðξÞ is the radial fluid

velocity, and WðξÞ the associated fluid gamma factor.

FIG. 1. RMS velocity and scalar gradient energy Ūf and Ūϕ. Solid lines denote the RMS fluid velocity, dashed lines the RMS scalar

field gradients. The simulations are separated into three plots (a)–(c) according to phase transition strength and bubble radius.

FIG. 2. Fluid radial velocity profiles as a function of scaled radius ξ ¼ r=t. In red are curves taken at the peak of Ūϕ (see Fig. 1), at

times tpc given in Table III. In black are fluid velocities at late times, t ≳ 10000=Tc. Note that the wall speeds can be read off from the

positions of the phase transition fronts. Although the vw quoted in the main text comes from simulations with a smaller lattice spacing

(dxTc ¼ 0.2), the discrepancy is small—at most 3% for the fastest detonations.
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The second estimate is Ū
Esp
f ¼

ffiffiffiffiffiffiffiffiffiffi

3

4
κvα

q

, where the

function κvðvw; αÞ is given in the Appendix of Espinosa

et al. [36], using vw extracted from 1D simulations at

t ¼ 7000=Tc, and α ¼ αθðTnÞ from Table I. Note that κv is

defined from the trace of the spatial part of the energy-

momentum tensor as

κvαθ ¼
1

ϵ̄V

Z

d3x τiif : ð31Þ

We see that the rotational component of the velocity

field is very small, consistent with the interpretation of the

fluid flow as sound waves, and with the linearity of the

flow. We also see that the Espinosa et al. [36] fitting

formula for the mean square fluid velocity around a single

bubble gives a good estimate of the mean square velocity

of the 3D flow. Finally, the time at which the scalar

gradient energy peaks is approximately tpc ≃ 0.6R�=vw
in the simulations where R� is large. This is consistent with
interpreting this peak as a bubble collision time.

In Figs. 3, 4, and 5 we plot velocity power spectra (15)

for a set of simulations. We divide the data according to the

bubble wall speed vw, separating out the special case of

deflagrations moving at close to sound speed.

In Fig. 3 we show detonations with wall speeds

vw ¼ 0.92, 0.80, and vw ≃ 0.7 for transitions of weak

and intermediate strength. The intermediate strength tran-

sition at vw ¼ 0.72 is run at a higher resolution (dx ¼ 1=Tc)

to resolve the higher velocity gradients, so that the mean

bubble separation (1889=Tc) is close to the box size of the

simulation (2100=Tc), hence there is less dynamic range on

the long-wavelength side of the peak in the power spectrum.

The general form is a broken power law, with a domed

peak at kR� ¼ Oð10Þ. The shape is similar between the

weak and intermediate cases at the same velocity; the

intermediate strength transitions have higher amplitude, as

more energy is transferred into kinetic energy. This is in

accord with the sound shell model [22], where the velocity

power spectra are of a universal shape for a given wall

velocity and nonrelativistic fluid flows with negligible

shocks.

The width of the dome is larger for the detonations with

wall speeds closer to the speed of sound, with the peak

displaced to the right relative to the fast detonation. This is

also consistent with the sound shell model prediction that

the peak position in the power spectrum is determined by

the inverse width of the sound shell.

The power law to the right of the dome is close to the k−1

predicted by the sound shell model, particularly in the

detonations, where there is a clear separation between the

peak scale and the wall width scale. The long-wavelength

power law index is not so clear, as there are few bins and

there are fewer k vectors in each bin, but is consistent with

the predicted k3.
In Fig. 4 we show velocity power spectra from defla-

grations with wall speed vw ¼ 0.44. The power law to the

right of the dome appears steeper than the k−3 prediction,

and there is a knee in the power spectrum at higher k,
neither of which is in accord with the sound shell model.

These features need further investigation.

We recall that in the sound shell model, there are two

scales in the velocity field: the mean bubble separation R�,
and the sound shell width ΔR� ¼ R�Δvw=vw. If the scales
are well separated (i.e., if the bubble wall is moving close to

the speed of sound), the long-wavelength k3 power law is

predicted to turn into a k1 power law at kR� ¼ Oð1Þ, and
finally to a k−1 power law at kΔR� ¼ Oð1Þ.
The clearest scale separation should be found in tran-

sitions where the wall speed is closest to the sound speed.

In Fig. 5 we show the power spectra from a deflagration

with speed vw ¼ 0.56, very close to cs ¼ 1=
ffiffiffi

3
p

≃ 0.577.

We do not have the dynamic range to resolve all three

wavelength ranges simultaneously, but by altering the

number of bubbles we can try to resolve two ranges at a

time. At the top, for the largest R�, we see that the dome

around the peak has broadened into a slowly rising plateau,

consistent with a k1 behavior. At higher wave number the

plateau drops off, although we do not have enough range to

confirm a k−1 behavior.

For larger numbers of bubbles (center, bottom in

Fig. 5) the long-distance behavior emerges. With Nb ¼
5376 (R� ¼ 480=Tc) one can clear see a steep power law,

even steeper than k3, in the range 1≲ kR� ≲ 3. A possible

reason for the discrepancy with the generic sound shell

model prediction at low kR� is that the coefficient of the k
3

term is proportional to Δv2w ≃ 4 × 10−4 [22], and so the

next order term in a series expansion in kR� can dominate

for kR� ¼ Oð1Þ. The short-distance behavior at these large

TABLE III. Wall speed vw, average bubble separation R�, with
peak bubble collision time tpc, the maximum fluid RMS velocity

Ūmax
f , the maximum contribution of transverse fluid motion Ūmax

f;⊥ ,

and two estimates for Ūf based on 1D fluid profiles and a fitting

formula given in Ref. [36].

Type vw R�Tc tpcTc 103Ūmax
f 103Ūmax

f;⊥ 103Ū1D
f 103Ū

Esp
f

Weak 0.92 1918 1210 4.60 0.0833 5.31 5.32

0.80 1918 1380 5.75 0.0665 6.39 6.50

0.68 1918 1630 8.65 0.116 9.17 10.0

0.56 1889 1860 13.8 0.190 14.3 14.7

0.44 1918 2520 7.51 0.0775 7.70 7.76

0.68 480 430 8.74 0.252 9.17 10.0

0.56 480 480 11.7 0.498 14.3 14.7

0.44 480 660 6.99 0.131 7.70 7.76

Int. 0.92 1918 1180 43.7 0.869 51.6 53.7

0.72 1889 1480 65.0 1.97 72.8 95.0

0.44 1918 2650 54.5 2.77 51.7 67.7
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bubble numbers is not reliable, as there is insufficient

distinction between the sound shell width ΔR� ≃ 15=Tc

and the bubble wall width l≃ 3=Tc. Indeed, in Fig. 2 one

can see that the fluid velocity profiles are far from their

asymptotic forms.

V. RESULTS: GRAVITATIONAL WAVES

In Table IV we show global quantities computed from

the gravitational wave power spectrum

~PgwðzÞ ¼
z3

2π2
~PgwðzÞ; ð32Þ

where z ¼ kR�. These are the integral scale of the gravi-

tational waves

ξgw ¼ 1

Ωgw

Z

dk

k

1

k

dΩgw

d lnðkÞ ; ð33Þ

calculated at the end of the simulations, and the dimension-

less gravitational wave amplitude parameter defined in

(24), with the fluid length scale Lf is taken to be either the

integral scale of the velocity field ξf (defined analogously to

Eq. (33) or the mean bubble separation R�. With either of

these length scales, ~Ωgw is approximately constant and of

FIG. 3. Velocity power spectra for detonations. Left are weak strength phase transitions, with vw ¼ 0.92, 0.80, and 0.68. Right are

intermediate phase transitions, with vw ¼ 0.92 and vw ¼ 0.72. All have Nb ¼ 84 bubbles (average separation Rc ¼ 1918=Tc) and a

lattice spacing dx ¼ 2=Tc, with the exception of the vw ¼ 0.72 intermediate transition which has Nb ¼ 11 (R� ¼ 1889=Tc) and

dx ¼ 1=Tc. Note there is no intermediate strength transition with vw ¼ 0.80.
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order 10−2 for weak transitions.
4
The integral scales of

both the fluid and the gravitational waves are significantly

smaller for the near-Jouguet transitions, showing the

influence of the sound shell thickness.

In Fig. 6 to Fig. 8 we plot power spectra of the fractional

energy density in gravitational waves. The spectra are

divided by the mean bubble separation R� and the time t in
units of the Hubble distance and time, and plotted against

wave number in units of the inverse bubble separation, for

ease of comparison with Eq. (21). Taking the fluid flow

length scale to be R�, we have

1

ðHntÞðHnR�Þ
dΩgwðkÞ
d lnðkÞ ¼ 3Γ2Ū4

f
~PgwðkR�Þ: ð34Þ

Note that by dividing by time, gravitational wave power

generated in the collision phase will decrease, while

acoustic phase gravitational wave power will asymptote

to a constant. Note also that, by dividing byH2
n, we arrive at

a quantity which is independent of G.
One can see that, at late times, the shape of the power

spectrum appears to change little, and is settling down to a

characteristic shape. Wewould expect power laws to be less

clear in the gravitational wave power spectrum than in the

velocity power spectrum, as the former is a convolution of

the latter over a range Δk ¼ �csk at wave number k [21].

Where power laws are established over a sufficient

range, we expect that a velocity power spectrum going

as kn should produce a gravitational wave power spectrum

going as k2n−1. The sound shell model [22] predicts n ¼ −1

for R�=ΔR�≪kR�≪R�=l, n¼1 for 1 ≪ kR� ≪ R�=ΔR�
(if the scales R� and ΔR� are well separated), and n ¼ 3

for kR� ≪ 1.

In Fig. 6 we show the gravitational wave power spectra

from detonations (vw ¼ 0.92, 0.80, and vw ≃ 0.7) for

transitions of weak and intermediate strength, arising from

FIG. 4. Velocity power spectra for deflagrations with vw ¼ 0.44. Left is a weak phase transition, right is an intermediate transition.

Both have Nb ¼ 84 bubbles (mean separation Rc ¼ 1918=Tc).

FIG. 5. Velocity power spectra for near-Jouguet deflagrations.

All are weak transitions with vw ¼ 0.56, and Nb ¼ 11, 84, and

5376 (Rc ¼ 1889=Tc, 1918=Tc, and 480=Tc).

4
Note that there is a numerical error in the computation of ~Ωgw

in [21] which resulted in a value which was a factor ð2πÞ3=32π
too high.
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the velocity fields with power spectra in Fig. 3. Again, the

general form is a broken power law, with a domed peak at

kR� ¼ Oð10Þ. As with the velocity power spectrum, the

shape is similar between the weak and intermediate cases at

the same wall velocity; the intermediate strength transitions

have higher amplitude, resulting from the higher RMS

velocity. We see that the broader dome in the velocity

power spectrum translates to a broader feature in the

gravitational wave spectrum, although the features around

the peak are not well resolved, particularly in the inter-

mediate strength transition.

The power law to the right of the dome is close to the k−3

predicted by the sound shell model, particularly in the

detonations. The predicted k5 power law at long wave-

lengths is difficult to discern, as it is buried under a feature

established during the collision phase.

In Fig. 7 we show gravitational wave power spectra from

a deflagration with vw ¼ 0.44, for weak and intermediate

strength transitions. The power law at high k is steeper than

k−3, inconsistent with the sound shell model, but consistent

with velocity power spectra steeper than k−1.
In Fig. 8 we show the gravitational wave power spectra

from a deflagration with speed vw ¼ 0.56, where the sound

shell is very thin, and there are clearly two scales in the

power spectra. Again, the low-k behavior is hidden behind

the gravitational waves from the collision phase due to

the limited duration of the simulation, although there is a

suggestion of a steepening below kR� ∼ 5 in the case with

the maximum long-wavelength resolution, Nb ¼ 5376.

It is clear that the peak is at around kR� ≃ 50, which is

understandable in terms of the scale kΔR� ≃ 2.

VI. MODELING THE POWER

SPECTRUM FOR LISA

Our simulations nucleate all bubbles simultaneously,

whereas in a real thermal phase transition away from

metastability, the nucleation rate rises exponentially as

pðtÞ ¼ p0 exp½βðt − tfÞ� after the temperature drops below

the critical temperature, where β is the transition rate

parameter, and tf is the time at which the volume fraction

of the symmetric phase is 1=e [34]. This means that there

are a few larger bubbles earlier in the transitions, and more

smaller bubbles as the transition ends. Numerical experi-

ments with the gravitational wave power spectrum in the

envelope approximation [15] show that the principal effect

of instantaneous nucleation for a given mean bubble

separation is to increase the peak frequency by a factor

of approximately 1.7, and decrease the amplitude by a

factor of about 3. The shape of the power spectrum is not

significantly changed. This rescaling can be regarded as a

rescaling of the relationship between the mean bubble

separation R� and the transition rate parameter β.

We shall assume that the same is true for the velocity

field generated by the colliding bubbles, i.e. that the

shape is not significantly changed by using a realistic

nucleation history, and that the principal effect is to change

the proportionality constant in the standard relation R� ¼
ð8πÞ13vw=β [34]. With this assumption we can directly use

our measured power spectra as models for the gravitational

wave power spectrum from a phase transition.

In the LISA Cosmology Working Group report [8] the

acoustic gravitational wave power spectrum was modeled

using a broken power law function:

dΩgwðkÞ
d lnðkÞ ¼ ðHnR�ÞACðsÞ; ð35Þ

where

CðsÞ ¼ s3
�

7

4þ 3s2

�

7=2

; ð36Þ

and

s ¼ kR�
ðkR�Þmax

: ð37Þ

The dimensionless parameters A and ðkR�Þmax determine

the magnitude and the location of the maximum of the

power spectrum, respectively. The form of the function is

motivated by the results from hydrodynamical gravitational

wave production simulations in Ref. [21]. The power

spectrum of the ansatz at small k is ∝ k3, turning over

to ∝ k−4 at large k.
The detailed structure of the ansatz determines the width

of the dome between the small-k and large-k regions;

indeed, the width of the dome can be adjusted by general-

izing the ansatz to a form

CaðsÞ ¼ s3
�

7

4þ 3sa

�

7=a

: ð38Þ

TABLE IV. Wall speed vw and mean bubble separation R�, with
the resulting integral scale of the fluid flow ξendf , the integral scale

of the gravitational wave power ξendgw , and the dimensionless

gravitational wave amplitude parameters ~Ω
ξf
gw and ~Ω

R�
gw.

Type vw R�Tc ξendf Tc ξendgw Tc 102 ~Ω
ξf
gw 102 ~Ω

R�
gw

Weak 0.92 1918 1490 1620 1.5 1.2

0.80 1918 1290 1600 2.2 1.4

0.68 1918 888 1410 1.5 0.62

0.56 1889 530 865 1.4 0.32

0.44 1918 1450 1750 1.4 1.1

0.68 480 268 323 1.5 0.88

0.56 480 233 416 1.6 0.86

0.44 480 416 493 1.5 1.3

Int. 0.92 1918 1530 1780 2.6 2.0

0.72 1889 1100 1180 3.3 1.8

0.44 1918 1980 2090 1.6 1.7
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In order to enable direct comparison with the working

group results we fit the measured power spectrum using the

original ansatz (35).

The resulting fits are shown as dashed lines in

Fig. 6, for detonations, and in Fig. 7, for deflagrations,

and fit parameters are listed in Table V. The functions

are fitted only in the neighbourhood of the domes, but

at least for the weak detonations the fitted functions

describe the overall behavior of the data surpris-

ingly well.

By integrating (35) and comparing to Eq. (23), we can

derive an estimate for the amplitude parameter from our

simulations,

Aest ≃ 0.687Γ2Ū4

f
~Ω
R�
gw: ð39Þ

The estimates, computed from the values of Ūf in Table III

and ~Ω
R�
gw in Table IV, are shown in the last column of

Table V.

FIG. 6. Power spectra of fractional energy density in gravitational waves for detonations, divided by the ratio of the mean bubble

separation R� to the Hubble length at the transition Hn, and the ratio of the time to the Hubble time. The wave number is scaled by the

mean bubble separation. Left are weak phase transitions, showing detonations with vw ¼ 0.92, 0.80, and 0.68 (top to bottom). Right are

intermediate phase transitions, with wall speeds vw ¼ 0.92 and vw ¼ 0.72. All have Nb ¼ 84 bubbles, giving a mean bubble separation

of R� ¼ 1918=Tc, and a lattice spacing dx ¼ 2=Tc, with the exception of the vw ¼ 0.72 intermediate transition which has Nb ¼ 11

(Rc ¼ 1889=Tc) and dx ¼ 1=Tc.
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It can be seen that the amplitude estimates based on

numerical integration of the scaled gravitational wave

power spectrum ~Pgw are generally higher than those

derived from the fit: this is because the numerical power

spectrum exaggerates the low-k part of the power spectrum
derived from the collision phase. In the case of the

intermediate strength transition at vw ¼ 0.72, the dome

is less apparent, and the fitting formula underpredicts the

gravitational wave spectrum at high k. We recommend

using the fitting formula for wall velocities away from the

Chapman-Jouguet speed by about jvw − vCJj ≳ 0.1.

For the near-Jouguet deflagration (vw ¼ 0.56) the dome

in the power spectrum becomes very broad, as can be seen

in Fig. 8. In this case the fit ansatz (35) cannot describe the

behavior well. It is possible to construct more complicated

fit functions which can capture the structure at intermediate

scales, but the limited numerical data makes it difficult to

see universal features. We leave the detailed analysis of the

Jouguet case for further analysis.

The peak angular frequency in units of the mean bubble

separation zp ¼ ðkR�Þmax is generally around 10, except

near the Chapman-Jouguet speed where it is larger.

Qualitatively this agrees with the estimate for the peak

frequency made in Ref. [8] fp ≃ 1.2β=vw, with the phase

transition rate parameter β≃ 3vw=R�. For a more precise

estimate we must take into account the fact that nucleating

bubbles simultaneously changes the effective transition rate

for a given R� [15], as outlined above. A power spectrum

peaking at ðkR�Þ ¼ zp in our simulations corresponds to a

true peak frequency

fp ≃
0.54

S

β

vw

zp

10
; ð40Þ

where S≃ 2 is a factor which takes into account the

overestimate of the frequency for a given R�.
In order to calculate the observed frequency of waves

emitted with frequency fp (40) at time tn when the Hubble

parameter was Hn, we note that the peak frequency today

can be written

fp;0 ¼
fp

Hn

Hn;0: ð41Þ

Here

Hn;0 ¼ 16.5

�

Tn

102 GeV

��

h�
100

�

1

6

μHz ð42Þ

is the Hubble rate at the nucleation temperature, redshifted

to today, assuming that the dominant source of energy

density is radiation. Hence

fp;0 ≃ 26

�

1

HnR�

��

zp

10

��

Tn

102 GeV

��

h�
100

�

1

6

μHz: ð43Þ

To obtain the amplitude of the gravitational wave power

spectra today, the power spectrum (21) and total power (23)

must be multiplied by a factor Fgw;0 ¼ Ωγ;0ðh0=h�Þ
1

3ðh0=2Þ,
where Ωγ;0 is the density parameter of photons today,

h0 is the effective number of relativistic degrees of freedom

contributing to the entropy today, and h� ≃ g� is the

corresponding number at the time of gravitational wave

generation.

Using the Planck best-fit value H0 ¼ 67.8�
0.9 km s−1 Mpc−1 [50], and the Far-Infrared Absolute

Spectrophotometer (FIRAS) temperature for the Cosmic

Microwave Background (CMB) Tγ;0 ¼ 2.725� 0.002 K

[51], we have

Fgw;0 ¼ ð3.57� 0.05Þ × 10−5

�

100

h�

�

1

3

: ð44Þ

Our final expression for the acoustic gravitationalwavepower

spectrum today is

dΩgw;0

d lnðfÞ ¼ 0.68Fgw;0Γ
2Ū4

f ðHnR�Þ ~ΩgwC

�

f

fp;0

�

: ð45Þ

FIG. 7. Power spectra of fractional energy density in gravitational waves for deflagrations with vw ¼ 0.44, divided by the ratio of the

mean bubble separation R� to the Hubble length at the transition Hn, and the ratio of the time to the Hubble time. The wave number is

scaled by the mean bubble separation. Left is a weak phase transition, right is an intermediate transition. Both have vw ¼ 0.44 and

Nb ¼ 84 (R� ¼ 1918=Tc).
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In Fig. 9 we show the signal-to-noise ratio expected at

a LISA-like gravitational wave observatory with 6 laser

links of arm length 2 Gm and a 5-year mission duration

[52] (intermediate between configurations C1 and C2

of the LISA Cosmology Working Group report [8]).

The SNR is shown as contours in the ðŪf ; HnR�Þ plane,

for a phase transition with a reference temperature of

Tn ¼ 100 GeV, and taking ~Ωgw ¼ 1.2 × 10−1. This value

reproduces the peak amplitude for the intermediate

strength transition with vw ¼ 0.92. It underpredicts the

power spectrum for the intermediate strength transition

at other wall speeds we simulated, and is therefore a

conservative estimate.

We also show contours of R�Hn=Ūf , which gives the

timescale for the appearance of shocks relative to the

Hubble time. We do not expect the acoustic gravitational

wave power spectrum to be an accurate description

for R�Hn=Ūf ≪ 1.

From the figure, we can conclude that, for a phase

transition at 100 GeV, LISA's peak sensitivity will be at a

mean bubble separation of about a hundredth the Hubble

length, at which scale an intermediate strength deflagra-

tion or detonation (Ūf ≃ 5 × 10−2) should produce a

SNR of around 10, taken as the detection threshold in

[8]. However, this is also in the region where one cannot

FIG. 8. Power spectra of fractional energy density in gravita-

tional waves for near-Jouguet deflagrations, vw ¼ 0.56, divided

by the ratio of the mean bubble separation R� to the Hubble

length at the transition Hn, and the ratio of the time to the Hubble

time. The wave number is scaled by the mean bubble separation.

All are weak transitions with Nb ¼ 11, 84, and 5376

(R� ¼ 1889=Tc, 1918=Tc, and 480=Tc).

TABLE V. The fit parameters of the ansatz (35). ðkR�Þmax is the

location of the maximum of the power spectrum, and A its

amplitude, along with the estimate from Eq. (39).

Type vw R� ðkR�Þmax A Aest

Weak 0.92 1918 8.6 1.4 × 10−11 1.9 × 10−11

0.80 1918 10.4 3.1 × 10−11 5.9 × 10−11

0.68 1918 18.3 8.1 × 10−11 14 × 10−11

0.44 1918 9.9 8.2 × 10−11 12 × 10−11

Int. 0.92 1918 8.5 1.6 × 10−7 2.7 × 10−7

0.72 1889 16.1 3.7 × 10−7 13 × 10−7

0.44 1918 6.9 4.3 × 10−7 5.3 × 10−7

FIG. 9. Signal-to-noise ratio (solid contours) for the model

power spectrum (35), using our acoustic peak gravitational wave

power estimate (39), with mission configuration described in the

text, and taking the nucleation temperature to be Tn ¼ 100 GeV.

Dashed lines show the ratio of the order of magnitude of the

shock appearance timescale R�Hn=Ūf . For ratios of order 1 the

fluid flow can be assumed to be purely acoustic, while for values

much less than 1, the fluid flow may become turbulent within a

Hubble time, and further investigation is required.
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safely assume that the fluid has not developed shocks.

Further simulations are required for a more accurate

determination of LISA’s ability to explore the parameter

space of phase transitions.

VII. CONCLUSIONS

We have performed the largest numerical simulations to

date of first order phase transitions in the early Universe,

and computed the resulting fluid velocity and gravitational

wave spectra for a range of bubble wall speeds vw, mean

bubble separations R�, and transition strengths αw. The

power spectra are more tightly pinned down than in our

previous campaign of simulations [21].

We observe a gravitational wave power spectrum with

a rising power law, a broad dome at kR� ¼ Oð10Þ, and a

decreasing power law at higher k. The dome widens to a

slowly rising plateau for bubble wall speeds close to the

speed of sound.

In the case of detonations the spectra exhibit a k−3 power
law in good agreement with the sound shell model [22],

but the high-k power law for deflagrations appears slightly

steeper.

We establish that there are two length scales in the

gravitational wave power spectrum: besides the mean

bubble separation R� there is also the mean sound shell

thickness ΔR� ¼ R�Δvw=cs. For a thin sound shell, where

ΔR� ≪ R�, the slowly rising plateau has a power law

consistent with the k1 predicted by the sound shell model.

We do not have sufficient computational volume to

determine the gravitational wave power spectrum at

kR� ≲ Oð1Þ, but the velocity power spectra for generic

wall speeds are consistent with k3 there, which should lead

to k5 in the gravitational waves. In the special case of a

just-subsonic deflagration, where the sound shell is very

thin, the velocity power spectrum is steeper than k3 for

kR� ≲ Oð1Þ. This is not in contradiction with the sound

shell model, which only gives k3 for kR� ≲ Oðjvw − csjÞ.
Our simulations are still not large enough to properly

resolve all the different wave number regimes simulta-

neously, and they reveal an interesting knee in the

velocity power spectra for deflagrations at high k. This
feature appears to be established at about the peak bubble

collision time tpc, where the area of the phase boundary

is at its maximum. Yet larger simulations are therefore

needed to resolve the full power spectrum, and a separate

simulation campaign to investigate the deflagration

power spectra.

We also need to run the simulations for longer, with

larger fluid velocities, in order to investigate the transition

to turbulence. Flows with larger fluid velocities become

turbulent earlier, and are likely to be important for the

gravitational wave signals observable by LISA.

However, for transitions which are weak enough that

turbulence does not develop, and have bubble wall speeds

not too close to the speed of sound, we are confident in the

form of the power spectrum, and offer the fitting for-

mula (35) for the gravitational wave power spectrum. This

can safely be used for RMS fluid velocities up to

Ūf ≲ R�Hn, or κvαθ ≲ ðHn=βÞ2 in terms of the kinetic

energy conversion efficiency κv and the transition strength

parameter αθ (see Eq. (31)).

Using the fitting formula, we computed the signal-to-

noise ratio at a LISA-like mission with 6 laser links, arm

length 2 Gm, and a duration of 5 years. At a transition

temperature of Tn ¼ 100 GeV, we find that such a

mission has greatest sensitivity to transitions with mean

bubble separation of about one hundredth of the Hubble

length. At this bubble separation, LISA will be able to

detect the signal from phase transitions down to latent

heat to energy ratio αw ≃ 0.1, i.e. intermediate strength in

our terminology.

We also checked the timescale for the development of

shocks and turbulence, finding that a significant fraction of

the detectable parameter space is in a region where one

cannot safely assume that the fluid flow remains linear.

Further simulations are required to examine the transition

to turbulence, necessary for a more accurate determination

of LISA’s ability to explore the parameter space of phase

transitions.

There is a range of extensions of the standard model

(SM), which could produce a gravitational wave signal in

reach of LISA [8]. Most of these models are extensions of

the SM Higgs sector by additional scalar fields, principally

SU(2) singlets or doublets, or modifications of the SM

Higgs potential itself. Furthermore, LISA could also probe

phase transitions in the TeV range, e.g. possible confine-

ment transitions in strong coupling completions of the

electroweak theory.

A strong phase transition in these models can either

come from 1, a modified zero temperature Higgs potential,

as is often the case in singlet extensions; or 2, additional

thermal contributions to the Higgs potential; or 3, a

combination of both, as, e.g. in the Two-Higgs-Doublet

model (2HDM). Models of type 2 and 3 will show a

stronger dependence of the nucleation rate on temperature

(via the energy of the critical bubble), which results in a

smaller value of β=H. So models of type 1 will have larger

bubbles at fixed α compared to types 2 and 3. As a result

models of type 1 may show a stronger gravitational wave

signal without reaching the state of turbulence.

Most of the models will show an observable gravitational

wave signal only when the walls propagate as fast deto-

nations, but there may be exceptions as has been shown,

e.g. for the 2HDM [53].

More generally, the fact that the shape of the gravita-

tional wave power spectrum depends on the bubble wall

speed means that it could become possible to determine

vw from a detection of the stochastic gravitational wave

background with sufficiently high signal-to-noise ratio.
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Delineating the ability of future space-based gravita-

tional wave detectors to constrain the full set of phase

transition parameters α, β, vw, and Tn of an electroweak-

scale first order transition, thereby opening a new quanti-

tative window onto physics beyond the Standard Model, is

now an important goal.
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