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Abstract

A new theoretical formulation is presented for the shape optimization problem
associated with maximizing or minimizing the diffusive scalar transport from a two-
dimensional body. In particular, we consider the diffusive transport of heat from an
isothermal body into a medium with constant temperature at the far-field. The for-
mulation also applies to mass and momentum transport. The diffusion problem, which
is governed by the Laplace equation, is addressed using conformal mapping techniques
where the two-dimensional domain is mapped onto a simpler domain where an ana-
lytical solution can be readily obtained. The objective function of the optimization
problem is the length of the object in the transformed domain and the variables of the
optimization are the parameters of the Schwarz-Christoffel transformation. The length
of the object in the transformed domain is related to the scalar displacement, which
corresponds to a far-field temperature drop or rise (slip velocity in case of momentum
transport), that depends on the shape of the body and it quantifies the enhancement or
reduction in transport rate. The mathematical formulation is validated by addressing
two fundamental shape optimization problems associated with maximizing or minimiz-
ing the transport rate (drag in case of momentum transport) from a two-dimensional
body of unit span: i) for a given surface area to obtain the shape that maximizes the
transport rate from a body, ii) for a given volume to obtain the shape that minimizes
the transport rate from a body. For both cases we compute numerically that the cylin-
der is the optimal shape. The versatility of the formulation is further demonstrated by
including constraints with respect to the length of the body.
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1 Introduction

Determining the shape or surface geometry that maximizes or minimizes (extremizes) trans-
port is of fundamental importance in many engineering applications [27, 2]. For example:
obtain the optimum shape of a condenser plate [23, 17], the design of minimum seepage
loss canals [16, 29], drag reduction in external flows [5], minimization of the thermal resis-
tance of an inverted fin intruding into a conducting wall [3]. From a mathematical point
view, computing the shape (iso-perimetric extremum) that extremizes the transport rate
suggests a challenging problem of constrained optimization. In this work, using the Schwarz-
Christoffel transformation, the problem is formulated as a nonlinear programming problem
(constrained nonlinear optimization [10, 21]) i.e., find the constrained extremum of a scalar
function of several variables.

The particular shape optimization problem we address in this work has not been previ-
ously investigated. We consider the shape optimization problem associated with optimizing
the scalar diffusive transport from a two-dimensional body embedded into a medium with
a constant temperature at the far-field. The problem, which is governed by the Laplace
equation, is addressed using conformal mapping techniques [4, 26, 6, 22] and in particu-
lar the Schwarz-Christoffel transformation [8] through which the two-dimensional object
is mapped onto a strip. The objective function of the optimization problem is the length
of the strip in the transformed domain, which is related to the scalar displacement, and
the variables of the optimization are the parameters of the Schwarz-Christoffel transfor-
mation. The shape optimization problems are addressed through numerical optimization
[10, 21] which can handle complicated geometrical constraints and demonstrates that the
formulation is robust, tractable and versatile.

The scalar displacement [12] corresponds to a temperature/concentration profile dis-
placement in the case of heat/mass transport [12] or a slip velocity in the case of momentum
transport [28, 19, 18, 25] and it quantifies the enhancement or reduction in transport rate
[1, 20]. This claim is justified in [12], however is repeated here for ready reference: consider
diffusive heat transport from a flat surface located at y = 0 held at a constant temperature
T0, subject to a fixed transport rate, q′′, into the infinite overlying medium. Elementary
analysis shows that the temperature profile is given by T = T0 + γy, where γ = −q′′/κ is
the ratio of the flux q′′ to the medium thermal conductivity κ. If the surface is not perfectly
flat, then, a non-linear temperature field is established (T̃ ) and the temperature profile far
from the surface is modified to obtain the form T̃ (y → ∞) ∼ T0 + γ̃y + ∆TD, where ∆TD

represents the temperature displacement. The value of the displacement is directly related
to the shape of the surface and has very significant ramifications on the transport rate.
This can be justified if we replace the Neumann far-field condition with a Dirichlet bound-
ary condition, i.e. instead of specifying the flux at the far-field we specify the temperature.
Hence, we consider the problem where a planar surface held at a constant temperature T∞

is placed at the far-field, i.e. a distance d where d is sufficiently large. For the flat surface
the flux, γ, is equal to

γ =
T∞ − T0

d
,
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and for the non-flat surface the average flux, γ̃, is equal to

γ̃ =
T∞ − (T0 + ∆TD)

d
.

A negative value of ∆TD, i.e. an effective surface temperature decrease, would constitute
an enhancement in transport rate while a positive value would constitute a reduction in
transport. This example illustrates how the value of ∆TD quantifies the effect of the surface
geometry on the transport rate. Hence, an extremum of the scalar displacement is equivalent
to an extremum of the net transport rate.

Motivated by the example outlined in the preceding paragraph, we consider the diffusive
transport of heat from an isothermal body into an infinite medium with a constant heat
transfer rate at the far-field. The governing equation is the Laplace equation with Dirichlet
boundary condition over the body and constant heat flux at the far-field. Even though
we consider heat transport, the analysis also applies to mass and momentum transport.
With respect to momentum transport the formulation models the uni-directional, shear
flow along a two dimensional body with constant shearing rate at the far-field [26, 22]. The
main objective is to obtain the shape that would lead to an optimum transport rate. The
physical arguments of the optimization strategy are as follows. The local transport rate
is proportional to the local surface area, hence we expect that an increase in the surface
area will result in a higher overall transport rate. However, the local transport rate is also
proportional to the local scalar gradient which directly depends on the shape of the surface
element, hence, both the area and the shape of the surface element affect the increase
or decrease in the transport rate. These arguments comprise the rationale of the physics
behind the optimization strategy: find the optimal shape such that the distribution of the
scalar gradient on the surface contributes to an optimal overall transport rate.

In the next Section (Section §2) we formulate the problem using the conformal mapping
method. In Section §2.1 we pose the shape optimization problems. Our objective is twofold:
i) given the surface area of the body to find its shape such that the transport rate is
maximized and ii) given the volume of the body to find its shape such that the transport
rate is minimized. The former is associated with maximizing the transport rate given the
perimeter length of the cross-sectional profile while the latter is associated with minimizing
the transport rate given the cross-sectional area. In Section §3 we present our numerical
findings and we summarize our findings in the last Section §4.

2 Formulation

We consider steady, homogeneous, diffusive transport from a two dimensional, symmetric,
isothermal body with a constant heat transfer rate at the far-field (Figure 1). To fix ideas
we will refer to heat transport. However, the analysis also applies to mass and momentum
transport. With respect to momentum transport the formulation models the uni-directional,
shear flow, along a two dimensional body with constant shearing rate at the far-field. The
governing equation is the Laplace equation, ∇2f = 0, where f(x, y) might represent the
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Figure 1: Schematic representation of the model problem along with boundary conditions.
The field f might represent the temperature field T , or the concentration field C, or the
velocity w (the velocity is along the body, i.e. normal to the x − y plane). The boundary
conditions are Dirichlet boundary conditions over the surface (f = 0) and Neumann bound-
ary condition over the rest of the x-axis. The latter is dictated by the symmetry of the
body.

temperature field T (heat transport), or the concentration field C (mass transport), or
the velocity w (momentum transport, where w is normal to the x, y plane). The constant
transfer rate at the far-field implies that ∂f/∂r(r → ∞) = 1/r. The symmetry of the
body with respect to the x-axis leads to the following boundary conditions (Figure 1);
Dirichlet boundary conditions over the surface (f = 0) and Neumann boundary condition
over the rest of the x-axis (∂f/∂y = 0). Here, we have non-dimensionalized the lengths
with a characteristic length ` and the scalar field f with q/(κ2πL), where q represents the
transport rate, κ is the diffusion coefficient (e.g. conductivity) and L = 1 (unit span).

As described by Driscoll and Trefethen [8], polygonal segments in the physical plane
are mapped into a straight wall in the computational plane using the Schwarz-Christoffel
transformation

dz

dw
= R

j=N∏

j=0

(w − wj)αj , (1)

where the product identifies the number of elements N . In the above transformation wj are
the images of the zj vertices (Figure 2), παj are the turning angles which are taken to be
positive for the clockwise rotation, α0 and αN are defined with respect to the x-axis, and
R is a complex constant. For the configurations we will be considering, the x-axis is the
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boundary at ±∞ hence ∑

j

αj = 0. (2)

Two points may be chosen arbitrarily. This choice is accomplished by placing the origin
of the transformed domain at the origin of the physical domain and by setting the extra
condition that at the far-field dz = dw, i.e. R = 1. In view of these choices and upon
integration, the transformation takes the form

z(w; α) =
∫ w

0

j=N∏

j=0

(θ − wj)αj dθ, (3)

where α represents the N+1-tuple (α0, α1, α2, . . . , αN). The difficulty of the transformation
(3) is that the parameters wj do not appear explicitly, but given the physical domain and
hence the angles παj , a system of non-linear equations must be solved for the unknown
parameters wjs [8]. Davis [7] also suggested that these constants can be efficiently deter-
mined through a method of successive approximations. However, in this analysis this is not
necessary as we are dealing with the inverse problem, i.e. we are trying to determine the
angles παj while the locations of the points wj can be preassigned.

Subsequently, the upper half of the w-plane is mapped into the upper half-strip −π/2 <
u < π/2 of the ζ-plane (Figure 2) through the transformation

2 w

wN
− 1 = sin ζ, (4)

where ζ = u + iv. Under this transformation (elliptical coordinates) the solution is simply
f = v (see appendix A). At the far-field the temperature field behaves asymptotically as
f(|w| → ∞) ∼ ln(2

√
2|w|)/wN (see appendix A). An analysis similar to the one outlined

in the Introduction (§1) will justify that wN is related to the scalar displacement and
consequently to the enhancement or reduction in the transport rate from the body; a larger
wN constitutes enhancement while a smaller constitutes reduction. Hence, the objective
function of the optimization procedure is wN .

For reasons that will be apparent subsequently and in view of equation (2), we normalize
z, w and θ with respect to wN

ẑ(ŵ; α) =
∫ ŵ

0

j=N∏

j=0

(θ̂ − ŵj)αj dθ̂.

Note that the variable ẑ does not depend explicitly on wN . In what follows we define ẑi,
which represents the location of the normalized vertices in the physical domain, through:

ẑi = ẑi(α) = ẑ(ŵi; α) =
∫ ŵi

0

j=N∏

j=0

(θ̂ − ŵj)αj dθ̂ (5)

where, as mentioned earlier, the ŵis (and ŵjs) are preassigned; for example equispaced
points (N+1-tuple) between 0 and 1.
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Figure 2: Mapping of a polygon in the physical z-plane into the upper half-strip −π/2 <
u < π/2 of the ζ-plane. The boundary conditions are Dirichlet (f = 0) over the body (thick
solid lines) and Neumann along the symmetry line (dashed lines). Horizontal lines in the
ζ-plane are isothermal lines and the figures illustrate their transformation under the SC
transformations.

2.1 Optimization

In what follows we develop two optimization strategy in order to extremize wN subject to
certain geometrical constraints. The constraints are necessary in order to achieve a solution
because each value of wN would correspond to an infinite number of shapes. We define P
as the dimensionless perimeter, i.e. the perimeter divided by the characteristic length scale
`, of the polygonal segments associated with the half-body

P (α) = wN

N−1∑

i=0

|ẑi+1 − ẑi|, (6)
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and the dimensionless area A, i.e. the area divided by the square of the characteristic length
scale `2, associated with the half-body:

A(α) = w2
N

N−1∑

i=0

Im(ẑi+1 + ẑi)
2

Re(ẑi+1 − ẑi) =
w2

N

2

N−1∑

i=0

(ŷi+1 + ŷi) (x̂i+1 − x̂i). (7)

We proceed to formulate the optimization problems with respect to wN as justified in
the previous sections. Maximizing the transport rate, given the perimeter length of the
cross-sectional profile of the body, is equivalent to maximizing wN . In view of equation (6)
the problem is formulated as follows:

minimize
∑N−1

i=0 |ẑi+1 − ẑi|
α (8)

subject to the constraints ∑
i αj = 0

Im(ẑN) = ŷN = 0.
(9)

A similar approach can be employed to define an optimization problem with respect to
the area. The difference is that trying to maximize transport rate for a prescribed area
would lead to a shape with spikes. Therefore we pose a minimization problem with respect
to the transport rate or equivalently we minimize wN given the cross-sectional area of the
body. In view of equation (7) the problem is formulated as follows:

maximize
∑N−1

i=0 (ŷi+1 + ŷi)(x̂i+1 − x̂i)
α (10)

subject to the constraints ∑
i αi = 0

Im(ẑN) = ŷN = 0.
(11)

The geometrical constraints, as expressed through equations (9) and (11) are necessary
in view of the specific problem we are addressing (see Figures 1 and 2).

3 Model calculations

In general, the computation of the shape (iso-perimetric extremum) that extremizes the
transport rate suggests a challenging problem of constrained optimization. In this work,
using conformal mapping techniques [8], the shape optimization problems (8 and 10) are for-
mulated as nonlinear programming problems (constrained nonlinear optimization, [10, 21]),
i.e. finding the constrained extremum of the scalar function of several variables wN (α).
Attempting to prove the existence of a global extremum or developing a specialized numer-
ical technique, is beyond the scope of this work. Rather, our main objective is to address
the fundamental problem of shape optimization for 2-dimensional diffusive scalar trans-
port. Experimentation has shown that the Optimization Toolbox of MATLAB [21, 11, 14]
is successful in addressing the shape optimization problems considered in this work.
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Figure 3: Optimal shapes obtained numerically using the optimization algorithm outlined in
section §2.1. The points were obtained using an optimization procedure and the solid curves
correspond to a semicircle. (a) Transport rate maximization given a two-dimensional body
of unit perimeter length, i.e. the semicircle has a radius r = 1/(2 π), (b) Transport rate
minimization given a two-dimensional body of unit cross-sectional area, i.e. the semicircle
has a radius r =

√
1/π.

In our numerical optimization, both the objective function and the nonlinear constraints
require the evaluation of the integral ẑi (equation 5) which has integrable power-law sin-
gularities. This is achieved through Gauss-Jacobi quadrature as outlined by Driscoll and
Trefethen [8, 9]. As we have mentioned earlier, the shape optimization problem is an in-
verse problem in the sense that while the classical approach is to compute the wis for a
given shape, i.e. the angles αis are known, what is needed here is to compute the shape,
i.e. both wis and αis. Experimentation has shown that the shape optimization problem can
be successfully addressed by choosing the wis and computing the αis through optimization.
Furthermore, choosing the wis to be equispaced proved to be adequate except near large
slopes, i.e. when αis are large, where we included some extra points in order to improve
the accuracy. The computations were performed on a personal computer and converged
usually within 10-20 iterations, while a complete calculation did not require more that 5-10
minutes of CPU time. Hence, we did not consider necessary to include explicit expressions
for the gradient of the objective function and the constraints. As a starting vector we have
used α = 0, however the accuracy of the converged solution was verified by repeating the
calculation with smaller tolerances and a different starting vector.

The shape optimization problems posed in the previous section are solved to obtain that
the cylinder is the optimal shape (see Figures 3a and 3b) for both, the transport maximiza-
tion and minimization [17] problems, which is not surprising in view of the isoperimetric
theorem [24].

The optimization procedure is further employed to obtain the optimal shapes given the
length of the body. Subsequently, this length is used as the characteristic length in the
non-dimensionalization (`), and an additional constraint is included:

Re(ẑN) = x̂N =
1

wN

. (12)
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To circumvent the complication that the minimization variable (objective function) wN

now appears in the constraint we modify the numerical procedure: we assume a value for
wN , and the optimization procedure now provides the value of the dimensionless perimeter
length (6) in the case of maximizing the transport rate, or the dimensionless area (7) in
the case of minimizing the transport rate. This procedure suggests that maximizing the
transport rate given the perimeter length of the 2D shape is equivalent to minimizing the
length given the transport rate. Conversely, minimizing the transport rate given the area
of the 2D shape is equivalent to maximizing the area given the transport rate.

In Figure (4a) we show the optimal curves obtained from the numerical solution of
the transport maximization problem (shape optimization problem 8) with the additional
constraint (12). Three different cases were investigated, wN = 1.3, 2 and 3, which correspond
to the bottom, middle and top curves, respectively. The solid points connected with dotted
curves correspond to the zjs obtained through numerical optimization. For values of wN < 2
the optimal curves resemble arcs of circles shown on the bottom curve of Figure (4a). When
wN = 2 we obtain a semi-circular shape (Figure 4a middle curve); this value can be verified
using the Joukowsky transformation. For values of wN > 2, the optimization produces
shapes beyond the allowable length, consequently we have to include the extra constraint
0 ≤ x̂i ≤ 1/wN . The optimal shapes (Figure 4a top curve) have vertical sides with a
semielliptical-like top.

In Figure (4b) we show the optimal curves obtained from the numerical solution of
the transport minimization problem (shape optimization problem 10) with the additional
constraint (12). Similar to Figure (4a), we have used the following values for wN = 1.3, 2
and 3, which correspond to the bottom, middle and top curves, respectively. For values
of wN < 2 we have to include the extra constraint ŷi > 0 as the optimization produces
non-realistic results. In this range, i.e. wN < 2, the optimal shapes (Figure 4b bottom
curve) have flat edges and attain higher values than the respective maximal transport
shapes (Figure 4a bottom curve). For wN = 2, as expected, we obtain a semi-circular shape
(middle curve). For values wN > 2 the optimization produces shapes beyond the allowable
length consequently we have to include the extra constraint 0 ≤ x̂i ≤ 1/wN . Similar to the
maximization problem (Figure 4b top curve), the optimal shape has vertical sides however
it is flatter.

The results demonstrate that the formulation is robust, tractable and versatile. The
success of the technique relies on the conformal mapping through which the problem com-
plexity is transferred to the mapping function. It can be successfully applied to bounded
domains [13], periodic domains and problems with more complicated boundary conditions.

4 Conclusions

We have addressed the shape optimization problem associated with diffusive transport of
heat from a two-dimensional, symmetric body embedded in a medium with a constant
temperature at the far-field. The analysis also applies to mass and momentum transport.
The objective is to obtain the shape that extremizes the transport rate. The objective
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Figure 4: Optimal curves associated with maximizing (Figure a) or minimizing (Figure
b) the transport rate with the additional constraint that the length of the body would
not exceed a certain value. The optimal curves, for both maximization and minimization
problems, coincide for wN = 1 (a straight line from the origin to the point (0,1)), and for
wN = 2 (a semi-circle, middle curves). In the figures we show results for wN = 1.3 (bottom
curves) and wN = 3 (top curves). The points connected with dotted curves correspond to
the numerical results while the solid curves to arcs of circles.

function, of the shape optimization procedure, is the scalar displacement which amounts to
a macroscopic temperature drop or rise (slip velocity in the case of momentum transport)
that depends on the geometry of the body and quantifies the enhancement or reduction in
transport associated with a particular shape.

In order to obtain an expression for the scalar displacement we consider the problem of
heat conduction from an isothermal body, into an infinite medium, due to a constant heat
transfer rate at the far-field. With respect to momentum transport the formulation models
the uni-directional, shear flow, along a two dimensional body with constant shearing rate
at the far-field. Using the Schwarz-Christoffel transformation the body is mapped onto a
strip where the Laplace equation has an analytical solution. The length of the strip in the
transformed domain is identified to be related to the scalar displacement and is used as the
objective function in the optimization problem, and the variables of the optimization are
the parameters of the Schwarz-Christoffel transformation. The shape optimization problem
is addressed numerically and validated by addressing two fundamental problems: i) given
the perimeter length of a two-dimensional surface, to obtain the shape that maximizes
transport rate and ii) given the cross-sectional area of a two-dimensional surface to obtain
the shape that minimizes the transport rate. In both cases, we have obtained that the
cylinder (circle) is the optimal shape. The formulation was supplemented with an additional
geometrical constraint in order to include limitations with respect to the length of the body.
The numerical results demonstrate the versatility and the robustness of the formulation,
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which can complicated geometrical constraints. The success of the technique relies on
finding an appropriate conformal map such that the solution of the Laplace equation in
the transformed domain is easier to obtain; analytically or numerically. We believe it can
be successfully applied to bounded domains, periodic domains and problems with more
complicated boundary conditions.

The physical arguments of the optimization strategy are as follows. The local transport
rate is proportional to the local surface area, hence we expect that an increase in the surface
area will result in a higher overall transport rate. However, the local transport rate is also
proportional to the local scalar gradient which directly depends on the shape of the surface
element, hence, both the area and the shape of the surface element affect the increase
or decrease in the transport rate. These arguments comprise the rationale of the physics
behind the optimization strategy: i) given the perimeter length of the cross-sectional profile
of a two-dimensional body, find the optimal shape such that the distribution of the scalar
gradient on the surface contributes to maximal overall transport rate, ii) given the the cross-
sectional area of a two-dimensional body, find the optimal shape such that the distribution
of the scalar gradient on the surface contributes to minimum overall transport rate.
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A Appendix: Solution in elliptical coordinates

The transformation between the w-plane and the ζ-plane (equation 4) can be expanded in
real and imaginary parts as follows

2 (ξ + iη)
wN

− 1 = sin(u + iv),

to obtain:
2ξ

wN
− 1 = cosh v sinu,

2η

wN
= sinh v cosu.

At the far-field, i.e. large v, above expressions simplify to:

ξ ∼ wN

4
exp v sinu, η ∼ wN

4
exp v cosu.

In addition, z ∼ w at the far-field in view of equation (3) hence,

|z| = r ∼ |w| =
√

ξ2 + η2 ∼ wN√
8

exp v.

From the above asymptotic expression we obtain the following approximations at the far
field:

v ∼ ln
√

8 r

wN
, hence

∂

∂r
∼ ∂

∂v

∂v

∂r
=

1
r

∂

∂v
.
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The solution that satisfies the boundary conditions is simply f = v.
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