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SUMMARY

In this paper we further develop an approach previosuly introduced in [23] for shape optimization that

combines a suitable low-dimensional parametrization of the geometry (yielding a geometrical reduction)

with reduced basis methods (yielding a reduction of computational complexity). More precisely, free-

form deformation techniques are considered for the geometry description and its parametrization, while

reduced basis methods are used upon a finite element discretization to solve systems of parametrized partial

differential equations. This allows an efficient flow field computation and cost functional evaluation during

the iterative optimization procedure, resulting in effective computational savings with respect to usual shape

optimization strategies. This approach is very general and can be applied to a broad variety of problems. In

this paper we apply it to find the optimal shape of aorto-coronaric bypass anastomoses based on vorticity

minimization in the down-field region. Blood flows in the coronary arteries are modelled using Stokes

equations; afterwards, results have been verified in feedback using Navier-Stokes equations. Copyright c©

2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND MOTIVATION

The efficient solution of optimal control or shape optimization problems involving partial

differential equations (PDEs) is a problem of interest for computational scientists in many

applicative contexts. The goal is the minimization/maximization of a given cost functional under

constraints (algebraic, topological or differential), the control being represented by either suitable

variables (such as sources, model coefficients or boundary values) or the shape of the domain itself.
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2 A. MANZONI ET AL

In this paper we focus on the latter class of problems referred as shape optimization or optimal

shape design problems [2, 18, 24, 27]. In fluid mechanics, cost functionals are expressed in terms

of flow variables (such as velocity, pressure, temperature, etc.), while constraints are represented

by the PDE (advection-diffusion, Stokes or Navier-Stokes equations, etc.) describing the flow, and

by topological constraints on the shape of the domain, whenever necessary. In a broad variety

of applications the design of devices able to reduce drag forces, dissipations or stresses greatly

enhances the efficiency of a system. The reduction of drag in transportation vehicles (aircrafts,

watercrafts) and of vorticity and stresses in biomedical devices, and the compliance minimization

in cantilevers or membranes, represent further instances in which shape optimization techniques

are called into play.

For the numerical solution of these problems, efficient procedures are required since (i)

PDEs are expensive to solve when solutions need to capture fine details (such as velocity and

thermal boundary layers, vorticity structures, etc.); (ii) the finite element assembling discretization

procedures result expensive when problem geometry keeps changing; (iii) optimization requires

recursive evaluations of the cost functional. For example, a classical shape optimization algorithm

based on explicit boundary displacement can provide accurate solutions at the expence of being

very unefficient since at each step PDEs have to be solved for a new geometrical configuration. A

key to simplification consists of making use of a reference configuration on which every problem is

brought back and solved at each iteration of the optimization process, and geometry variations are

accounted for the equation coefficients.

The introduction of a suitable (low-dimensional) shape parametrization is thus instrumental to

reduce both the geometrical and computational complexity. Obviously, shape parametrization has to

be flexible enough to describe a wide family of admissible shapes without substantially increasing

the number of parameters and, at the same time, it should be computationally efficient to allow for a

fast solution of the parametrized PDEs. Free-form deformation (FFD) techniques [3, 7, 42] provide

a powerful tool for representing global and smooth deformations acting on a small number of

design parameters. Once the shape has been parametrized, we solve iteratively a partial differential

(state) equation and evaluate the cost functional we want to minimize on the parametric domain.

To do this, we rely on reduced basis (RB) methods for parametrized partial differential equations

(P2DEs) (see the review papers [31, 37]). Thanks to a suitable computational Offline-Online

decomposition (see Sec. 5), RB methods provide rapid and reliable results at a greatly reduced

cost, and are well-indicated above all in real-time (e.g. parameter estimation) and multi-query (e.g.

optimization, control) contexts. The combination of FFD techniques with RB methods previously

considered in [23, 38] allows a considerable geometrical saving (because of the low number of

design parameters) as well as computational reduction (thanks to the reduced dimension of the

linear system associated to the resulting discretized problems).

Let us recall the proposed approach to parametric shape optimization. First we introduce the

mathematical formulation for parametric PDEs problems. Then, a suitable parametrization of

the geometry is obtained by using free-form deformation (FFD): this technique allows to build a

parametric map through which we reformulate our original problem on a reference configuration,

resulting in a parametrized problem where the effect of geometry variations is traced back onto
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SHAPE OPTIMIZATION FOR VISCOUS FLOWS BY RB METHODS AND FFD 3

its parametrized transformation tensors. Since FFD techniques lead (in general) to non-affinely

parametrized transformations of the computational domain, we approximate their components by

means of affinely parametrized tensors, through the empirical interpolation method (EIM) [4]. In

this way, we can perform a suitable Offline-Online computational strategy, through which reduced

basis approximation gives a rapid and reliable field solution and cost functional evaluation. At the

outer level, this is used in a suitable iterative procedure for the (now, parametric) optimization.

This combined approach is rather general and can be used in a broad variety of applications. To

provide a proof of its efficacy, in this paper we apply it to the design of cardiovascular prostheses

in biological flows. More specifically, the design of a bypass graft has been formulated as a shape

optimization and flow control problem in [33] and later studied using small perturbation techniques

and asymptotic developments in Agoshkov et al. [1]. The RB framework applied to the Stokes

problem approximation has been used to study a simple bypass design problem in presence of

either affine or nonaffine shape parametrization, treating some shape geometrical dimensions as

design parameters (see [34, 35, 40]).

In this paper we aim at extending this framework [23,38] by considering more complex applications,

geometrical configurations and viscous equations (still not addressed in the mentioned references).

Not only, we show how to handle more general shape parametrizations in order to either (i) enrich

the family of possible shape configurations, and (ii) combine the RB framework with less ad-hoc

tools for an efficient shape treatment, where (possibly) the parametric shape deformations result

independent of the problem geometry, the flow model and the computational mesh. The approach

we propose is in fact based on the coupling of three different tools – free-form deformation,

empirical interpolation and reduced basis methods – and applied to steady incompressible Stokes

equations. After the shape optimization procedure is carried out, an “a posteriori” high-fidelity

feedback using Navier-Stokes equations is provided.

This combined “RB+FFD” approach features several advantages: it is very flexible, it involves

the solution of low dimensional problems (with low geometrical dimension), yielding substantial

computational savings without sacrificing numerical accuracy, even when addressing complex

shape optimization problems. Needless to say, techniques and methods discussed in this work

prove to be useful also in facing other optimization problems arising in haemodynamics and, more

generally, in computational fluid dynamics.

The paper is organized as follows. In Sec. 2 we address an abstract formulation of our proposed

reduction strategies for shape optimization problems. Then we recall the optimal bypass design

problem in Sec. 3, providing a quick review of some bio-engineering aspects in Appendix A. In

Sec. 4 and Sec. 5 we introduce the two ingredients standing at the basis of our reduction strategy,

i.e. free-form deformation techniques for shape parametrization and reduced basis methods for flow

simulation. In Sec. 6 we present our numerical procedure; then, we present in Sec. 7 some numerical

results, address a brief comparison with results from literature and propose a feedback procedure.

In the last Sec. 8 we sketch some possible future developments and improvements.
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4 A. MANZONI ET AL

2. MODEL ORDER REDUCTION FOR SHAPE OPTIMIZATION

The motivation inspiring this paper is the optimal design of a biological bypass (e.g. a coronary

bypass). In this context, one should ideally aim at (i) real-time (since we could be interested in a very

rapid solution) and a (ii) many-query (because of repetitive evaluations of different configurations)

context. In this scenario, suitable parametrization techniques and RB methods allow to substantially

enhance the method efficiency. Although in this paper we will not address the whole complexity

hindered by such a challenging problem, yet we set up a mathematical approach that is apt at facing

(simplified) problems of the same nature.

2.1. A general reduced framework for shape optimization

From an abstract point of view, shape optimization problems can be written as the minimization,

over a set of admissible shapes Oad,

find Ω̂o = arg min
Ω∈Oad

Jo(Y (Ωo)) (1)

of a cost functional J (Y (Ωo)) depending on the solution Y = Y (Ωo) of a state problem (e.g. under

weak form)

Y ∈ Y(Ωo) : Ao(Y,W ) = Fo(W ), ∀W ∈ Y(Ωo); (2)

Ao(·, ·) is a bilinear form and Fo(·) is a linear form, both defined on the original domain Ωo where

the problem is defined; Y(Ωo) denotes a suitable functional space defined over Ωo. Assuming that

the shape Ωo depends on a set of input parameters µ = (µ1, . . . , µp) ∈ D ⊂ R
p, problem (1)-(2) can

be reduced to the following parametric optimization problem:

find µ̂ = arg min
µ∈Dad

Jo(Y (µ)) (3)

where Dad ⊆ D and Y (µ) solves

Y (µ) ∈ Y(Ωo(µ)) : Ao(Y (µ),W ;µ) = Fo(W ;µ), ∀W ∈ Y(Ωo(µ)). (4)

Our proposed approach to solve shape optimization problems is as follows. First we express

the shape as a function of some parametric input µ, by means of a suitable parametrization of the

geometry; in this way, an equivalent parametrized formulation of the flow problem – now embedding

the shape as a parametric quantity – can be derived. At this point, we take advantage of the reduced

basis (RB) method for parametrized PDEs [37], which provides the possibility to evaluate the output

Jo(·) very rapidly. At the outer level, an iterative procedure for the optimization is performed,

now involving a very reduced version of the original problem. The RB method is premised upon

a classical finite element (FE) method “truth” approximation space YN of (typically very large)

dimension N and is based on the use of “snapshot” FE solutions of the PDEs, corresponding to

certain parameter values, as global approximation basis functions previously computed and stored.

The RB framework thus requires a reference (parameter independent) domain Ω in order to compare,

and combine, FE solutions that would be otherwise computed on different domains and grids.

Moreover, this procedure enables to avoid shape deformation and remeshing that normally occur
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SHAPE OPTIMIZATION FOR VISCOUS FLOWS BY RB METHODS AND FFD 5

at each step of an iterative optimization procedure. The reference domain Ω is related to the original

domain Ωo(µ) through a parametric mapping T (·;µ), such that Ωo(µ) = T (Ω;µ). By tracing the

problem (3)-(4) back on the reference domain Ω, we obtain the following parametrized formulation:

find µ̂ = arg min
µ∈Dad

s(µ) = J (Y (µ)) s.t.

Y (µ) ∈ Y : A(Y (µ),W ;µ)=F(W ;µ), ∀W ∈ Y.
(5)

Following the so-called discretize than optimize approach [16], the standard Galerkin FE

approximation of (5) is as follows:

find µ̂ = arg min
µ∈Dad

sN (µ) = J (Y N (µ)) s.t.

Y N (µ) ∈ YN : A(Y N (µ),W ;µ)=F(W ;µ), ∀W ∈ YN .
(6)

The reduced basis method provides an efficient way to compute an approximation YN (µ) of Y N (µ)

(and related output) by using a Galerkin projection on a reduced subspace made up of well-

chosen FE solutions, corresponding to a specific choice SN = {µ1, . . . ,µN} of parameter values.

Indicating the RB space by

YN
N = span{Y N (µn), n = 1, . . . , N}, (7)

the RB formulation of (5) is as follows:

find µ̂ = arg min
µ∈Dad

sN (µ) = J (YN (µ)) s.t.

YN (µ) ∈ YN
N : A(YN (µ),W ;µ)=F(W ;µ), ∀W ∈ YN

N .
(8)

Thanks to the (considerably) reduced dimension O(N) ≪ O(N ) of the linear systems obtained

from RB approximation, we can provide both reliable results and rapid response in the real-time

(e.g. parameter estimation) and multi-query contexts (e.g. optimal design/control).

2.2. Reduced shape representations

As anticipated in [23], a crucial point in shape optimization is the definition of the set of admissible

shapes under which optimization can be performed. Following an increasing level of reduction,

three different approaches can be envisaged:

- Topological Shape Optimization: in the most general case, we deal with the optimization of

a shape by acting, during the optimization process, both on the position of its free boundary

and on its topology [2, 9], as for example the inclusion of holes.

- Geometrical Shape Optimization: very often, the problem is formulated as the minimization

of a cost functional (depending on both the shape and the solution of a PDE system) on a set

of shapes with fixed topological properties; the position of the domain boundary under control

is changed during the optimization process [43].

- Parametric Shape Optimization: this third approach is based on the possibility to describe the

shape by means of some input parameters [2] and it is naturally the best framework where
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6 A. MANZONI ET AL

reduced basis methods for P2DEs can be exploited. Depending on the role played by input

parameters, we can obtain three different subcases, depicted in Fig. 1:

1. input parameters represent geometrical properties (e.g. lenghts, angles, diameters, etc.)

that identify different configurations in a family of shapes chosen a priori. In this way

we obtain a simple but often restrictive description of domain shapes. For example, in

previous works [34, 37, 40] bypass configurations have been modeled as “T-shaped”

domains with a curved incoming branch;

2. input parameters are variables describing shape boundary, by means of explicit

boundary parametrization or else involving given shapes families (such as Bézier curves,

B-splines [5], etc.). The family of admissible shapes is wider, however deformations still

depend on reference configuration and computational mesh;

3. input parameters are free-form parameters, such as perturbations applied to a lattice of

mesh-independent control points [3,7,42]. In this case design parameters are not directly

connected to geometrical properties, neither to the shape boundary we want to optimize.

In general, parametric shape optimization framework yields complexity reduction w.r.t.

geometrical shape optimization (see the review [39] for a comparison of different options).

In particular, free-form deformation techniques realize a very good trade-off between shape

flexibility and using a low number of parameters, allowing therefore to achieve global

computational efficiency by using a low dimensional optimization space [24]. A detailed

description of this method will be provided in Sec. 4.

Figure 1. Different parametrization approaches: input parameters as geometrical properties (left), as
variables describing shape boundary through a shapes family (middle), as free-form parameters (right).

By suitable parametrizations, shape optimization problems can thus be recast as optimal control

problems dealing with geometrical (or design) parameters as control variables. The problem we

consider in this work is related both to optimal design and flow control [16, 17, 27]; in the next

section we present some aspects dealing with bypass surgery useful for drawing the mathematical

formulation of the problem.

3. MATHEMATICAL MODELLING OF THE BYPASS PROBLEM

In this work we want to improve the results obtained in [33] by developing new tools of model order

reduction (not considered in [1, 33]), and formulating the problem as a suitable parametrized shape

optimization problem (as will be explained in Sect. 4). We aim at demonstrating the potential role of

shape optimization techniques in designing bypass grafts, coupled with (i) suitable low-dimensional

shape parametrization techniques for the configuration description and (ii) reduced basis methods

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
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SHAPE OPTIMIZATION FOR VISCOUS FLOWS BY RB METHODS AND FFD 7

for the solution of parametric PDE problems. The reader interested in medical and bio-engineering

aspects related to the aorto-coronaric bypass problem can refer to Appendix A.

In the perspective of using low order methods for shape optimization featuring reasonable

computational time, we adopt the steady Stokes equations (rather than the more appropriate Navier-

Stokes equations, which are going to be used as “high fidelity” validation in feedback) for modelling

low Reynolds blood flow in mid size arteries [13,33], like e.g. the coronary arteries. Besides, because

of flow pulsatility we should consider unsteady equations during shape optimization with quantities

averaged in time; however such a model would be too expensive from a computational point of view

and its practical implementation in a shape optimization context.

3.1. Geometry description, state equations and system observation

To model the incoming branch of a bypass we consider a longitudinal section in the mean plane and

the corresponding two-dimensional domain Ωo(µ); the steady Stokes equations [32] in Ωo(µ) read:



































−ν∆v(µ) +∇p(µ) = f in Ωo(µ)

∇ · v(µ) = 0 in Ωo(µ)

v(µ) = 0 on Γo
w

v(µ) = gD on Γo
in

−p(µ)n+ ν
∂v(µ)

∂n
= gN on Γo

out,

(9)

where (v(µ), p(µ)) are the velocity and the pressure fields, for some given f , gD, gN ; n is the

normal unit vector on the boundary ∂Ωo(µ), which is partitioned as in Fig. 2: Γo
in is the inflow

boundary, Γo
out the outflow boundary and Γo

w the boundary corresponding to the arterial wall. We

assume that on inflow and outflow sections the normal unit vector will not change after geometrical

transformation/parametrization.

Figure 2. Idealized two-dimensional bypass anastomosis and notation used for domain and boundary;

Ωdf
o (µ) is the down-field region where observation will be made.

We set Γo
D = Γo

in ∪ Γo
w. The inflow boundary Γo

in is given by two different inflow sections: the

bypass inflow section Γo
b and the stenosed artery section Γo

a. No-slip conditions are imposed on Γw,

while homogeneous (free-stress) Neumann conditions are imposed on the outflow section Γo
out.

Concerning inflow boundary conditions, we impose a Poiseuille parabolic profile on Γo
b . Indeed,

the Womersley number [13, 44] for blood flow in coronary arteries is Wo ≈ 2.1 and a steady

Womersley profile can be assimilated at a simpler Poiseuille flow. Then we consider two different

cases for the artery section Γo
a, according that we have either complete occlusion (gD = 0 on Γo

a)

or a partial occlusion (residual flow gD 6= 0 on Γo
a). Inflow peak velocity is ṽ = 30cms−1, while

arterial diameter is about 0.3cm; blood dynamic viscosity is µ = 0.04g cm−1 s−1, blood density
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Prepared using fldauth.cls DOI: 10.1002/fld



8 A. MANZONI ET AL

ρ = 1g cm−3, thus yielding a kynematic viscosity ν = µ/ρ = 0.04cm2 s−1 and a Reynolds number

Re = ṽD/ν of order 102.

Let us now characterize the abstract framework (3)-(4). Let us denote Y (µ) = (v(µ), p(µ)),

W = (w, q) and

Ao(Y (µ),W ;µ) = ao(u(µ),w;µ) + bo(p(µ),w;µ) + bo(q,u(µ);µ), (10)

where

ao(u,w;µ) =

∫

Ωo(µ)

∂u

∂xoi
νoij

∂w

∂xoj
dΩo, νoij = νδij ,

bo(p,w;µ) = −

∫

Ωo(µ)

pχo
ij

∂wj

∂xoi
dΩo, χo

ij = δij ,

being δij the Kronecker symbol and 1 ≤ i, j ≤ 2, represents the single components of coordinates

and vectorial quantities. In the same way,

Fo(W ;µ) = 〈F s
o ,w〉+ 〈F l

o,w〉+ 〈Gl
o, q〉 (11)

where

〈F s
o ,w〉 =

∫

Ωo(µ)

f ·wdΩo +

∫

Γo
out

gN ·wdΓo

is a source term and

〈F l
o,w〉 = −ao(Ro,w;µ), 〈Gl

o, q〉 = −bo(q,Ro;µ)

are the terms related to the lifting of nonhomogeneous Dirichlet boundary conditions.

Here Y(Ωo(µ)) = X (µ)×Q(µ), being X (µ) = (H1
0,ΓD

(Ωo(µ)))
2 the velocity space, Q(µ) =

L2(Ωo(µ)) the pressure space, and H1
0,ΓD

(Ω) = {v ∈ H1(Ω) : v|ΓD
= 0}, respectively; Ro ∈

(H1(Ωo(µ)))
2 is a lifting function such thatRo|Γo

in
= gD. We denote ṽ = v −Ro, so that ṽ|Γo

D
= 0

and ∇ṽ = ∇v −∇Ro. For the sake of simplicity, we still denote ṽ with v in the sequel, as no

ambiguity occurs.

With the goal of reducing the blood vorticity ∇× v(µ) in the down-field zone Ωdf
o (µ) ⊆ Ωo(µ) of

the incoming branch of the bypass, we introduce a suitable parametric output; we thus control the

system by minimizing the following quantity:

so(µ) = Jo(v(µ)) =
1

2

∫

Ωo(µ)

Q(v(µ))dΩo, (12)

being

Q(w) = |∇ ×w|2IΩdf
o (µ),

and ID(·) the indicator function of the domain D. With this choice of the cost functional and the

flow model, existence of solutions of problem (1)-(2) is in general stated [17, 19] for

Oad = {Ωo ∈ UL : |Ωo| ≤ |D|, Ωo ∩D = Γo
in},
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SHAPE OPTIMIZATION FOR VISCOUS FLOWS BY RB METHODS AND FFD 9

where UL = {Ωo ⊂ D,Ωo open Lipschitz domain} andD is a given fixed rectangle of area |D|; first

order necessary conditions can be derived by either introducing a suitable adjoint problem [6,33,34]

or using the approach based on Lagrange multipliers [16].

3.2. Parametrized formulation

By tracing the forms (10)-(11) back on the reference domain Ω, the parametrized formulation of the

Stokes problem reads: find Y (µ) = (v(µ), p(µ)) ∈ Y such that

A(Y (µ),W ;µ) = F(W ;µ), ∀W ∈ Y, (13)

where

A(Y (µ),W ;µ) = a(v(µ),w;µ) + b(p(µ),w;µ) + b(q,v(µ);µ),

a(v,w;µ) =

∫

Ω

∂v

∂xi
νij(µ)

∂w

∂xj
dΩ, b(p,w;µ) = −

∫

Ω

pχij(µ)
∂wj

∂xi
dΩ;

and

F(W ;µ) = 〈F s,w〉+ 〈F l,w〉+ 〈Gl, q〉,

〈F s,w〉 =

∫

Ω

f ·w|JT |dΩ+

∫

Γout

gN ·w|JT t|dΓ,

〈F l,w〉 = −a(R,w;µ), 〈Gl, q〉 = −b(q,R;µ).

Notations are as follows:

- Y = X ×Q, being X = (H1
0,ΓD

(Ω))2 and Q = L2(Ω), respectively;

- R ∈ (H1(Ω))2 is such that R|ΓD
= gD and t denotes the unit tangential vector to ∂Ω;

- the transformation tensor in the bilinear form a(·, ·;µ) is defined as

ν(x,µ) = J−1
T νoJ−T

T |JT |; (14)

- the tensor used in the bilinear form b(·, ·;µ) is given by

χ(x,µ) = J−1
T |JT |, (15)

where JT = JT (x,µ) denotes the Jacobian of T (x,µ) and |JT | its determinant.

A necessary condition for the well-posedness of (13) is the Babuška “inf-sup” condition [28],

which can be stated as follows. Let us define the norm on the product space Y as

‖Y ‖2Y := ‖v‖2X + ‖p‖2Q, ∀Y = (v, p) ∈ Y = X ×Q;

moreover, let us introduce the supremizer operator [28] Tµ : Y → Y such that, for any W ∈ Y ,

(TµW,V )Y = A(W,V ;µ), ∀ Y ∈ Y (16)

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
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10 A. MANZONI ET AL

and indicate with β(µ) the following quantity,

β(µ) := inf
W∈Y

sup
V ∈Y

A(W,V ;µ)

‖W‖Y‖V ‖Y
, (17)

so that

β(µ)‖W‖Y‖T
µW‖Y ≤ A(W,TµW ;µ), ∀W ∈ Y. (18)

We require the following Babuška “inf-sup” stability condition:

∃ β0 > 0 : β(µ) ≥ β0 > 0, ∀ µ ∈ D; (19)

β0 is said “inf-sup” stability constant. Moreover, we require that the bilinear form A(·; ·;µ) is

continuous, i.e. the continuity constant

γ(µ) := sup
V ∈Y

sup
W∈Y

A(V,W ;µ)

‖W‖Y‖V ‖Y

is finite for all µ ∈ D, as well as that the linear form F(·;µ) is continuous for all µ ∈ D. All

these hypotheses are verified whether νij(·;µ) ∈ L∞(Ω), χij(·;µ) ∈ L∞(Ω) for all µ ∈ D and

f ∈ (L2(Ω))2, gD ∈ (L2(ΓD))2, gN ∈ (L2(ΓN ))2.

Concerning the parametrized expression of the output to be minimized appearing in (5), by tracing

(12) back to the reference domain Ω we have

s(µ) = J (v(µ)) =
1

2

∫

Ω

Q ◦ T (v(µ))|JT | dΩ. (20)

Well posedness and optimality conditions for (5) can be easily derived using standard arguments

and techniques [2]. Hence, the original problem has been reformulated on a reference configuration,

resulting in a parametrized problem where the effect of geometry variations is traced back onto its

parametrized transformation tensors.

4. SHAPE PARAMETRIZATION BY FREE-FORM DEFORMATION TECHNIQUES

Since shape representation is highly specific problem-dependent, various methods have been

proposed; a classical approach in geometrical shape optimization is the so-called local boundary

variation technique [2, 27], while the most common shape representation adopted in parametric

shape optimization problems is the explicit boundary shape parametrization [5, 8, 10]. The former

uses the discrete nodes of the triangulation lying on the boundary as design variables and their

displacement for the shape deformation. Since very fine meshes are needed for complex shapes or

flows, the number of design variables may become very large, leading to very high computational

costs. The latter involves shapes families (mainly polynomial or spline functions) depending on

a small set of control points, even if a larger number of parameters may be required to represent

complex shapes. Nevertheless, after each shape deformation, remeshing is in order.
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SHAPE OPTIMIZATION FOR VISCOUS FLOWS BY RB METHODS AND FFD 11

An alternative approach, potentially able to be quite versatile with more complex shapes in order

to avoid remeshing, is the free-form deformation (FFD) technique, in which it is the deformation

of an initial design (and not the geometry itself) to be parametrized. The technique consists of

embedding the shape to be deformed inside a control area and then of modifying – by acting on

a lattice of control points – the metrics of this space and thus the shape embedded into it, rather

than modifying the shape directly. A modification of the control points position thus results in a

deformation inside the control area and, automatically, of the computational FE mesh. Based on

tensor product of splines, FFD inherits from boundary parametrization techniques the possibility

to handle with global deformations by acting on a small set of control points [3, 7], but provides

an easier tool since any explicit parametrization is required [24]. FFD coupled with reduced

basis methods has previously been proposed as a parametrization technique for inverse airfoils

design [23] and thermal flows control [38]; extensions of this methodology to three-dimensional

geometries are possible, even if complex from the implementation point of view. In this work we

aim at enhancing the computational performance in the shape optimization process by reduced

order modelling for viscous flows, and further developing what started in [23] for potential flows.

Given a fixed rectangular domain D containing the reference domain Ω ⊂ D, we introduce an

affine map x̂ = Ψ(x), x ∈ D, such that Ψ(D) = (0, 1)2 ≡ D̂ with Ψ(·) a monotonic function, in

order to define FFD in a simpler way in the coordinates x̂ = (x̂1, x̂2) of the spline parameter space

(0, 1)2. On D̂ we thus select an ordered mesh of (L+ 1)× (M + 1) unperturbed control points

Pl,m = [l/L,m/M ]T , l = 0, . . . , L, m = 0, . . . ,M

and modify the object by moving control points to a new position. The corresponding perturbed

control points Po
l,m are specified by a set of (L+ 1)(M + 1) parameter vectors µl,m ∈ R

2

Po
l,m(µl,m) = Pl,m + µl,m, (21)

giving in all 2(L+ 1)(M + 1) possible degrees of freedom. As often as not, only small subsets of

these are selected as design variables if we want to perform a sensible geometrical model order

reduction; moreover, several rows or columns of control points can be fixed to obtain desired levels

of continuity or to “anchor” certain parts of the domain. In general, among the control points Pl,m,

we indicate the effectively free scalar-valued parameters chosen as design variables as µ1, . . . , µp –

each corresponding to the displacement of a control point in either the x̂1 or the x̂2 direction, i.e. to

one of the components of a vector µl,m – and define the parametric map T̂ (·;µ) : D̂ → D̂o(µ) by

which the uploaded geometry is computed as follows:

T̂ (x̂;µ) =

(

L
∑

l=0

M
∑

m=0

bL,M
l,m (x̂)Po

l,m(µl,m)

)

, (22)

where

bL,M
l,m (x̂) = bLl (x̂1)b

M
m (x̂2) =

(

L

l

)(

M

m

)

(1− x̂1)
L−lx̂l1(1− x̂2)

M−mx̂m2
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12 A. MANZONI ET AL

are tensor products of the unidimensional Bernstein basis polynomials defined on D̂ by

bLl (x̂1) =

(

L

l

)

x̂l1(1− x̂1)
L−l, bMm (x̂2) =

(

M

m

)

x̂m2 (1− x̂2)
M−m.

Finally, the FFD mapping T (·,µ) is obtained as the composition

T (·;µ) : D → Do(µ), T (x;µ) = Ψ−1 ◦ T̂ ◦Ψ(x;µ); (23)

in particular, the parametrized domain Ωo(µ) is obtained as Ωo(µ) = Ψ−1 ◦ T̂ ◦Ψ(Ω;µ); see Fig. 3

for a representation of the mapping construction.

Figure 3. Schematic diagram of the FFD technique: unperturbed control points Pl,m, perturbed control

points Po
l,m(µl,m), map x̂ = Ψ(x), T̂ (x̂;µ) and resulting FFD map T (x;µ) = (Ψ−1 ◦ T̂ ◦Ψ)(x;µ).

Since only the degrees of freedom corresponding to µ1, . . . , µp will play the role of design

variables, the map (22) can be seen as a function of µ = (µ1 . . . , µp); nevertheless, also other control

points – which do not correspond to effective design variables – obviously go under displacement.

The number and position of control points chosen have a deep impact on FFD flexibility: it is crucial

to maximize the influence of the control points by placing them close to the more sensitive regions

of the configuration.

Using the inverse of T (·;µ) we can get the parametrized formulation of the problem (13) by

mapping the equations back onto the reference domain Ω and computing the transformation tensors

(14) and (15). Compared to classical strategies such as boundary shape parametrization, FFD

techniques lead to low-dimensional parametrizations without loss of accuracy, since perturbations

on parameters yield smooth shape deformations even if control points are not related to the shape

boundary. We next introduce reduced basis methods for approximating in a rapid and reliable way

solutions to (13) and then evaluating the parametric output (20).
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SHAPE OPTIMIZATION FOR VISCOUS FLOWS BY RB METHODS AND FFD 13

5. REDUCED BASIS METHODS FOR NONCOERCIVE PDES

Our approach to shape optimization takes advantage of reduced basis (RB) method for rapid

and reliable prediction of outputs associated with parametrized PDEs. In particular, reliability is

ensured by rigorous a posteriori estimations for the error in the RB approximation w.r.t. truth FE

discretization [29, 31, 37]; rapid response is ensured by an Offline–Online computational strategy

which minimizes marginal cost and a rapidly convergent RB space assembling, based on a greedy

algorithm [37]. In this section we review all these aspects, in the general framework of noncoercive

problems.

Let us now characterize the FE formulation (6) to the Stokes case under analysis, where

YN = XN ×QN , Y N (µ) = (vN (µ), pN (µ)), being vN (µ) ∈ XN and pN (µ) ∈ QN the FE

approximations of the velocity and the pressure, respectively. The dimension N = NX +NQ of the

FE spaces is thus taken large enough in order to neglect the differences ‖vN (µ)− v(µ)‖X (Ω) and

‖pN (µ)− p(µ)‖Q(Ω), so that it can be effectively considered as a“truth” approximation. In our case

XN ×QN is the space of Taylor-Hood P2 − P1 elements; however, this choice is not restrictive,

the whole construction keeps holding for other spaces combinations as well.

5.1. Reduced basis approximation: formulation and main features

The RB method computes an approximation of (vN (µ), pN (µ)) by using global approximation

spaces made up of well-chosen FE solutions, i.e. corresponding to specific choices of the parameter

values. The basic assumption is that the solution to (13) depends smoothly on the parameters,

whence the parametric manifold of solutions in X ×Q is smooth too and can be approximated

by selecting, among classical FE solutions, some “snapshot” solutions. Let us take a relatively

small set of parameter values SN = {µ1, . . . ,µN} and consider the corresponding FE solutions

(vN (µ1), pN (µ1)), . . . , (vN (µN ), pN (µN )), where typicallyN ≪ N . We define the reduced basis

pressure space QN
N ⊂ QN as

QN
N = span{ζn := pN (µn), n = 1, . . . , N}.

The reduced basis velocity space XN
N ⊂ XN can be built as

XN
N = span{σn := vN (µn), Tµ

p ζn, n = 1, . . . , N},

where Tµ

p : QN
N → XN

N is the so-called inner supremizer operator acting on pressure term,

(Tµ

p q,w)X = b(q,w;µ) ∀ w ∈ XN
N . (24)

With the above definitions of the RB spaces, the following LBB condition [34, 35] holds:

inf
q∈QN

N

sup
w∈XN

N

b(q,w;µ)

‖w‖X ‖q‖Q
=: βN (µ) ≥ β(µ) ≥ β0 > 0, ∀ µ ∈ D, (25)

where β(µ) and β0 are the same constants as in (17) and (19). In order to develop both the a

posteriori error estimation and the Offline-Online computational procedure, let us explicit the RB
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14 A. MANZONI ET AL

approximation of the Stokes problem (13), obtained through a Galerkin projection onto XN
N ×QN

N :

find YN (µ) = (vN (µ), pN (µ)) ∈ YN = XN
N ×QN

N such that

{

a(vN (µ),w;µ) + b(pN (µ),w;µ) = 〈F s,w〉+ 〈F l,w〉 ∀ w ∈ XN
N

b(q,vN (µ);µ) = 〈G, q〉 ∀ q ∈ QN
N .

(26)

Condition (25) ensures well-posedness of (26). In practice, the Gram-Schmidt orthonormalization

procedure [34] has to be adopted, to build basis for pressure and velocity RB spaces that guarantee

algebraic stability (i.e. the condition number of the resulting RB system is relatively small); hence,

the RB solution can be written as

vN (µ) =

2N
∑

j=1

vNj(µ)σj , pN (µ) =

N
∑

l=1

pNl(µ)ζl, (27)

where {σj}
2N
j=1 and {ζl}

N
l=1 are orthonormal basis for XN

N and QN
N , respectively. Since N ≪ N ,

problem (26) has a much lower dimension than the corresponding FE approximation in (6).

5.2. Reduced basis space assembling and error estimation

The choice of the snapshot solutions is crucial for the accuracy of the RB approximation and is

operated using the following greedy algorithm [31, 37]. Let Ξtrain ⊂ D be a (sufficiently rich)

finite training sample of parameter points chosen using a uniform distribution on D; given the first

parameter value µ1 and a sharp, rigorous and inexpensive error bound ∆N (µ) for the norm such

that, for the generic approximation Yn(µ) = (vn(µ), pn(µ)) ∈ Yn, n = 1, . . . , N ,

‖Y N (µ)− Yn(µ)‖Y ≤ ∆n(µ) for all µ ∈ Ξtrain,

we choose the remaining parameter values (and corresponding snapshot solutions) as

µn := arg max
µ∈Ξtrain

∆n−1(µ), for n = 2, . . . , N

until an error tolerance εRB
tol a priori fixed is achieved:

∆N (µ) ≤ εRB
tol for all µ ∈ Ξtrain.

The error bound ∆N (µ) is also used for estimating the error of the RB approximation w.r.t. the

“truth” FE solution [31, 37] and can be defined introducing the residuals

rvN (w;µ) := 〈F s,w〉+ 〈F l,w〉 − a(vN (µ),w;µ)− b(pN (µ),w;µ),

rpN (q;µ) := 〈Gl, q〉 − b(q,vN (µ);µ).

Note that

rvN (w;µ) = a(vN (µ)− vN (µ),w;µ) + b(pN (µ)− pN (µ),w;µ) ∀ w ∈ XN ,

rpN (q;µ) = b(q,vN (µ)− vN (µ);µ) ∀ q ∈ QN
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SHAPE OPTIMIZATION FOR VISCOUS FLOWS BY RB METHODS AND FFD 15

or, equivalently, with rN (W ;µ) := rvN (w;µ) + rpn(q;µ),

rN (W ;µ) = A(Y N (µ)− YN (µ),W ;µ) ∀W ∈ YN .

Using the condition (18), we have the following residual-based estimator

∆N (µ) =
‖rN (·;µ)‖Y′

βLB(µ)
≥ ‖Y N (µ)− YN‖Y (28)

where ‖ · ‖Y′ is the dual norm of the residual defined as

‖rN (·;µ)‖Y′ = sup
V ∈YN

rN (V ;µ)

‖V ‖Y

and βLB(µ) is a computable lower bound for the inf-sup constant β(µ) [22]. An alternative

expression of the error estimator (28) is given by

‖vN (µ)− vN (µ)‖2X + ‖pN (µ)− pN (µ)‖2Q ≤
1

β2
LB(µ)

(

‖rvN (· ;µ)‖2X ′ + ‖rpN (· ;µ)‖2Q′

)

where

‖rvN (· ;µ)‖X ′ = sup
w∈XN

rvN (w;µ)

‖w‖X
, ‖rpN (· ;µ)‖Q′ = sup

q∈QN

rpN (q;µ)

‖q‖Q

are the dual norms of the residuals for the velocity and the pressure variables, respectively, such that

‖rN (·;µ)‖2Y′ = ‖rvN (· ;µ)‖2X ′ + ‖rpN (· ;µ)‖2Q′ . Efficient and reliable methods of computing both

the dual norm of the residual and the lower bound βLB(µ) are presented in [36].

5.3. Offline-Online computational strategy

A suitable Offline/Online decomposition stratagem enables to decouple the generation and

projection stages of the RB approximation. In an expensive Offline stage we prepare a very small

RB “database”, while in the Online stage, for each new value of µ ∈ D, we rapidly evaluate both

the output of interest and the associated a posteriori error bound whose complexity is independent

of the dimension N of the “truth” FE approximation space. The possibility to handle with this

computational procedure is based on an affine parametric dependence assumption on both bilinear

and linear forms. If the mapping T (·;µ) : Ω → Ωo(µ) is affine, parametric bilinear forms a(·, ·;µ)

and b(·, ·;µ) are affinely parametrized [31, 37], i.e.

a(v,w;µ) =

Qa
∑

q=1

Θq
a(µ)a

q(v,w), b(p,w;µ) =

Qb
∑

q=1

Θq
b(µ)b

q(p,w) (29)

for some integers Qa, Qb, where q is a condensed index for (i, j, k), and as done in [40]

aq(i,j,k)(v,w) =

∫

Ω

ξi,jk (x)
∂v

∂xi

∂w

∂xj
dΩ, bq(i,j,k)(p,w) = −

∫

Ω

ηi,jk (x)p
∂wi

∂xj
dΩ, (30)

Θq
a(µ) = βi,j

k (µ), Θq
b(µ) = γi,jk (µ),
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16 A. MANZONI ET AL

νij(x,µ) =

Ka
ij
∑

k=1

βi,j
k (µ)ξi,jk (x), χij(x,µ) =

Kb
ij
∑

k=1

γi,jk (µ)ηi,jk (x), 1 ≤ i, j ≤ 2. (31)

where Ka
ij and Kb

ij represent the total number of terms obtained for each tensorial component after

the empirical interpolation procedure. In the same way, we can write the right-hand-side terms as

〈F s,w〉+ 〈F l,w〉 =

QF+Qa
∑

q=1

ΘF
q (µ)F

q(w), 〈G,φ〉 =

QG
∑

q=1

ΘG
q (µ)G

q(φ) (32)

for some integers QF and QG ≡ Qb, where here q is a condensed index for (i, k),

F q(w) =

∫

Ω

ψi
k(x)widΩ, ΘF

q (µ) = δik(µ), q = 1, . . . , QF , (33)

fi(x)| det JT (x,µ)| =

K
f

i
∑

k=1

δik(µ)ψ
i
k(x), i = 1, 2, (34)

F q(w) = aq(Rvg,w), ΘF
q (µ) = −Θa

q (µ), q = QF + 1, . . . , QF +Qa,

Gq(φ) = bq(φ,Rvg), ΘG
q (µ) = −Θb

q(µ), q = 1, . . . , QG = Qb.
(35)

Under these assumptions, solution of (26) can be split into Offline and Online stages, being



























Qa
∑

q=1

Θq
a(µ)a

q(vN
N (µ),w) +

Qb
∑

q=1

Θq
b(µ)b

q(pNN (µ),w) =

QF+Qa
∑

q=1

ΘF
q (µ)F

q(w)

Qb
∑

q=1

Θq
b(µ)b

q(q,vN
N (µ)) =

QG
∑

q=1

ΘG
q (µ)G

q(φ)

(36)

for all w ∈ XN
N , φ ∈ QN

N . Using the expressions (27), system (36) becomes, componentwise,



























2N
∑

j=1

Qa
∑

q=1

Θq
a(µ)A

q
ijvNj(µ) +

N
∑

l=1

Qb
∑

q=1

Θq
b(µ)B

q
ilpNl(µ) =

QF+Qa
∑

q=1

Θf
q (µ)F

q
i , 1 ≤ i ≤ 2N

2N
∑

j=1

Qb
∑

q=1

Θq
b(µ)B

q
jlvNj(µ) =

QG
∑

q=1

Θg
q(µ)G

q
l , 1 ≤ l ≤ N

(37)

where Aq
ij = aq(σj , σi), B

q
il = bq(ζl, σi), F

q
i = fq(σi) and Gq

l = gq(ζl). In this way, computation

entails an expensive µ-independent Offline stage performed only once and an Online stage for any

chosen parameter value µ ∈ D. During the former the basis functions σn, ζl, the matricesAq,Bq and

the vectors F q, Gq are computed and stored; in the latter, for any given µ, all the Θq(µ) coefficients

are evaluated and then the 3N × 3N linear system (37) is assembled and solved as a usual Stokes

system, being of the form

(

A B

BT 0

)(

vN

pN

)

=

(

F

G

)

. (38)
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Although being dense (rather than sparse as in the FE case), the system matrix is very small, with

a size independent of the FE space dimension N . Details about the assembling procedure of these

matrices will be given in the next section. Moreover, also the dual norm of the residual appearing

in (28) can be computed efficiently by using the Offline-Online procedure [31, 37]. Since the map

T (·;µ) (22) obtained by FFD method is a polynomial map, the tensor νT (x;µ) is not affinely

parametrized in the sense of (31). Hence, an intermediate step is necessary in order to recover the

affinity assumption and thus the possibility of computing the RB solution through an Offline/Online

decomposition. In the nonaffine case, we rely on the empirical interpolation method (EIM) [4, 15],

which is an interpolation method for parametric functions based on adaptively chosen interpolation

points and global shape functions. According to EIM, each component νij(x;µ) is approximated

by an affine expansion

ν̃i,j(x;µ) =

Ka
ij
∑

k=1

β̃i,j
k (µ)ξ̃i,jk (x) + εai,j(x;µ). (39)

The same approximation is set up for χT and the right-hand-side of velocity equation:

χ̃i,j(x;µ) =

Kb
ij
∑

k=1

γ̃i,jk (µ)η̃i,jk (x) + εbi,j(x;µ),

fi(x)| det(JT (x;µ))| =

K̃
f

i
∑

k=1

δ̃ik(µ)ψ̃
i
k(x) + εi(x;µ).

(40)

All the coefficients βi,j
k ’s, γi,jk ’s, δik’s, ξi,jk ’s, ηi,jk ’s and ψi

k’s are efficiently computable scalar

functions and the error terms are guaranteed to be under some tolerance,

‖ε
(a,b)
i,j (·;µ)‖∞ ≤ εEIM

tol , ‖εi(·;µ)‖∞ ≤ εEIM
tol , ∀µ ∈ D.

We refer the reader to [4,29] for details on EIM procedures for non-affine RB problems and to [23]

for details on its application in the FFD context introduced in Sec. 4.

6. NUMERICAL PROCEDURE FOR REDUCED SHAPE OPTIMIZATION

We present in this section the numerical procedure implemented for the solution of the reduced

shape optimization problem (8), which is a nonlinear programming problem but depending on

a relatively small number of parameters. It can be solved in a very efficient way by means of

a suitable combination of the techniques analyzed in the previous sections – RB methods, shape

parametrization by FFD techniques and EIM for treating non-affinities. In more details, upgrading

the procedure of [23] to the case of viscous flows:

1. Shape parametrization. Select a shape parametrization technique, input parameters µ1, . . . , µp

and the parameter set D on the basis of problem-dependent criteria.
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2. Parametrized formulation. Compute the map T (·;µ) and the tensors JT (µ), ν(µ) and χ(µ)

in order to get the parametrized formulation (5). The transformation tensors (14) and (15) are

computed symbolically by means of a Computer Algebra System (CAS).

3. Empirical interpolation. Compute the affine expansions (31)-(34) in case of nonaffinely

parametrized tensors by applying the EIM procedure to each tensor component.

4. FE structures. Assemble FE structures corresponding to the µ-independent terms of (29)-

(32), using the affine expansions of the tensors computed at point 3. In particular, assemble

the matrices Aq ∈ R
NX×NX (q = 1, . . . , Qa), Bq ∈ R

NX×NQ (q = 1, . . . , Qb) corresponding

to the bilinear forms (30) and the right-hand sides Fq ∈ R
NX (q = 1, . . . , QF ), Gq ∈ R

NQ

(q = 1, . . . , QG) corresponding to the linear forms (33) and (35).

5. Inf-sup constant lower bound. By means of the successive constraint method (SCM) [36]

compute the structures for the lower bound of the inf-sup constant βN
LB(µ).

6. RB space construction. Perform the greedy procedure presented in Sec. 5.2 for building the

RB spaces XN
N and QN for velocity and pressure respectively. For each selected µn, the

corresponding Stokes problem has been solved using the Pressure-Matrix Method; moreover,

at each iteration the space XN is enriched by the solution of (24) (supremizer operator) and a

Gram-Schmidt ortonormalization is executed.

7. RB post-processing. After the greedy basis selection procedure, matrices Aq, Bq and vectors

F q,Gq are obtained by a pre- and post- multiplication of the corresponding FE structures with

the RB representations ZX = [ σ1 | . . . | σ2N ], ZQ = [ ζ1 | . . . | ζN ]:

Aq = ZT
XAqZX , q = 1, . . . , Qa; Bq = ZT

XBqZX , q = 1, . . . , Qb;

F q = ZT
XFq, q = 1, . . . , Qa +QF ; Gq = ZT

QG
q, q = 1, . . . , QG ≡ Qb.

At this point, the Offline preparationb is completed. Then, we perform the

8) Numerical Optimization. Solve the optimization problem by a suitable optimization

subroutine; at each step, an Online evaluation of RB solution and output is requested. The

optimization procedure stops when the (approximated) gradient of the cost functional is under

a very small tolerance εOPT
tol .

The Offline stage thus depends on the choice of the FE spaces (whose dimension is NX +NQ),

the reference domain Ω and the FFD structure. For the RB Offline computations we have used the

rbMIT library [21,31], while for the FE assembling stage we have exploited the MLife library [41],

enhanced in Matlab-PDE toolbox environment.

The Online stage consists of many evaluations of field variables (vN (µ), pN (µ)) and parametric

output sN (µ), as required by the optimization procedure; in our case, the optimization problem has

been solved using the sequential quadratic programming (SQP) algorithm, see e.g. [20].

bEfficient and reliable methods of computing both the dual norm of the residual and lower bounds βN
LB

(µ) are used in
order to exploit the Offline-Online computational stratagem also for the error estimation.
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7. NUMERICAL RESULTS

Let us now present the results for the bypass problem obtained through the reduced shape

optimization strategy discussed in the previous sections. Two different cases have been analyzed,

considering different blockage conditions in the occluded coronary artery, since a residual blood

flow in this vessel implies different vorticity profiles in the downfield region. In Case A a

completely occluded coronary is considered, corresponding to setting gD = 0 on Γa, while in

Case B a partially stenosed coronary is considered, choosing a residual horizontal flux given by

gD = (max(ṽ0 exp(−(x− xM )2/β)− ω, 0), 0) on Γa, where xM is the middle point of side Γa and

β = 10−3, ω = 10−1 are constants which model the patency of the stenosis; here we consider a

residual flow rate of about 15% of the one in the bypass grafting.

In both cases, the same reference configuration Ω, depicted in Fig. 4, has been chosen similar to

some bypass configurations already considered in previous works [25,33,34], fixing the observation

subregion Ωdf = {x = (x1, x2) ∈ Ω : x1 > 1.5}. The FFD parametrization has been built on a 5× 6

lattice of control points on the rectangle D = [−1, 3]× [−0.6, 0.4], for a total number of 60 degrees

of freedom; P = 8 of these degrees of freedom have been selected as design variables, given by

seven vertical and one horizontal deformations. Previous analysis on the shape of an aorto-coronaric

bypass [11, 34, 45] have highlighted an important dependence of the blood flow on the anastomotic

angle between the incoming branch of the graft and the artery, and on the ratio between the diameters

of these two branches; our selected design variables thus aim at controlling shape variations in

this sense. In particular, parameters µ3 and µ5 (the latter is the only one giving an horizontal

deformation) control the anastomotic angle, parameters µ6 and µ8 control the diameters ratio (see

Fig. 4). Moreover, parameters µ4 and µ7 control the upper shape of the anastomotic bifurcation,

while µ1 and µ2 are responsible of the shape of the lower wall, which has to be curved since it is

positioned on the heart wall. The parametric domain D is therefore given by

D = {µ = (µ1, . . . , µ8) ∈ R
8 : µi ∈ [−0.2, 0.2] ∀ i 6= 5, µ5 ∈ [0, 1]}.

The number of parameters P = 8 has been selected to ensure a trade-off between (i) a significative

shape versatility during the optimization process and (ii) a better computational performance at

each iteration of the optimization processc. The points location (and their activation) have been

emphasized in sensible zone of the bypass [1, 34]. The ranges of variation of the control points

positions with respect to the original locations ensure to keep small deformations.

Reduced basis approximation have been built upon a finite element approximation on P
2 − P

1

spaces of dimension NX = 33, 330 and NQ = 4, 269 respectively, obtained on a non-conforming

mesh of 8, 128 triangular elements. In particular, since FFD and EIM steps depend just on the

geometric map, they can be performed only once for both cases A and B. In both cases, by setting

εEIM
tol = 2.5× 10−4, we obtain an effine expansion of

∑

i,j K̃
a
ij = 204 terms for ν̃ij components,

of
∑

i,j K̃
b
ij = 18 terms for χ̃ij components and of

∑

i K̃
f
i = 5 terms for the right hand-side

cBy reducing the number of parameters (for example to P = 6 and at the same time by increasing their range of variation
may give the same effect as augmenting the number of parameters (for example to P = 10) and reducing their range of
variation. The difference between these two alternatives is mainly due to computational difficulties occurring in the
certification for the first case and in the Online efficiency for the second one.
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Figure 4. Top: reference domain Ω and FFD setting. Control points depicted in red/black can be freely
moved in vertical/horizontal direction. Bottom: an example of shape deformation; grey points correspond to

the undeformed shape (µ = 0), black ones to a selected value of µ 6= 0.

components; see Fig. 5 for an example of tensor reconstruction through EIM.

Figure 5. Tensor components ν1,1(x; µ̄), ν1,2(x; µ̄) ≡ ν2,1(x; µ̄), ν2,2(x; µ̄) on Ω for a randomly chosen
µ̄ ∈ D (left) and corresponding affine reconstructions obtained by empirical interpolation (right).

Instead, the assembling of FE structures, the estimation of the inf-sup constant lower bound and

the greedy algorithm for snapshots selection have to be done separately, once for each case. In

particular, tolerances for RB greedy algorithm εRB
tol and empirical interpolation εEIM

tol are chosen

such that the error on EIM is kept under the error on RB construction.

With εRB
tol = 5 · 10−4, N = 21 and N = 20 basis functions have been selected for case A and B,
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giving RB spaces of total dimension 63 and 60, respectively. Moreover, a tolerance εOPT
tol = 10−6

has been chosen for the stopping criterium of the optimization procedure, based on the magnitude

of the (approximated) gradient of the cost functional.

In Fig. 6 we report the certification of the RB approach by a posteriori error estimation presented

in [36] and its comparison with true error; in Fig. 7 we report the error ‖sN (µ)− sN (µ)‖ =

‖J (vN (µ))− J (vN (µ))‖ between the FE and the RB approximations of the vorticity output (20).

In both cases, errors and error bounds have been evaluated on a uniform sample Ξ ⊂ D of size

|Ξ| = 1000.
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Figure 6. A posteriori error bounds and (minimum, maximum and average) computed errors between the
“truth” FE solution and the RB approximation for test case A (left) and B (right).
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Figure 7. Minimum, maximum and average computed errors on the vorticity output between the “truth” FE
solution and the RB approximation for test case A (left) and B (right).

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld



22 A. MANZONI ET AL

7.1. Modelling aspects

For the test case A, a vorticity reduction of about 39% has been obtained through the described

procedure; the cost functional decreases from an initial value sN (µ(0)) = 459.40 to an optimal

value sN (µ̂RB) = 281.25 after 36 optimization steps performed in 2968s until convergenced.

In Fig. 8 the reference and the optimal configurations are displayed, together with deformation

induced by the displacement of the control points. Flow variables and corresponding vorticity

layers for the initial and the optimal configurations are represented in Fig. 9.

−1 −0.5 0 0.5 1 1.5 2 2.5 3

−0.6

−0.4

−0.2

0

0.2

0.4

Figure 8. Test A: reference configuration (in grey), optimal shape (in black) and corresponding control points
displacement.

Figure 9. Test A: velocity field, pressure field and vorticity magnitude for the reference (left) and the optimal
(right) configuration.

For the test case B, a vorticity reduction of about 45% has been obtained, passing from an initial

value of the cost functional sN (µ(0)) = 839.45 to an optimal value of sN (µ̂RB) = 466.05 after 45

optimization steps, which have been performed in 3554s. Optimal configuration obtained in this

case is displaied in Fig. 10, while flow variables and the corresponding vorticity layers for the initial

and the optimal configurations are represented in Fig. 11.

The results of the analysis performed in this work show that graft anastomosis configurations

play an important role in the pattern of the flow and the distribution of the vorticity generated

dComputations have been executed on a personal computer with 2× 2GHz Dual Core AMD Opteron (tm) processors
2214 HE and 16 GB of RAM.
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Figure 10. Test B: reference configuration and optimal shape with corresponding control points
displacement.

Figure 11. Test B: velocity field, pressure field and vorticity magnitude for the reference (left) and the optimal
(right) configuration.

downstream. A remarkable observation is that – even if the optimal shape are quite similar – the

magnitude of the vorticity on the anastomosis highly depends on the presence of a residual patency

in the obstructed host coronary artery; in particular, in the down field region vorticity magnitude is

higher whether a residual flow is present. In both cases, the iteratively optimized geometry has a

much smoother toe and heel than the initial shape; optimal shapes also show smoother curvatures

at the heel with a gradual transition in the toe region, as already pointed out in the work by Lei et

al. [25]. The localization of maximum values of vorticity at the heel and toe is expected, because

this is the region where disturbed flows occur, even with a Stokes model; the same conclusion can

be drawn for wall shear stress gradient and Navier-Stokes flows [25]. Moreover, higher values in the

heel region are not as clinically significant as the high vorticity values near the toe region and in the

down-field region, which is a well-known location where restenosis might reform.

The shape optimization procedure however enables to reduce the vorticity in the down-field region

of the anastomosis, even if increasing values of vorticity arise at heel and top segments. In the case

where the observation region Ωobs is the whole domain Ω instead of the subdomain Ωdf – and thus

vorticity is minimized all over the anastomosis – different results can be obtained, both in terms of

optimal shapes and vorticity reduction. By using the same procedure as before, we obtain (e.g. for

test case B) the vorticity patterns in Fig. 12: the minimization of the vorticity all over the anastomosis

leads to optimal shapes characterized by bigger sections and narrow bifurcations. Moreover, the

parameter µ5 – which strongly affects the anastomotic angle – seems to play an important role in
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the behavior of the vorticity field. For both test cases numerical results are summarized in Tabs. I

and II.

Figure 12. Test B: optimal shapes (and related vorticity patterns) obtained through vorticity minimization on
the down-field region Ωdf (left) and on the whole domain Ω (middle, right). In the third case the parameter
µ5 has been fixed equal to the optimal value obtained in the first case by vorticity minimization on Ωdf .

Ωobs sN (µ(0)) sN (µ̂RB) ∆sN # iterations cpu (s)

Ωdf 459.40 281.25 38.8% 36 2968
Ω 844.93 576.75 31.7% 45 3504

Table I. Test case A: initial and optimal value of cost functional, total reduction, number of iterations of the
optimization procedure and cpu times for a vorticity observation on Ωdf and Ω.

Ωobs sN (µ(0)) sN (µ̂RB) ∆sN # iterations cpu (s)

Ωdf 839.45 466.05 44.5% 45 3554
Ω 1492.5 934.25 37.4% 158 10492

Table II. Test case B: initial and optimal value of cost functional, total reduction, number of iterations of the
optimization procedure and cpu times for a vorticity observation on Ωdf and Ω.

We also compare the results of the downfield vorticity minimization problem based on the reduced

(basis) procedure with the ones obtained using the truth FE approximation of the Stokes flow (see

Tab. III). In the considered cases, the solution of the reduced optimization problem sN (µ̂RB) shows

a slight difference (less than 0.1% in the output value) and results sub-optimal with respect to

the solution sN (µ̂FE) computed by using the truth FE approximation; this fact has already been

remarked both in an optimal control [12] and in a shape optimization [23] context.

Case A Case B

sN (µ̂RB) 281.25 466.05

sN (µ̂FE) 281.17 465.89
|sN (µ̂RB)−sN (µ̂FE)|

sN (µ̂FE) 3 · 10−4 3 · 10−4

Table III. Optimal values of cost functional (downfield vorticity, Ωobs = Ωdf ) for the optimization based on
RB and FE approximations, for test cases A and B.
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7.2. Feedback validation by “high-fidelity” model

Another important feedback is provided by the comparison of the results obtained by using a “low-

fidelity” Stokes model for the blood flow with the Navier-Stokes flows computed on the same

shape configurations. We consider the initial shape and the optimal shape obtained by minimizing

the blood vorticity corresponding to the Stokes flow, in both cases A and B. We then compute

the Navier-Stokes flows and vorticity distributions corresponding to the same configuration and

boundary conditions. We obtain in this case a vorticity reduction in the downfield region Ωobs of

39.9% in case A and of 44.5% in case B, respectively – which slightly differs from the reduction

obtained by using a Stokes model. Moreover, in the four considered configurations (initial and

optimal shapes for cases A and B) the difference between the computed vorticity outputs sN (·)

and sNS
N (·) is smaller than 5% (see Tab. IV). Clearly, in the Navier-Stokes case velocity fields are

influenced by the presence of the (nonlinear) convective term. This feedback is provided with the

sole aim of testing with a higher-fidelity fluid model the optimal shape obtained with the low-

fidelity model. Nevertheless, we can consider this shape optimal only for the Stokes model and just

optimized for the Navier-Stokes model. Previous feedback results were provided in [33]. We report

in Fig. 13 the velocity and the vorticity fields computed on the optimal configurations in cases A

and B.

Figure 13. Feedback validation: velocity, pressure and vorticity fields computed by using a Navier-Stokes
model in the optimal configuration of cases A (left) and B (right).

Stokes case Navier-Stokes case

case A sN (µ(0)) = 459.40 sNS
N (µ(0)) = 469.14

sN (µ̂RB) = 281.25 sNS
N (µ̂RB) = 281.81

case B sN (µ(0)) = 839.45 sNS
N (µ(0)) = 878.32

sN (µ̂RB) = 466.05 sNS
N (µ̂RB) = 488.50

Table IV. Feedback validation (downfield vorticity minimization): cost functional values for initial and
optimal configurations computed with a Stokes and a Navier-Stokes flow model.
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7.3. Computational features

Reduced basis techniques, combined with a free-form deformation framework for shape

optimization, allow a substantial reduction of both geometrical complexity and computational work.

An iterative optimization procedure is greatly enhanced by the computational gain since at each step

the cost functional to be minimized is evaluated using the RB approximation. Compared to a flow

simulation by finite elements, in our 2D aorto-coronaric bypass case, a RB Online evaluation of flow

variables enables a computational speedup of about 100 times. In particular, the average time over

100 Online evaluations is of tonlineRB = 2.204 seconds for the test case A and of tonlineRB = 2.012

seconds for the test case B, while the corresponding FE computations take an average time of

tFE = 209 and tFE = 216 seconds, respectively. More details are reported in Tab. V. This is

basically due to the reduction of about 500 times in the dimension of the linear systems obtained by

finite element discretization and reduced basis approximation: in the first case, we get a sparse linear

system of dimension 35, 997 while in the second case linear systems – which are now of full type

– have dimension 72 and 66, for the test case A and B, respectively. Consequently, computational

times for the whole optimization process are reduced too, depending almost linearly by the time for

a single Online evaluation.

Moreover, a shape parametrization based on FFD allows a strong reduction in geometrical

complexity: indeed, geometrical reduction in term of the number of parameters is of about 100

with respect to traditional shape parametrization based on local boundary variation. However, by

acting on a small set of design variables it is possible to describe a wide family of shapes and thus

perform optimization in a low dimensional but quite rich space of admissible configurations. On

the one hand, by properly choosing the location of the parameters, FFD enables not to constrain a

priori the shape of a configuration too similar with respect to the initial one, as in the case where

affine or non-affine mappings on different subdomains are used [34, 35], and make the upper wall

free to deform; on the other hand, it allows a strict control on those parts where a shape is in some

sense prescribed (as in the case of the lower wall). In the end, we take into account also the time

spent for the Offline construction and storage; this allows to determine the break-even point, given

by QBE = tofflineRB /tFE . In particular, we obtain a break-even point of O(102) in both cases. Note

that Offline procedures for basis assembling and certification of the error are the same even if we

change the cost functional or the optimization goal: in this way Offline efforts can be reused for

different Online optimization procedures.

FE RB (min) RB (average) RB (max) Speedup

Test Case A 209.06s 1.939s 2.012s 3.078s 94.85

Test Case B 215.76s 1.945s 2.204s 3.314s 107.18

Table V. Computational times and speedup for reduced basis Online evaluations and finite element
computations. RB Online evaluations have been executed considering a sample of 100 randomly chosen

parameter vectors µ ∈ D.
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8. CONCLUSIONS AND FURTHER DEVELOPMENTS

The purpose of the present work has been to develop a model order reduction strategy for shape

optimization by coupling reduced basis methods for flow simulation with free-form deformation

techniques for shape parametrization. This framework has been applied to an optimal design

problem of an aorto-coronaric bypass anastomosis, allowing a substantial reduction in both

computational efforts (w.r.t. classical strategies based on finite element discretization techniques)

and geometrical complexity (w.r.t. more traditional shape parametrization approaches). A reduced

basis formulation has been discussed for noncoercive problems, taking advantage of the empirical

interpolation method to deal with the nonaffine parametric dependence. A free-form deformation

setting has been presented and applied to a complex 2D configuration. The combination of

several reduction techniques allows the treatment of more complex and versatile geometrical

parametrizations, to keep under control the number of parameters and to achieve significant

computational savings.

For more realistic investigations, the extension of this framework to Navier-Stokes equations and

3D configurations is in order and represents our current research activity. The accuracy of future

simulations and optimization stages is dependent on the acquisition of patient-specific data such

as geometry properties or flow conditions [26]. Following this path, we intend to consider in the

next future a coupled parametrization of both geometrical and flow physical properties, such as

blood rheology or boundary conditions. Moreover, an efficient characterization of a posteriori error

estimators for quadratic output is currently under investigation.

APPENDIX A - BYPASS SURGERY: MEDICAL AND BIO-ENGINEERING ASPECTS

Aorto-coronaric bypass graft surgery represents the standard treatment of advanced coronary

arteries diseases. Coronaries allow the circulation of blood in vessels of the heart muscle; in

particular, coronary arteries deliver oxygen-rich blood to the myocardium. In fact, when a coronary

artery is affected by atheromatous plaques or a stenosis, the heart muscle does not receive the

necessary oxygen amount through blood circulation: aorto-coronaric anastomosis thus restores

oxygenation through a bypass surgery downstream an occlusion (see Fig. 14).

Different kinds and shapes for aorto-coronaric bypass anastomoses are available, such as Miller

cuffed models, Taylor patches, etc. Consequently, different surgery procedures are used to set up a

bypass; in general, the connection of the graft to the coronary artery can be done using an end-to-

side or a side-to-side anastomosis. For a discussion and a comparative approach see, for example,

Cole et al. [11]. Bypass can be made by organic material (e.g. the saphena vein taken from patients

legs or the mammary artery) or by prosthetic material.

The graft patency affects the long-term efficacy of coronary bypass procedures, and several post-

surgical complications have to be taken into consideration. Among them, we mention intimal

thickening hyperplasia (near suture lines), which is a narrowing of coronary arteries, restenosis,

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)

Prepared using fldauth.cls DOI: 10.1002/fld



28 A. MANZONI ET AL

Figure 14. Left: double coronary artery bypass surgery, showing the grafting of a section of saphenous vein
from the leg to bypass a blockage on the right side of the heart and the diversion of an internal mammary
artery to bypass a blockage on the left side of the heart (picture taken from Encyclopædia Britannica, Inc.).

Right: coronary tree and possible end-to-side aorto-coronary bypasses.

surgical injury, long term graft failuree. One of the most important process is atherosclerotic

obstruction occurring on a foundation of neointimal hyperplasia. This thickening, which results

from an accumulation of muscle cells and extracellular matrix in the intimal compartment, is the

principal disease process in venous bypass grafting during the first post-surgical year and represents

the foundation for later development of graft atheroma and atheromatous plaques.

Computational fluid dynamics (CFD) helps understanding local haemodynamics phenomena and

the effect of vascular wall modication on flow patterns (e.g. [13, 26]). This can have useful clinical

applications especially in surgical procedures. Moreover, computational studies have highlighted

the correlation between geometrical features (such as anastomotic angle and graft-artery diameter

ratio) and vorticity, shear stress, shear stress gradient [25, 45] and oscillatory shear index [34], as

effect of recirculation, flow separation and moving stagnation zones [11, 14].

For the problem at hand, we are interested in the minimization of the blood vorticity in the down-

field region of the bypass by changing the shape of the anastomosis. In fact, high vorticity areas

are responsible of atherogenesis or intimal hyperplasia, which can eventually lead to the failure of

grafting surgery.

e In particular, during the first year after bypass surgery up to 15% of venous graft occlude, while by ten years after only
60% of vein grafts are patent and only 50% of patent vein grafts are free of significant stenosis [14,30]. Moreover, every
year 8% of all patients risk bypass occlusion, after ten years 80% bypasses must be replaced.
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