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SHAPE OPTIMIZATION IN CONTACT PROBLEMS BASED
ON PENALIZATION OF THE STATE INEQUALITY

JAROSLAV HASLINGER, PEKKA NEITTAANMAKI, TIMO THHONEN

(Received January 18, 1985)

Summary. The paper deals with the approximation of optimal shape of elastic bodies, uni-
laterally supported by a rigid, frictionless foundation. Original state inequality, describing the
behaviour of such a body is replaced by a family of penalized state problems. The relation
between optimal shapes for the original state inequality and those for penalized state equations
is established.

1. INTRODUCTION

This paper is concerned with optimal shape design of a two dimensional elastic
body on a rigid frictionless foundation. The problem is to redesign the boundary
part of the body where the unilateral boundary conditions are assumed, in such
a way that the total energy of the system in the equilibrium state is minimized.
The numerical results obtained show that as a by-product we can find such a shape
for the contact part of the body that the contact stress is constant. This result is of
great practical importance.

In the paper [10] Haslinger and Neittaanmaki give the proof of existence of -
a solution when the state problem is formulated in terms of the variational inequality
on a variable domain. In this paper a different approach is used. The variational
inequality is replaced by a family of penalized problems, each of which is given as
a classical elliptic (nonlinear) boundary value problem. We show that the correspond-
ing optimal designs (associated with the penalized problems) are close (in an appro-
priate sense) to an optimal design of the original problem (see Chapter 4).

In Chapter 5 we present finite element discretization of our design problem and
discuss the convergence of the approximations. Some numerical results are presented
in Chapter 6.

Mathematical theory of shape optimization problems, including their approxima-
tion by finite elements, can be found in [1, 5,12, 13, 14, 20] (state problem governed
by equations) and in [8, 9, 10, 11, 15, 17] (state problem governed by variational
inequalities). For sensitivity analysis we refer to [2, 4,13, 19, 21, 22, 23]. The existing
literature on contact problems in connection with the shape optimization seems to be
minor. We mention [2, 3, 9, 10, 13].
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2. THE OPTIMAL SHAPE DESIGN PROBLEM
Let us consider a two-dimensional elastic body Q = Q(«) = R? having the follow-
ing geometrical structure
Qo) = {(xy, x2) e R* | a < x; < b,0 < ofx;) < x5 < 7},
a, b,y > 0 given constants and « € C>*({a, b)) a function; 6Q(«) = I'p U 'y U I'¢(ar),
T'p #+ 0 (a possible partition of dQ(«) is given by Fig. 2.1). The shape of the contact

surface I'¢(e) is defined by a control parameter o from the set %,, of admissible
controls,

(2.1) Uy = {oc eC%({a, b)) |0 S ofx,) £ Cy <y, «fa) = A,ab) =B,

d

— 0
dx,

< ¢, meas (@) = Q},

A, B, C,y, C; and C, are given positive constants.

Suppose that the body («) is unilaterally supported by a rigid frictionless founda-
tion (here by the set {(x{, x,) € R* | x, £ 0}) and subjected to a body force F =
= (Fy, F,) and to a surface traction P = (P, P,) on I'p.

*2
YTTTTT -
'F
T
D afe) M
N AN—
0 [ (o)
C
A B
7 I: 7 7 7 7 RANEEA 7 7 7 7 x1
' |
a b
Fig. 2.1.

In the classical formulation of contact problems one looks for a displacement field
u = u{a) = (u,(), u,(x)) satisfying the equilibrium equations (the dependence of u
on a is emphasized by writting u = u{at))

(22) 2 v{#)+ F,=0 in Q«), i=12
0x;
where the stress tensor =(#) = {r;;(u)}} -, is related to the strain tensor &(u) =

= {&;(w)}?;-, by means of the linear Hooke’s law:
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1{ou, Ou
T, (u) = Ciygeu{ut), &fu) = - —-—"+—i}
) = ool ) = {28 20

with elasticity coefficients C;;, satisfying the usual symmetry and ellipticity conditions.

The following boundary conditions will be assumed (cf. Fig. 2.1):

(2.3) u;=0 on Iy, i=12;

(24 t{wyn;=P; on Ip, i=12;
(2.5) uy(xy, o(x,)) = —afx,) Vx, € [a, b] ;
(2.6) Ty(#) =0 on Ia) (frictionless case) ;
(2.7) T(u) 20, (u, +o)To(#)=0 on Ix),

where the standard notations and conventions of elasticity are used ([16]).

In order to give the variational inequality formulation of (2.2) —(2.7) we introduce
a Hilbert space V(«) of virtual displacements

(2.8) V() = V() = {ve(H(Q))*|v:=0 on Ip, i =12}
and its closed convex subset K(o) of admissible displacements
(29)  K(a) = K(Q(a)) = {ve V{a) | vy(xy, a(x1)) = —o(x,) Vx, € [a, b]} .

The variational form of (2.2)—(2.7) reads as follows ([16]): find # = w«) € K()
such that

(2(v) (e(u), (v — ))o 0@ = (L, v — w), Voe K(a),

where L is the given distribution of external forces,

(2.10) KL, &, = f

0(x)

with F e (I(2,))%, Pe(IX(Ip)). @, = (a, b) x (0,y)and

(v(u), &(v))o 0@ = J ) &:;(v) dx .

Q(a)

Fi, dx +J P& ds

I'r

We state the shape optimization problem.

Problem P. Find a* ¢ U,4 such that
(2.11) &(w¥(a*), o¥) = min &((w), @),
where &: K(ot) X %, — R is the total potential enerdy functional,

&(u(e), @) = He(u(®)), dw(®)))o,0r ~ <L, #(@)s
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$n which u(x) is the solution of the state inequality (?(a)).

According to [10] we have

Theorem 1.1. Let %,y be given by (2.1). Then there exists at least one solution
o* of Problem (P).

To avoid the difficulties with possible non-differentiability of the mapping « — u(«),
the following approach will be used. Instead of the state variational inequality (2(«))
a family of penalized problems will be introduced: find #, = u(x) € V(o) such that

(2() (2() #(2))o 00y + 81 Bu(u,. ) = (L. 05, VveV(a),

where B, is the penalty operator,

2.12) By, v) = J Tta(oess a(x) + a(3x1)~ T2 w2y ax)) dxy =

a
b

= f ((uafe) + o) )2 vy(a) dxy

a

¢ — 0+ is a penalty parameter and a~ denotes the negative part of a (a” :=
:= (|a] — a)/2).

The penalized optimal shape design problem (P,) now reads as follows:

Problem (P,). Find o) € ,q such that

(2.13) E(uf(o); «f) = min &(u0); o) ,

a€Una

where ua) € V(o) is the solution of (2 (x)).

3. SOLVABILITY OF PROBLEM (PC)
In order to prove the solvability of Problem (/2,) we need some preliminary results.

Lemma 3.1. Let a, — o in C°(<a, b)) and let ¢ € K(«) be given. Then there exists
{071, @,€(C™(R,))? such that
(3.1) Pilogay € K((x"(j)) ?
62 by n (@),

where @ = (($, $,) denotes the Calderon extension of ¢ = (¢4, 9;) from Q(a)
on Q, and {a,;} is a subsequence of {a,}.

Proof. The existence of {@,}, ¢; € (H'(2,))?, satisfying (3.1),(3.2) has been proved
in [10], Lemma 2.4. It remains to prove that ¢; can be chosen more regular, namely
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¢; €(C*(,))*. From the proof of the above mentioned result it follows that @;
can be written as

¢; =y + ®;, where ;= (P,;, ,;)e(C(Q,))
and
¥ = (Yy, ¥,) e (H(Q,))* satisfies ¥loneK(a), ¥, = —x, on Q.
Using the density results (see [7], pp. 35— 38) one can approximate , by a sequence
{2}, ¥2; € C*(,) such that
‘//Zj Z —Xx, in Qy
and vanishing in the neighbourhood of I'y,. As the approximation of , is standard
we finish the proof. [J

Theorem 3.2. Let %,4 be given by (2.1). For every ¢ > 0 there exists a solution
«* € U,q of Problem (P,).

Proof. To simplify notation we set the parameter ¢ == 1 and suppress the sub-

script ¢. Let «, € %,4 be a minimizing sequence of &, i.e.

g := inf &(a) = lim &(x,) . 1)

acUaq n— oo

We set Q, 1= Q(a,) and denote by #, the solution of the state equation (#,(a,)) in
Q,. From Lemma A (see Appendix), the definition of B, and the state equation
(2 () we obtain

(3:3) Clai 0, = (x(m), &(#:)o.0, < (2(#): &(w,))o 0, + B, ) =
= (L, #,55, £ ([Fllo.a, + [Plo.rs) [1#:]1,0,

where B, = B, . Thus

(3.4) [,

As %,4 is compact in the C°%([a, b])-topology, there exists a subsequence of {o,},
also denoted by {«,}, which converges to a* € %,y uniformly on [a, b]. Hence for
every m e N there exists ny = ny(m) such that for any n = ny(m)

l10,. £ C for n=1,23..72

Q, > G,(a%),
where
(33) G = G,(0*) := {(xy, x,) € R? | x; €(a, b), a*(x,) + 1/m < x, < 7} .

As
[#]) 1,6, = [[#a] 150, < € Vn = no(m)

1y We shall write simply &(a) instead of &(u(a); a)-

Z) In what follows, C will denote a generic strictly positive constant with different values
in different places.
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one may extract a subsequence {u, } = {#,} such that
w, ~u™ (weakly)in (HY(G,)),
where #™ e V(G,,) := {#e(H'(G, ))*|ui=0 on I'pn dG,}.

As there exists no(m + 1) such that for any n = no(m + 1), 2, > G,.y o G,
we can extract a subsequence {u,,} < {#,} that converges weakly in (H'(G,,+,))?
to #™" D e V{(Gpyy).

Trivially, 2™ = »™*" in G,,. Similatly, for each k > 0 there exists no(m + k)
such that for n > no(m + k), @, D Gusr > G,uy—y and consequently we can
extract a subsequence {u,} = {m, ,} that converges weakly in (H'(G,,))* to
w0 e V(G,1 ).

Denoting by {u,} the diagonal sequence determined by {, } we have

(3.6) u) —~ulg, in (HYG,))* foreverym,
where #|; = #™ on G,. Clearly e V{a*). To simplify notation we shall write
again {u,} instead of {u}.

The next step is to show that # is the solution of the state problem (2,(o*)). For
every n we have
(37) (T(ll,,), g(w))O’Q,. + Bn(um W) = (F’ w)O,Qu + (P’ w)OJ'F Vwe 17’
where V = {we(HY(Q,))*| u; = 0 on I'y}. As a, —» o* in C%[a, b]) topology, we
obtain from the right hand side of (3.7) that

(38) Iim (F, W)O,ﬂ,, + (P, W)()J‘F = (F, w)O,Q(oz*) + (P, w)O,FF .

n-> oo

Next we shall prove that
(3.9) By(uy, w) — Bo(u, w) Ywe (C2(D,).

We have
b

f@mm+vammm—ﬁmwwwawwmmé

a a

= rl((uzn(%) + 9,) ) = ((uao®) + o)) )] dxy +

a

+ Jb((uz(oc*) + a*)7)? [wy(o,) — wa(o¥)| dxy =1, + I,

As o, — o* uniformly in [a, b], I, —» 0 as n - co. Further, as |w,(«,)| remains
bounded we can estimate using some elementary facts like |a*> — b?| = |a — b]
l|a + b| and |a~ — b™| < |a — b| and the Holder inequality:

115 0 undi) + 2)7) = (o) + o) Pl <
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< ( j " (an() — ua(0¥) + ay — a*)? dx1>1/2.

( f :((uz:(oc,,) + o) + (o) + o)) dxl)m.

The second term of this product remains bounded because of the compactness
of the imbedding from H'(Q,) to I*(I'(x,)) (in our geometry even uniformly with

respect to n) for 1 £ p < co. Thus it remains to prove that the first term tends
to zero. Now, using the notations

Fy= (v %) € B | 33 = *(x;) + 1fm, x, € (a, D)}
u,(I',) = Uz(xxa O(*(’xl) + l/m), xy €(a, b)
we obtain from the triangle inequality

h
J(uz,,(o(,,) — uy(0*) + o, — a*)?dx; <

a

<c {J:(a" o dx, + j j(uz(oc*) (1) dxs + J :(uZ(Fm) T dx, +

b
+ J‘(un(rm) — uz(,))? dxi} =C(Iyy + Iy + 145 + 114).

a

Evidently I,; — 0 as n — co and analogously to [8] we can estimate

rb

b I'm a 2 B
I, = (“2(0‘*) - uZ(Fm))2 dx; J. <J 6— uz(xp xz) dx2> dx; =m 1”“2“%,9@:*) s

va q¢ O0Xo

(b
Il3 = luZ(rm) - uZn(Fm)lz dxl é C“”Z - uZnH(Z).I"m < Cuul - uanﬁ,Gm(a*) ’

o

IA

b b g 2
I, = luZn(Fn,) - uz,,(oc,,)lz dx, £ Jr (J. P uy(x, X5) dxz> dx, £

Ja a Iy X2

1A

C m[a);]Ioc*(xl) + 1fm ~ oc,,(xl)‘ ““h”i.rzm) .

For every pu > 0 there exists m, such that I,, < u. Using (3.4) we see that there

exists n, = ny(mo) such that for any n > ny, I,3 < p and I, < p. Thus we have
proved (3.9)

Now fix m and let n be such that Q, o G,,. Then

(v(wa), &(W))o,0, = (2(#,), &(W))o 6, + (2(#.), 8(W))o 0,00 +
+ (1), 8(W))o (@G -

As u, — win (HY(G,))* and (¢(*), &w))o ¢,, is weakly continuous, we obtain
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(<(t), €()o,c,, ~ (). Mo, a5 o0,

= ” Uy, “ 1,9.N\0(a%) W“ 1,0\0(a*) >

I(r(u,,), s(w))o,!zn\g(m

l("(”ﬂ)’ s{w))o.(ﬂ{a*)\Gm)n!)nl = “"n”],!z.. ””’Hl,n(a*)\cm .
Passing to the limit with » and using (3.4) we have

lim (T(”n)’ s(w))ogfln = (T(")’ gl\w))O,Gm + C”w”LQ(m*)\G,,,(a*) >

n=> o0

lim (2(u,), &(w))o,0, = (v(#), &())o,c.. = C¥[|1, 005Gtz -

n—o0

Combining this with (3.8) and (3.9) and letting m tend to infinity we finally obtain
(t(#), s(W))o o) + Bus(tt, W) = (F, W)y 0wy + (P, Wor, YWeP.

As any w in V(a*) can be continuously prolongated to a function w in ¥ we have

that » = u{c*), i.e. # is the solution of (2 {a*)).

It remains to prove that &(a*) = inf &(«). Indeed,

AU ag

(3.10) E(0) = Egpian(%) F Eonmizs %) »

where

(1) ¢ Gt (O) = He(m,), 8(."n))o,cm<a*> — (F, 4,06, — (P, ”n)o.rmcm(a_*)

and

(3'12) 6 ONCnla®) = 7’(”("}1)? 8(”::))0,9,,\G,,,(q*) —~ (F, un)(),!?,l\Gm(:x*) — (P, un)o,Mm 2
2 ~ (F’ ”n)O,!?n\G,,,(a*) - (P! “u)o,Mm

with
M, = {(x,x;) e R*|x; = a and x,e(«fa), x(a) + 1jm),x; = b

i and x, € («(b), a(b) + 1/m)}
(this consideration can be omitted if dist (I, [c(a*)) > 0). Now

(3.13) lim &(o,) 2 lim &, (%) + im 6o \g,, () Z

n—> oo n-—+co "=

= @@Gm(a*)(“*) + lim (_(F» un)O,Q,,\Gm(a*) - (P, ”n)o,Mm) 2

n— o0

2 E6uan(@) = C([Fllo,0@ycuien T [Pllo,) -
Here we hawe used the lower semicontinuity of &. Letting m — o0 we hawe that

g = lim &(a,) = &(a*).

Thus o* solves Problem (P,). [
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4. THE RELATION BETWEEN (P, AND PROBLEM P

Let us choose a sequence {¢} of positive numbers such that & — 0 as k — .
Denote by ;' the solution of the optimal design problem (P,,) and by #;" the solution
of the associated state problem. Concerning the behaviour of the problem (P,;k) as
&, — 0 we have the following theorem.

Theorem 4.1. There exists a subsequence {0, u; (o)} of {0, (o)} and elements
a* € Uyq, w(0*) € K(a*) such that

(4.7) oy, —a* in C%[a,b]), j—
and
(4.2) ui(of) = w¥(a*) in (HYG,(a*)))* forany m

where o*, u*(a*) are the solutions of (P) and (P(a*)), respectively, and G,(o*) is
defined by (3.5).

Proof. Using Lemma A (seec Appendix), we obtain
(4.3) ]}y o@n = C Vi =1,2,...

As U ,q4 1s compact, there exists a subsequence of {oc;f} and an element o* € %,4 Such
that
o — o uniformly in [a, b] .

The construction of a weakly convergent subsequence {u;} satisfying (42) is
analogous to the method applied in the proof of Theorem 3.2. We shall denote the
diagonal sequence by {#;} and the weak limit by #* e (H'(Q(«*)))?. As in the proof
of Theorem 3.2 we obtain that

(4.4) B, {w,w)—> B,lu) VweV as k—o0.
On the other hand, from the state equation we have using (4.3)

(4.5)

B, (u,w)| S Cew|, 50 as k- oo.

Combining (4.4) and (4.5) we see that #* € Ker B,. = K(o*).
As the next step we prove that w* is the solution of the variational inequality
(2(o*)) in &(a*). In other words, we have to prove that
(t(w*), &(w — w*))o om = (F, w — u5)g gmy + (Pow — w¥)o .
Vw e K(o*) .
According to Lemma 3.1, for each we K{a*) we can find a sequence {w,}, w,€

€ (HYQ,))%, g, € K(of) and such that w, — w in (HY(Q,))*. Now from the definition
of B, = B, . we obtain
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(4-6) ("(“k), E(Wk - "k))o,.o,c = (F, Wi — "k)(),!lk + (P, W, — llk)o,pF ,
where Q, = Q(o;).

Concerning the left hand side of (4.6) we can estimate

(v(w), e(we — #)))o.0. = (2(u), e(wy, — w}))o G, + (v{u), &(w, — ”lf))o,szk\ma*) +

+ ("("f)s W, — ﬁ:))o,(ﬂ<a*)\cn‘)nﬂk = (e(uy), e(w, — “:))O,G,,, +
+ (2(#), &(Wi))o, a0y + (v(u), E(Wk))o,(sz(a*)\cm)nszk .
Thus we easily get
(47)  Tim (o(), e(we — 8))o .o, = (2(a*), e(w — #*))o 6,, + C[W, oera,, »
k-+ 0

where C > 0 does not depend on m.

Similarly,
(F, w, — )00, = (F, Wi — 8)o.g,, + (F, w, — "lf)o.szk\o(a*) +
+ (F, Wi = #)o 00 Gnrnt
and consequently,
(4.8) gijni(F, W — 8 )00, 2 (F.w —u)oq, — C(“F‘Ho,m«*)\cm + ”W”o,ﬂ(a*>\cm)-
Finally, if we define M,, as in the proof of Theorem 3.2 we obtain
P,we — #)or, = (Powi — 8o rpn,, + (Powy — #)g 5

and passing to the limit:
(4.9) :E_I?O(P’ We — )orp 2 (Pow — w%)o rar,, = CUPllo,, + [#]lon,)

Combining (4.7), (4.8) and (4.9) and passing to the limit with m we find that w*

« solves Problem (#{a *)).
It remains to prove that &(a*) = &(a) Vo € U,q. Let & € U,q be fixed and let u(g) e
e K(&) be the solution of (#(&)). Using the classical results we known that there exist

w(8) € V{Q(8)) (solutions of (£, (&)) such that
w(d) - ud) in (HY(Q8))>.

Consequently,

(4.10) Euf8), 8) —> £{ud), 8) = £(8).
On the other hand,

(4.11) S(H(). o) < £(m(3). 8)
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as follows from the definition of (P,,). From (4.10),(4.11) and using the same approach
as at the end of the proof of Theorem 3.3 we are led to

&(o*) < lim &(of) < &(&) VaeUyq .
k— o0

This completes the proof of Theorem 4.1. []

5. THE FINITE ELEMENT APPROXIMATION OF (P,

Approximation of Problem (/) will be defined starting from (P,) by means of
finite elements. We suppose that %,4 is replaced by the set

Uzg = {2 € C[a, b]) | @] ta,-1,00 € Prl[@i-1> ai)]} N g

where a = g, < a; < ... <ay= b is a partition of [a, b], P, denotes the set
of linear functions. For any «, € %", we define

Qo) = {(x1, x2) e R | a < x; < b, oy(x) < x, <7},

i.e., the variable part of the boundary I'c{«) is now approximated by a piecewise
linear arc I"c{o,).

By 7/ w,), oy € U4, we denote a triangulation of Q{a,) such that the whole segment
I; = {(xy, x;) | xg € [a;~y, a;], X, = o{x,)} is the whole side of a triangle T, e
€ 7 (), and satisfying the usual requirements concerning the mutual position
of two triangles belonging to (o). Moreover, we shall consider only such families
of {7 (o)}, which are regular uniformly for h — 0+ with respect to o, € %k,
i.e. there exists 5o, > 0 independently of & > 0 and «, € %";, such that all interior
angles of all triangles belonging to 7 ,(«,) are greater or equal to , (for practical
applications some other technical restrictions will be added, see Chapter 7). Finally
suppose that & ,(0,) as a function o, is continuous for Vh. Next, the symbol Q,(a,)
will denote the set Q(x,) with a given triangulation 7 ,{a,); we also use the abbre-
viation Q, for Qy{a,).

With any .77, a finite dimensional space Vj(o,) = V((a,)) will be associated:

V(o) = {v, € (C(Q(o)))? | vayr, € (P4(T))? for any T, € T4{ay), v, = 0 on I'p}.
The approximation of (P,) is now defined as follows:

Problem (P,,,), Find o}, € Uh, such that

éah( ah(o‘sh)a eh) - mln gh zh\ah) OCh)

ahe%ad
where

(5-1) & ).("eh(ah); O‘h) = %(T("ah(ah)): 8("eh(°‘h)))o,o(a,.) - <L, ”zh(%))ah

in which u,(w,) € Vi(%) is the solution of the discrete state equation
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\ 1
(Wﬁ(h‘(ah))h (T(u /1)7 8(”"))019(7;0 + Bah(ualv U/,) == <L) vh)ah Vvh € V,,(Q(Clh))

e(h)
with & = g(h) - 0+ iff h — 0+

Here B, denotes the penalty operator:

b
Bah(uzh! vh) = j ([1"‘2£h + ah]’)z Vap dxl .

a

The solvability of Problem (Ps(h))h can be proved with compactness arguments.
Assuming the properties of {77} we shall prove

Theorem 5.1. Let o € %", be a solution of Problem (P,,), and let u}, be the
corresponding solution of the state equation (.@’eh(oc,,)),,. Then there exists a sub-
sequence {o;; | < {a}, an element u* € %,4 and w*(«x*) € K(o*) such that

(52) OC,’?J—>7* in CO [a, b]) for hj"’0+,
(53) wh (o) ~ wi(e) in (H'Gu(0))* for Iy~ 0+,

for any m 2 my, where o* is the solution of Problem (P), u*(oc*) the corresponding
state and G,(«*) is defined in (3.5).

To prove this theorem we shall use the following result:

Lemma 5.2. Let o, e %"y, we U,y be such that o, — o uniformly in [a, b] as
h — 0+. Let w, = mfoy) be the solution of (P, (%,)),. Then there exists a sub-
sequence (m, } = {m,} such that

(54)  w (o)~ wa) in (H(G®)? as j— oo, forany m>0,
where u{o) € K(a) is the solution of (P(x)).

Proof. Since u, € V(«,) we obtain from the definition of (2,,(2,)), using Lemma A
“(see Appendix) that ||, o, < C independently of h. Now let m be fixed. Then there
exists hy = ho(m) such that G,(o) = @, for all h < h,. Consequently,

(5.5) Jnl s Gy = [l 1.0, = C VR g

The weakly convergent subsequence {, } and an element u € V(o) satisfying (5.4)
can now be constructed exactly as in the previous proofs.

The next step is to prove that #{«) € K(c). As in [9] we shall show that B,(u(a), w) =
= 0 Vwe(Cy(8,))* which implies that u(«) € K(«). Let /; be a filter of indices for
which (5.4) holds. Let w be an arbitrary function in (C({2,))?. For each h; with w
we associate its linear interplate w, := nh_iwlﬂh'e V,,J_(Q,,J,). Using w,, as a test
function in (2, (o)), we get '
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\ 1
(T(uhj), S(Whi))o,ﬂhj + é—(‘z‘)‘ Bahj(uhj, Whj) = (F, whf)o’ghj + (P, whj)(),[‘p X
Ut
Thus from (5.5)
(5.6) 0= IBahj(u,,j, wy)| < e(h)) cnw,,”l,ghj.
As the linear interpolates have the approximation property
[[wn, = "’”1,9;,_, s Chi”wnz,nhj < Chyllwl,0,)
we have that ||w, Hl,% < C. Thus
(5.7) fim B,, (#,,, ) = 0.

joo

On the other hand,
|Ba,,j("h,~’ Wi,) — B,(m, ”’)! = |B,(u, w) — Ba,,j("hj’ ”’)l + ‘Ba,,j(”hj’ w— Wh,)[ .
The first term on the right tends to zero as h; - 0 as follows from (3.9) and
lBa,,j("hp w—w)| < Cluy, + [0, et W — Wi Lo, p <

= C(H"hj“o,rc(a;.j) + “"‘lu“o,rc(a;,jw)z Iw — Wh;”Lw(Fdz,,jn =

< )3y, + € [w = Wi Jina, ) > 0 as k0.
Thus B,(#(c), w) = 0 Yw e (CF(Q,))%, ie. ula)e K(a).

It remains to show that u = ufa) solves Problem (#)), i.e. we have to verify that

(5.8) (t(w), ew — 8))o 00y = (F, w — #)o 00 + (P,w — w)y r, YweK(a).

Let w e K(«) be fixed and let w be its Calderon extension. According to Lemma 3.1
one can find a sequence {w;}. w; e (H*2,))* (even more regular) such that w; - w
in (H'(®,))* for i - oo. Let i be fixed. Then w, e K(o) provided h is sufficiently
small, i.e. for h < ho(i). Thus, as @, - «, uniformly in [a, b], we notice that

wihj]ﬂhi -= nhjwilghj € K(al"j)
for h; sufficiently small.

As wy, € K{a;, ) we obtain using the definition of B, that
(7("111-); 5(”;.,- - Wihj))o,fz,” =S (F, u,, — Wihj)o,sz,,j + (P, uy, — Wih,»)o,r,.- .
Since u,, — # in (H'(G,(«)))* and wy,, —» w; in (H'{Q,))* we easily obtain that

,,ﬁTn}) (T(ti/:j), E(Wihj - "hj))O,th = (1(u), a(wi - u))O,Gm(u) + C“wi”l,ﬂ(a)\b‘m s
5

3) Here we use the fact that the family {9’,,(4,1)} is uniformly regular with respect to o, € %%
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Tim {(F, wy, — "hj)o,f?;,,. + (Pywi, =y )o e = (F, Wy — w)g, o +
hj—0

+(Pywi — o rng, — CO) (1F]o,0mnme + [Pllo.regan)

and passing to the limit with m — oo and then with i — oo we have assertion (5.8).
This completes the proof Lemma 4.2. []

Proof of Theorem 5.1. Let {of}, h > 0+, oy € %!, be solutions of Problems
(Pyuy)n As Uty < U,y for all h and %, is compact in the C°[a, b])-topology,
there exists a subsequence {a; } < {oj} and a* € %,, such that

oy, = o* uniformly in [a, b] .

From Lemma 5.2 we obtain the existence of a subsequence {u,(«; )} of solutions
of state problems (2, (e ), such that
w, (o) = w*(o*) in (HY(G,(«*)* VmeN,
where u(a*) € K(o*) and solves (2(a*)).
To complete the proof of Theorem 5.1 it remains to show that «* is a minimizer

of & in %,4. Now with the same notations (cf. (3.10)—(3.11)) and techniques as in the
proof of Theorem 3.2 (cf. (3.13))%)

(5.9) lim rg’;,j(“?:j) = lim éﬁhj,c,..(a*)(“f,) + lim éahjfrzhj\a,,.(a*)(“:j) =
hj>0 hj=0 h;j—0

= 6, @m(0%) + ﬁfl(l) (—(F, "h,-)O,th\G,,,(az*) —(p, "hj)o,M,ﬂ) .
hj~

Letting m — oo in (5.9) we see that

(5.10) lim &, (o) = &(a*).

hyj—0
Let & € %,4 be arbitrary and let &, € %", be a sequence such that
(5.11) 8, — @ uniformly in [a, b] .

The existence of such a sequence has been proved in [1]. The solution (&) of
(#(2)) can be approximated by a sequence {1, }, ,, € (H'(€2,))* such that v, g, )€
€ K(8,,) and !
(5.12) v, — a(8) in (H'(Q,))?,
where #(6) denotes the Calderon extension of u{@) (see the proof of Lemma 5.2,
especially the construction of functions wy, ). Then by (5.10), (5.11), (5.12) and
definition of &, and &,

&(a*) £ lim 6, () < lim &, (8,;) < Uim J,, (v,,) = J5(u(8)) = 6(8) Vae U,
h;j=0 hj=0 B0 J
4y We write simply &,(ay) for &y(ay(ey); o)
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where

Ju(¢) = Zl(r<¢)s 8(¢))0.Q(1) - <L’ ¢>x -
This completes the proof of Theorem 5.1. []

6. NUMERICAL REALIZATION

Taking into account the geometry of Q,(w,) and the piecewise linearity of I'c(x,),
for finding an optimal I'¢(o,) it is sufficient to find the x,-coordinates of the design
nodes
(6.1) A; = (apou{a)) i=0,..,N(h), a;=ih,

such that &,(u(ey); o) is minimum.
As for fixed ¢ and h, the shape of ©{x,) and the value of &, depend on the design
variables (x,-coordinates of A;)

(6.2) X = (xg, .- Xyay) = (@(ao)s -y a{anen)) »

we shall write Q(X) = Qya,), u{X) = ny(a,).
For fixed Q(X), u,(X) can be obtained by solving the algebraic form of (2,,,(x,)),
for nodal displacements Q,(X),

QE(X) = (qy1s -- qg,,(,,)) , n(h) = dim V()
(6.3) AX) 0.(X) + L BO(X), X) = F(X) + P.
g

Here A(X) is the stiffness matrix, F(X) is the force vector arising from the body
force, P is the contribution of the surface traction (independent of X ) The operator
B(+, X): R"™ — R"™ is a nonlinear mapping corresponding to the discretization
of the penalty operator B, .

The discrete cost functional, written in terms of X and Q(X), reads now

(6.4) 8(Q4X); X) = HQ(X), A(X) QX)) — (F(X) + P, 0,(X)).
Problem (P,,), is equivalent to Problem (P(X)), defined as follows:
Problem (P\X)). Find X* € @ such that
(6.5) SQ(X¥): X*) < 5(Q(X): X) forall Xed,
where QX) is the solution of (6.3) and where & is the set of admissible design

points (cf. definition (2.1) of U,4):

@={XeR”‘”“ [0S x,£Co, xo=A, xypy=8B,
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C, c, . , &
-l E xS, i=1L N0, Y (i xoy) = const}.

Nh) =1

Hence (X)) is a nonlinear programming problem with box constraints, linear
inequality constraints and a linear equality constraint.

The evaluation of the cost functional & involves the solving of the nonlinear state
problem. Consequently, the NLP-algorithm should use as few function evaluations
as possible. Clearly, some gradient information is then necessary. In the following
we shall evaluate the gradient of & with respect to X.

For brevity we write &(X) instead of &(Q X); X).

Let Xe @ and Ve BR¥™*! be fixed. We denote by

X +1V) — 8(X)

5

E'X)=&(X)V = lim

(—0+ t

QX +1V) - Q/X)

Q(X) = lim = -,
-0+ t
-0+ t

F'X) = lim FX+ V)= FX),

-0+ t

B(Q, X) = lim BQ. X + 1V) — B(Q,. X)

t=0+ t

the directional differentials of &, Q,, 4, F and B, respectively. From {6.4) we obtain
(66) 67/(X) V= (Q:’:’ AQa —F - P) - (‘F’a Qs) + JZ-{QE’ A’Qc) .

In order to eliminate Q, from (6.6) we introduce the adjoint system

e

L ¢
N (6.7 A+ -——~BQ,X)|A=A4A0, — F—P.
( ) ( +80Q B\Qs? )) Qa

&

From (6.6) and (6.7) we obtain the directional gradient for § with respect to X,
17s ’ ’ / ’ ’ 1 I N
(6.8) &(X)V = +3Q. AQ) — (F, Q) + (A, F' ~ A(X} Q, — ; B{Q,, X)).

We shall close this chapter with the following important remark. When instead
of (2 ,(a)) the original inequality formulation (2(«)) is employed the mapping o — #{)
is not differentiable (ux) solves (#(x))). However, in the case of the cost functional
of the total potential energy it is possible to compute the gradient of & even when the
state is governed by the variational inequality. Namely, as the following calculation
shows we do not need the derivative of the state explicitly.
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Indeed,
(6.9) T=A0 - F—P
corresponds to the contact stress on I'o(X), where 4, F and P are the same as in (6.6)

and @ = Q(X) denotes the nodal displacement vector in the finite element discretiza-
tion of the state inequality (#(a)). If T; & 0 for some j €0, ..., N(h) (at nodes of I'// X))

this means that the corresponding node is in contact, i.e. Q; = --x;. Consequently,
(6.10) 9 % —8;.
ox; ox;
Now we obtain by (6.9) and (6.10)
(6.11) ,
0 d 1 0
2 soxyx)y= -1+ (2 Fo)- o (2 A) 0), i=0,...NK.
Ox; \0X; 2 0x;

We emphasize that {6.11) is possible because of the special property of the criteria
functional.

7. NUMERICAL EXAMPLES

In numerical tests we suppose that the elastic body cosnsists of a homogeneous
and isotropic material with the Poisson ratio v = 0-29 and the Young modulus
E=215.10""Nm™2,

Example 7.1. We have chosen the parameters in definition (2.1) of %,4 as follows:
a=0,b=28,Cy=-054=005B=0059y=1,C, =0025and C, = 78, ie.
Qo) = {(x;, x;) e R*| 0 < x; < 8, ax,) < x, < 1}. Furthermore, we suppose that

Ip={xeiQu)|x, =0,x =8}
and
I'p = {xedQu)| x, =1}

(cf. Figure 7.1).

The body force F is assumed to be zero and the surface traction P = (0, P,) where
P, = —575.10% if x, € (2,6) and 0 elsewhere.

The triangulation 7 (o) of Q,(e,) is constructed with the aid of a uniform triangu-
lation 7, of Q = [0, 8] x [0, 1] by mapping all nodal points (£,, £,) of 7, to
nodal points (x;, x,) = (S1" %y, £2), SF%y, £2)) of T (o), where

(%1, %) if x, 205,

SRy, R,), STR,, £2)) =
(ST, £2), S3(%0, 22) {(xl, 0f%,) + 28,4 — o4(%,) if 0<x, <05,

Thus the domain Q,(«,) and its triangulation are completely determined by the
values of the design variables x; = a,(ih) i = 0, ..., N(h).
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In Figure 7.1 we can see the triangulation of Q,(o,) for h = 1/2.

Xz 1

o design nodes ! X4
Fig. 7.1. Triangulation of Q,(x,) for some o, € ﬁ?/fl'd.

Because of the symmetry with respect to the line x, = 4 in Example 7.1 we have
analyzed only one half of the domain using 128 triangles (mesh-size h = 0-25). This
gives us 17 design nodes on the moving boundary 3I'(2,). As the value o,(0) is fixed
a priori this leaves us 16 degrees of freedom in minimization.

In all test examples we have used the NPSOL routine of SOL (System Optimiza-
tion Laboratory, for the method see [6]). The gradient of & has been computed

Py
4

, Volue of F
<
= L

-5 T T T T T =
0 1 2 3 [A 5 6
Iteration

Fig. 7.2. Diminution of & versus iteration.

0 N N T .
00 1.0 20 3¢ 40 50 60 70 80
Fig. 7.3. I'e(ef) (A) and TI'e(ef) (4) .
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00 10 20 30 40 S50 60 70 80

Fig. 7.4. Contact stresses for the initial guess (A) and for the final design ().

a

48

Votue of F

4.9

-5,04

-5.14

-5.24

-5.3 T T T ,

Iteration

Fig. 7.5. Diminution of & versus iteration.

0.06

003
002
001

0,00 + T T T T T T T 1
60 10 20 30 40 50 60 70 80

Fig. 7.6. T'e(of) (A) and I'e(ef®) ().

by the formula (6.11). The state problem is solved by a modified relaxation method.
The computation has been carried out by VAX 11 /780. with FPA in single precision.
The authors are indebted to A. Kaarna for his assistance in numerical tests. In Figure
7.2 we can see the diminution of &(Q@(X)™®); X*) versus iteration. The initial shape
(I'c(e®)) and the final shape (I'{o”)) of the contact surface I'; are shown in Figure 7.3.

Figure 7.4 shows the corresponding contact stresses (computed by the formula

(6.9)).
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Example 7.2. As in Example 7.1 but suppose that 4 = B = 0 and C, = 0-1. All
calculations have been carried out in a similar way as in Example 7.1. In Figures
7.5—17.7 we can see the corresponding results.

Example 7.3. Let

Qo) = {(xy, x2) e R*| 0 < x; < 4,0 = ofx,) < x, < 1}
and let

= {oc e C>'([0,1]) | 0 < afx,) < 005, «{0) = 005,

d
— 0
dx,

< 0-05, meas (2(«)) = 3'9} .

In Figure 7.8 we can see the partition of 0Q(«).

-22+4 T . h— ¥ . —
00 10 20 50 40 50 60 70 80

Fig. 7.7. Contact stresses for the initial guess (A) and for the final shape (+).

rl .
10 F
N T Qo) rg
Tt
.05
1 2 3 b4

Fig. 7.8. 2(a). € %),
We suppose that F = 0, P = (P,, P,) = (0, 0) on I'; and

(0,0) if xel'} and 0<x; <2,
(P17 PZ) = 8 . 1
(—575.10°%, —575.10%) if xel; and 2<x,S4.
The solution strategy (triangulation, algorithms, gradient etc.) is the same as in

Example 7.1. In Figures 7.9—7.11 we see the results.
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Fig. 7.9. Diminution of &.

007
005
004
002

000 -
00 10 20 40 50

Fig. 7.10. Tp(@) (A) and I'e(af) ().

0.4
-12.4 : \
- 241
- 36
- 48
- 60. , T v 4
00 10 20 30 40

Fig. 7.11. Contact stresses for the initial guess (A) and for the final shape (+).

In all test examples the value of the cost functional is reduced and the part of I'¢(e,)
where the body is in contact after deformation is enlarged. As a by-product we could
find for I'c(e,) such a shape that the contact stress will be evenly distributed when
geometrical constraints are appropriate. This is of great practical significance for
designers. From the mathematical point of view the functional & is easy to handle
whereas the direct minimization of contact stresses is more involved.
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APPENDIX

Lemma A. There exists a constant ¢ > 0 independent of a € U,q, ve V(a) and
such that

(A1) Jo “1 e = CE(0)s ei(2))o a0
holds for any o € U,q and any v e V().
Proof. It is known (see [24]) that the so called second Korn’s inequality

(A2) < E{(ei(0), e0))o.0m + (2 0)o,0m)

holds for any v e V(oc) with a constant ¢ > 0 depending on the lipschitz constant
of «, only. Due to the definition of %,,4, ¢ can be chosen independently of «. Let us
prove now that {A.2) is valid even without the second term on its right hand side,
in other words {A.1) is valid.

Let {A.1) be not true. Ther for any n integer there exist subsequences {a,}, {v,},
oty € Uy, v, € Vio,) such that

(A3) 02 0, 2 n(eus(tn)s 2o 0, -

Without loss of generality we can suppose that

(A fodio, =1 Vn

and there is a function « € %,4 such that

(A.5) a, = o uniformly in [a, b] .
(A.3) and (A.4) imply

(A.6) (eij(®,), €:5(8.))0,0, = 0 if n—> 0.
On the other hand for n sufficiently large

(A7) (20> Vr)o.0, 2 &2

as follows from (A.2), (A.4) and (A.6).

Let G, (o) be defined analogously to (3.5). Using the same approach as in the proof
of Theorem 3.2, we can find a subsequence of {v,} {still denoted by {v,}) such that

(A8) v, — v(weakly) in (HY(G,(2))*
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for any m integer. Let m be fixed. As

(&:,()» €i1(1))o.g,, < lim inf (8,',-(17,,), &(t)oc, = 0,

one can easily get, by applying the first Korn’s inequality in V(G,(«)) that v = 0
in G,(«) and hence in 2(«). On the other hand

(A9) [2a8 5, = a5, + loal

for n sufficiently large. By a direct calculation we obtain

2
0,2~ Gm

(A.10) H”u”g,ﬂ"—cm = ¢ max ]oc(xl) + 1jm — O‘n(xl)l

- x€[a,b]

so that for n, m sufficiently large

Il”nl,lg,fz.,~cm(a) < ¢/4.

From this, (A.7) and (A.9) we finally get

Jonl

which contradicts to the fact that v = 0 in Q{«).

G = &4 Vn,

Souhrn

OPTIMALNI NAVRHOVAN{ TVARU OBLASTI PRO PRUZNE TELESO
V KONTAKTU, ZALOZENE NA PENALIZACI STAVOVE NEROVNICE

JAROSLAV HASLINGER, PEKKA NEITTAANMAKI, TiMO TIIHONEN

Préace je vénovana studiu optimalniho navrhu kontaktni plochy pruZného télesa, jednostranné
podpiraného dokonale tuhou oporou. Puvodni variaéni nerovnice, jeZ popisuje chovani daného
modelu, je pfevedena pomoci penalizaéni metody na systém nelinearnich rovnic. Tyto penalizo-
vané ulohy nyni vystupuji v Gloze novych, penalizovanych relaci. V praci se¢ zkouma vzajemny
vztah mezi pivodni Glohou optimalniho navrhu oblasti se stavovou nerovnici a posloupnosti
obdobnych uloh se stavovymi penalizovanymi rovnicemi. Prace se rovnéZ zabyva problematikou
aproximace dané Glohy pomoci metody koneénych prvkil. V zavéru jsou uvedeny nékteré nume-
rické vysledky pro modelové Glohy.
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