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Abstract

In this paper, an optimization procedure, based on an Isogeometric BEM solver for the potential
flow, is developed and used for the shape optimization of hydrofoils. The formulation of the
exterior potential-flow problem reduces to a Boundary-Integral Equation (BIE) for the associated
velocity potential exploiting the null-pressure jump Kutta condition at the trailing edge. The
numerical solution of the BIE is performed by an Isogeometric Boundary-Element Method (BEM)
combining a generic B-splines parametric modeler for generating hydrofoil shapes, using a set of
eight parameters, the very same basis of the geometric representation for representing the velocity
potential and collocation at the Greville abscissas of the knot vector of the hydrofoil’s B-splines
representation. Furthermore, the optimization environment is developed based on the geometric
parametric modeler for the hydrofoil, the Isogeometric BEM solver and an optimizer employing
a controlled elitist genetic algorithm. Multi-objective hydrofoil shape optimization examples are
demonstrated with respect to the criteria i) maximum lift coefficient and ii) minimum deviation
of the hydrofoil area from a reference area.
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1. Introduction

Performance of many ship-hull types is dependent on the hydrodynamic properties of their
keels, rudders, hydrofoils and similar appendages operating as lifting bodies. Therefore, the inter-
action of free-surface flows with lifting bodies constitutes an interesting problem, finding applica-
tions in the design of yachts and sailing boats and the performance of stabilizers, hydrofoils and
similar devices. As a common feature, the functionality of these lifting appendages depends on
their shape and even small variations of it may have significant impact on their performance. For-
tunately, the current availability of computing power has allowed the employment of sophisticated
Computational Fluid Dynamics solvers and their coupling with advanced Geometric Modeling
techniques and Optimization strategies for the design optimization of both ship hull and lifting
appendages. In this context, computational tools that represent exactly body shapes, securing that
mesh generation is an error-free process provide designers and researchers with a great challenge.
Moreover, the idea of bridging the gap between Computer-Aided Design (CAD) and Analysis by
the introduction of IsoGeometric Analysis (IGA) by Hughes et al (2005) [1], see also Cottrell et al
(2009) [2], which directly uses analysis suitable geometric models from the CAD representation,
can be efficiently exploited, especially in problems of shape optimization. Shape optimization in
the context of IGA has been presented in various works, as e.g., Wall et al (2008) [3], Nagy et al
(2009) [4], Nguyen et al (2012) [5], Nortoft & Gravesen (2013) [6], Qian & Sigmund (2011) [7],
Cho & Ha (2009) [8], Lian et al (2013) [9], Qian (2010) [10], Li & Qian (2011) [11], where NURBS
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control points and/or weights have been used as design variables to control the boundary shape.
On the other hand, in Kostas et al (2015) [12] and Ginnis et al (2013) [13], due to the shape com-
plexity of the ship hull, a geometric parametric model using high-level parameters with a direct
design meaning has been developed and used for optimization purposes in the context of IGA
approach.

The main purpose of the present work is to develop an optimization procedure for the shape
optimization of hydrofoils. This task is accomplished by combining three components: An opti-
mization algorithm, an IGA-BEM solver for the potential flow outside the hydrofoil, presented in
§2, and a hydrofoil geometric parametric model, presented in §3.2.

The formulation of the exterior potential-flow problem is reduced to a Boundary Integral
Equation (BIE) for the associated velocity potential on the body boundary, exploiting the null-
pressure jump Kutta condition at the trailing edge, Morino (1993) [14], Gennaretti et al (1998) [15].
Boundary element methods (BEM) in aero/hydrodynamics were established as main tools for the
solution of flow problems around lifting and/or non-lifting bodies of arbitrary shape; see, e.g., Katz
& Plotkin (1991) [16], Paris & Canas (1997) [17], Dragos (2003) [18]. Starting from the pioneering
work by Hess & Smith (1962) [19], where the 3D panel method based on source-sink distribution is
presented for analyzing the flow around arbitrary non-lifting bodies, this approach has been further
extended by Hess (1972) [20] for lifting flows and applied by Hess and Valarezo (1985) [21] for the
simulation of a steadily translating and rotating propeller. Concentrating on marine propulsors,
in the years to follow, various alternative formulations of the boundary element method have
been applied for the solution of propeller related steady or unsteady problems. Most boundary
element methods for lifting and propeller flows solve directly for the unknown velocity potential,
a formulation more stable from the numerical point of view, see, e.g., Morino & Kuo (1974) [22],
Kinnas (1996) [23], although several alternatives exist, as for example the methods based on
surface vorticity distributions developed by Belibassakis & Politis (1995, 1998) [24], [25]. In the
last period, higher-order BEM, based on B-splines or NURBS representations for the geometry
and/or the solution, have been presented for the analysis of flow around marine propellers; see,
e.g., Lee & Kerwin (2003) [26], Kim et al (2007) [27], Gao & Zou (2008) [28]. In the present
work, the IsoGeometric Analysis - Boundary Element Method (IGA-BEM) initiated by Politis et
al (2009) [29], for the solution of an exterior potential-flow problem without lift, is extended and
applied for the corresponding problem with lift. The IsoGeometric Analysis concept, introduced
by Hughes et al (2005) [1] in the context of Finite Element Method, was extended to the Boundary
Element Method by various authors, see, e.g., Politis et al (2009) [29], Simpson et al (2012) [30],
Scott et al (2013) [31], Belibassakis et al (2013) [32], Peake et al (2013) [33], Simpson et al
(2014) [34], Ginnis et al (2014) [35]. The developed Isogeometric-BEM is based on a parametric
NURBS representation of the hydrofoil and employs the very same basis of the geometry for
representing the velocity potential. The Boundary Integral Equation is numerically solved by
collocating at the Greville abscissas of the knot vector of the hydrofoil’s parametric representation.
Numerical error analysis of the Isogeometric-BEM, using h-refinement technique (knot insertion),
is performed and compared with classical low-order panel methods.

As regards the geometric parametric model for the hydrofoil, it is constructed within Rhinoceros
3D using its VBscript-based programming language. This parametric model generates an instance
of the hydrofoil as a closed cubic B-spline curve using a set of eight design parameters. The
construction process is presented in detail in §3.2. The optimization loop is driven by an optimizer
which uses a multi-objective optimization method based on a controlled elitist Genetic Algorithm
(GA) favoring individuals that increase the diversity of the population; see §3.1. Finally, the
optimization environment has been tested by optimizing the shape of a hydrofoil with respect
to the following two criteria: maximum lift coefficient and minimum deviation from a reference
cross-section area; see §3.3.

2. Continuous and discrete formulation of the problem

We consider a two-dimensional body whose boundary is ∂ΩB , as shown in Figure 1, moving
with constant speed ~UB in an ideal fluid of infinite extent. In a body-fixed coordinate system
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Oxy this problem is equivalent to a uniform stream with velocity ∇Φ∞ = ~U∞ = −~UB , where
Φ∞(P) = u∞x + v∞y is the far-field asymptotic form of the velocity potential Φ(P) of the
resulting flow at point P=(x, y). The potential Φ(P) is the solution of the following boundary-
value problem (BVP):

∇2Φ = 0, P = (x, y) ∈ Ω, (1)

∂Φ

∂n
= 0, P ∈ ∂ΩB , (2)

Φ− (u∞x+ v∞y) → 0, as x2 + y2 → ∞, (3)

where Ω is the fluid domain outside ∂ΩB and ~n denotes the unit normal vector on ∂ΩB directed
inwards with respect to the body. The above BVP has a unique solution up to an additive
constant and, in order to fix a unique solution, we normally consider, for smooth bodies, zero
circulation Γ(C) =

∫

C
∇Φ·dc of the velocity field ∇Φ over any circuit C surrounding the body.

The difference between potential flows around a smooth body and a hydrofoil is that, in order
for the flow around the hydrofoil to have a physical meaning, the circulation has to be nonzero
and appropriately adjusted until the flow leaves the trailing edge smoothly. More specifically, on
the basis of Kelvin’s theorem, Prandtl concluded that if an airfoil, which started its motion from
rest in an ideal fluid, is later found to possess non-zero circulation Γ, then the component of the
boundary of the fluid which coincided with the airfoil initially, must coincide at a later time with
the union of the airfoil surface and a surface, the so-called wake, embedded in the fluid which has
circulation −Γ; see, e.g., Meyer (1971) [36]. In contrast to the 3D case (see, e.g., Bassanini et
al (1999) [37]), the location and shape of the wake in the 2D case can be taken, without loss of
generality, to be a straight line emanating from the trailing edge and extending to infinity. This
line is a force-free boundary along which the normal fluid velocity and the pressure should exhibit
no jump. More accurately, we can write:

∂Φ+

∂n
=
∂Φ−

∂n
, P ∈ ∂Ωw : kinematic boundary condition, (4)

p+ =p−, P ∈ ∂Ωw : dynamic boundary condition (5)

where, Φ± / p± denote the velocity potential / pressure on the upper, ∂Ωw+ , and lower, ∂Ωw− ,
face of the wake boundary, respectively.
Let Ω be the fluid computational domain bounded by ∂Ω = ∂ΩB∪ ∂Ωw+∪ ∂Ω∞∪ ∂Ωw− with
the radius of the fictitious circular boundary ∂Ω∞ tending to infinity and the angle θ between
the fictitious boundaries ∂Ωw+ and ∂Ωw− tending to zero as r → ∞. Applying in Ω Green’s
second identity between the potential Φ(P), P∈Ω, and the fundamental solution, G(P,Q) =
(1/2π) ln ‖P − Q‖, of the 2D Laplace equation (1), we can reformulate the BVP (1)-(3) as a
2nd-kind Fredholm integral equation on the hydrofoil boundary ∂ΩB , taking into account the
wake-sheet conditions (4) and (5):

Φ(P)

2
+

∫

∂ΩB

Φ(Q)
∂G(P,Q)

∂nQ

dsQ − µw

∫

∂Ωw

∂G(P,Q)

∂nQ

dsQ = Φ∞(P), P ∈ ∂ΩB\PTE , (6)

where subscript Q implies an operator with respect to point Q, PTE = (xe, ye) denotes the trailing
edge of the hydrofoil and

µw = Φ+(P)− Φ−(P) = constant , P ∈ ∂Ωw. (7)

Equation (7) is a form of the Kutta condition, the so-called Morino-Kutta condition (see Morino
& Kuo (1974) [22] , stating that the fluid velocity should be bounded in Ω and in particular near
the trailing edge, enabling to fix the proper value of circulation Γ, thus securing a unique solution
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Figure 1: A hydrofoil in a incoming uniform stream with velocity ~U∞ along with its wake boundary ∂Ωw. Dashed
lines denote the assumed boundary orientation.

of the BVP (1)-(3). Furthermore, due to the simple shape of the wake sheet, the integral term on
the wake ∂Ωw, appearing in equation (6), can be easily calculated resulting in:

∫

∂Ωw

∂G(P,Q)

∂nQ

dsQ =

∫ ∞

xe

∂G(P, (xQ, yQ))

∂nQ

dxQ =
1

2π
arctan

(

yP − ye
xP − xe

)

, (8)

revealing that the influence of the wake to the fluid flow is equivalent to a point vortex located at
the trailing edge PTE = (xe, ye). Alternatively, the flow around the hydrofoil can be formulated
via the perturbation potential φ(P), defined as:

φ(P) = Φ(P)− Φ∞(P), (9)

which leads to the following integral equation:

φ(P)

2
+

∫

∂ΩB

φ(Q)
∂G(P,Q)

∂nQ

dsQ − µw

∫

∂Ωw

∂G(P,Q)

∂nQ

dsQ =

−

∫

∂ΩB

(~U∞ · ~n(Q))G(P,Q)dsQ, P ∈ ∂ΩB\PTE . (10)

The range of the variable point P in the above integral equation, as well as in Eq. 6, does not
include the trailing-point PTE in order to circumvent the issue that, due to the existence of
the wake ∂Ωw emanating from PTE , one cannot simply appeal to standard potential theory for
boundaries ∂ΩB with corners and replace the term Φ(PTE)/2 in the left-hand side of Equations 6

and 10 by [1 − (β̂/2π)]Φ(PTE), β̂ denoting the internal angle at the trailing edge. This choice
controls the collocation method, adopted in §2.1, for solving the IGA-BEM discretization of (10),
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by restricting the first and last collocation points from collapsing on PTE . There exists, however,
works in pertinent literature, e.g., Morino & Bernardini (2001) [38], where PTE is permitted to
be a collocation point in the context of a an enhanced formulation that involves an additional
integral equation resulting from taking the derivative of the potential Φ(P), P ∈ Ω, with respect
to the normal of the wake and letting P → PTE .

After solving (6) or (10), we can calculate the hydrofoil’s pressure coefficient cp using Bernoulli’s
equation:

cp :=
p− p∞
1
2ρ|

~U∞|2
= 1−

v2t

|~U∞|2
, (11)

where vt is the tangential fluid velocity on the hydrofoil’s ∂ΩB given by vt = ∂Φ/∂s with s
denoting the arc length on ∂ΩB .

2.1. A discrete IGA-BEM formulation

The purpose of this subsection is to present a method that combines Boundary Element Method
(BEM) with IsoGeometric Analysis (IGA) for solving numerically the boundary integral equations
(6) and (10). IGA philosophy is equivalent to approximating the field quantities (dependent
variables) of the boundary-value problem in question by the very same basis that is being used for
representing (accurately) the geometry of the involved body-boundary. In our case the dependent
variables are the total potential Φ(P), P ∈ ∂ΩB (see eq. (6)) or the perturbation potential
φ(P),P ∈ ∂ΩB (see eq. (10)). For this purpose, we shall presume that the body boundary ∂ΩB

can be (accurately) represented as a closed parametric NURBS curve r(t), t ∈ [0, 1], which is
regular, i.e., the derivative vector is well defined and not vanishing, with the exception of the
trailing edge: r(0) = r(1), where the derivative vector is not defined. More specifically,

r(t) = (x(t), y(t)) :=

n
∑

i=0

diMi,k(t), t ∈ I = [tk−1, tn+1] := [0, 1], (12)

where {Mi,k(t)}
n
i=0 is a rational B−spline basis of order k, defined over a knot sequence J =

{t0, t1, . . . , tn+k} and possessing non-negative weights wi, i = 0, . . . , n, while di are the associated
control points; see, e.g., Piegl & Tiller [39]. Equation (10) can then be written in the following
form:

φ(t)

2
+

∫

I

φ(τ)K(t, τ)dτ −
µw

2π
arctan

(

y(t)− ye
x(t)− xe

)

= g(t), t ∈ (0, 1), (13)

where, for the sake of notational simplicity, we define φ(t) := φ(r(t)), G(t, τ)) := G(r(t), r(τ)) and

K(t, τ) = (∂G(t, τ)/∂nτ )‖ṙ(τ)‖, g(t) = −
∫

I
(~U∞ · ~n(τ))G(t, τ)‖ṙ(τ)‖dτ . The kernel K(t, τ) of the

integral equation (13) is a function expressed as:

K(t, τ) =
ṙ(τ)× (r(t)− r(τ))

2π‖r(t)− r(τ)‖2
if t 6= τ, (14)

where here the symbol × denotes the so-called “2D exterior product” defined as: (x1, y1) ×
(x2, y2):=x1y2 − x2y1. Assuming that r(τ) ∈ C2(I), a careful limiting process as τ → t involving
a 2nd-order Taylor expansion of r(τ) around τ = t, gives:

K(t, t) =
ṙ(t)× r̈(t)

2π‖ṙ(t)‖2
, if t = τ, (15)

revealing that in the neighborhood of regular points of a smooth (at least C2) ∂ΩB , the kernel
K(t, τ) is a regular function.
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Aiming to employ IGA for handling equation (13), we project, in a suitably defined manner,
the perturbation potential φ(t) on the spline space Sk(J (ℓ)), Sk(J (0)) := Sk(J ), expressed in the
form:

φs(t) := Ps(φ(t)) =

n+ℓ
∑

i=0

φiM
(ℓ)
i,k (t), t ∈ I,M

(0)
i,k (t) := Mi,k(t), (16)

where ℓ ∈ N0 denotes the number of knots inserted in I. Recalling the fundamental property of knot
insertion, we can say that {Sk(J (ℓ)), ℓ∈N0} constitutes a sequence of nested finite dimensional-
spaces, i.e., Sk(J (ℓ)) ⊂ Sk(J (ℓ+1)). Equation (13) can then be written as

1

2

n+ℓ
∑

i=0

φiM
(ℓ)
i,k (t) +

∫

I

n+ℓ
∑

i=0

φiM
(ℓ)
i,k (τ)K(t, τ)dτ −

µw

2π
arctan

(

y(t)− ye
x(t)− xe

)

= g(t), t ∈ (0, 1). (17)

Several methods are available for defining the projection Ps (see eq.16) onto the finite-dimensional
space Sk(J (ℓ)) and discretizing equation (13), like Galerkin and collocation. In the present work,
a collocation scheme is adopted, which consists in projecting on Sk(J (ℓ)) through interpolation
at a set of collocation points t = tj , j = 0, . . . , n+ ℓ, which are chosen to be the Greville abscissas
associated with the knot vector J (ℓ). This leads to the following linear system for the unknown
coefficients φi, i = 0, . . . , n+ ℓ:

1

2

n+ℓ
∑

i=0

φiM
(ℓ)
i,k (tj)+

n+ℓ
∑

i=0

φiqi(tj)−
(φn+ℓ − φ0)

2π
arctan

(

y(tj)− ye
x(tj)− xe

)

= g(tj), j = 0, . . . n+ℓ, (18)

where qi(tj) =
∫

I
M

(ℓ)
i,k (τ)K(tj , τ)dτ while, taking into account (7), the unknown µw is expressed

through the difference φn+ℓ−φ0. Since t ∈ (0, 1), one must consider shifting the values of the first
and the last Greville abscissa by a small value ǫ > 0. This shifting process gives rise to the need of
proper handling of the numerical evaluation of the integral terms q0(1− ǫ) and qn+ℓ(ǫ) appearing
in (18). Indeed, by using the fact that r(0)=r(1) and incorporating 1st-order Taylor expansion of
r(ǫ), ṙ(ǫ) and r(1− ǫ), ṙ(1− ǫ) around 0 and 1, respectively, equation (14) leads to the following
asymptotic estimates for the kernel:

K(1− ǫ, ǫ) = O(
1

ǫ
), K(ǫ, 1− ǫ) = O(

1

ǫ
), K(1− ǫ, 0) = O(

1

ǫ
), K(ǫ, 1) = O(

1

ǫ
). (19)

Thus, since M
(ℓ)
0,k(ǫ)=O(1), M

(ℓ)
n+ℓ,k(1− ǫ)=O(1), we conclude that the integrands of q0(1− ǫ) and

qn+ℓ(ǫ) are of order of 1/ǫ in a neighborhood of 0 and 1, respectively. Actually, as one can see
in the attached media file1, this behavior is restricted in an ǫ neighborhood of 0 and 1 and the
graph of the integrands have a bell-like shape with a height of O(1/ǫ) and width of O(ǫ). These
integrals can be handled by an adaptive numerical integration scheme provided that precautions
are taken in order that ǫ does not fall under a threshold value for which the integrals cannot be
numerically computed.

The solution of the linear system (18) provides the values φi, i = 0, . . . , n + ℓ, which can be
used to easily calculate the tangential velocity on the hydrofoil by using the derivatives of the

rational B-spline basis functions M
(ℓ)
i,k (t), without resorting to the finite difference scheme, as it is

the the practice in low-order panel methods:

vt = ~U∞ · ~t+
∂φ

∂s
= ~U∞ · ~t+

1

‖ṙ(t)‖

n+ℓ
∑

i=0

φi

dM
(ℓ)
i,k (t)

dt
, (20)

where ~t denotes the unit-tangent vector of r(t).

1See online version of the document.
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3. Numerical results & optimization examples

As a first attempt to test the accuracy and effectiveness of the IGA-BEM method, presented
in §3.3, we present numerical results for the flow around the standard NACA-4412 profile. This
hydrofoil is represented as a cubic B-spline curve with 47 knots and 43 control points.
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/x L

Figure 2: Potential distribution around a NACA-4412 profile at 5 deg. angle of attack and comparison with
low-order panel method (L denotes the chord length).

In Figure 2, the total potential Φ on the hydrofoil is presented for an incident flow at an angle
of attack of 5 deg. Numerical results of the present IGA method are compared with corresponding
results of low-order panel method (Moran 1984) [40] using a large number of elements (N=500).
The agreement of IGA solution, using considerably less degrees of freedom (n=120), is very sat-
isfactory. We recall that in IGA method degrees of freedom (DoF) is the number of the control
coefficients used in the NURBS approximation of the potential Φ; see eq. (16).

In Figure 3, we compare the pressure coefficient distribution around a NACA-4412 profile at
7 deg. angle of attack, with corresponding results with a low-order panel method which adopts
either the direct (Morino) formulation (see [40]), as in the present work, or the classical indirect
formulation of Hess & Smith [20]. Again, considering the low-order panel solution with a large
number of elements (N=500), we can see the good performance of IGA method, where it is needed
considerably less DoF (n=120) for the solution to converge.

In Figure 4, we compare the overall performance of IGA-BEM compared to low-order BEM.
This is accomplished by plotting, for both methods, the error of the developed circulation of the
flow µw around the hydrofoil (we recall that µw = φn+ℓ−φ0; see eq. (7)) as a function of DoF. Since
the exact circulation around the hydrofoil is not known, the error calculated is based on a reference
solution, µwr, which is computed using the IGA-BEM method for a large number of DoF (≃ 5000).
In IGA-BEM refinement is performed by knot insertion (h-refinement). It can be observed that
IGA-BEM performs better compared to low-order panel method (e.g. for a relative accuracy of
0.001 the IGA approach requires around 120 DoFs, while for the low-order panel method this rises
to 1000 DoFs; see also Figures 2 and 3). For this level of accuracy the computational time is 17
and 24 seconds for the IGA and panel method respectively, when executed on a standard desktop
PC. The rate of convergence exhibited by the IGA method is superior to that of the panel one
but not analogous to the corresponding results concerning potential flows without circulation (see
[29]) and application of the present IGA-BEM method in elasticity problems (see, e.g.,[11] and
[30]). This behavior may be attributed to the trailing edge, where the body boundary ceases to
be smooth and the wake sheets emanate.
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3.1. Optimization environment

Simulation-based optimization is of growing importance in engineering, since it allows to im-
prove a component’s or system’s performance for moderate cost, in comparison with generally
costly physical experiments. Moreover, the optimization is conducted in a rigorous algorithmic
framework that enhances the experience and intuition of designers. A major difficulty to apply an
automated shape optimization for complex engineering systems is the development of a fully auto-
mated design loop. Specifically, for each optimizer-generated set of parameters, a valid geometric
model has to be constructed, allowing the generation of the computational domain used by the
solver to provide the physical response and the performance analysis which needs to be returned
back to the optimizer. All these steps should be fully automated, without user intervention, in
order to feed the optimization algorithm and finalize the design loop. In this context, the IGA
paradigm offers a significant improvement over the classical panel-based methods, since it relies
on a direct relationship between the design parameters and the solver, without any geometrical
intermediate meshes.

A second obstacle arises from the simulation process: for complex test-cases, CFD simulations
are expensive, in terms of computational time. Moreover, the numerical solutions obtained can
be polluted by errors arising from the discretization and iterative methods, yielding noisy perfor-
mance evaluations. Sometimes, this may lead the optimizer to spurious local optima or even yield
the failure of the optimization procedure. Here again, the isogeometric context may be helpful
because it allows to avoid geometrical approximations, which reduces the error level, and permits
to construct high-order solutions yielding a better computational efficiency.

In our case, the optimization loop comprises three components: the optimization algorithm,
the IGA solver presented in §2 and the hydrofoil parametric model which will be presented in
the following subsection. Hydrofoil shape optimization examples using the developed framework
are presented in §3.3. Both the optimizer and IGA solver are implemented in matlab while the
hydrofoil parametric model is implemented in Rhinocerosr 3D modeling package.

The selected optimization algorithm belongs to the category of evolutionary ones, as experi-
mentation with gradient and hessian-based algorithms has indicated the existence of multiple local
minima that makes their usage problematic. Specifically, our optimizer uses the multi-objective
optimization method gamultiobj which employs a controlled elitist genetic algorithm (a variant
of NSGA-II [41]). An elitist Genetic Algorithm (GA) always favors individuals with better fitness
value (rank). A controlled elitist GA also favors individuals that can help increase the diversity
of the population even if they have a lower fitness value. It is important to maintain the diversity
of population for convergence to an optimal Pareto front.

3.2. Parametric Model for a Hydrofoil

The parametric model for a general hydrofoil has been materialized within Rhinocerosr 3D
modeling software package with the aid of its VBscript-based programming language, Rhinoscript.
Our model generates a closed cubic B-Spline curve that represents a hydrofoil, using a set of 8
parameters; see Table 1. The geometrical definition of these parameters is depicted in Figure 5.
All parameters, with the exception of chord’s length (L), are defined using appropriate non-
dimensional ratios so that their values always lie in [0, 1]. This approach eliminates the need
of implementing complex interdependent constraints while guaranteeing the robustness of the
procedure which is of significant importance in an optimization procedure. The dimensionalized
range of the parameters is appearing in the “actual range” column of Table 1.

The parametric model’s construction initiates with the definition of four simple Bézier curves
that are employed in the generation of the final cubic B-Spline curve. The upper part of the
hydrofoil comprises two parts: a simple cubic Bézier curve and a simple quadratic one for the fore
and aft part respectively. The first control point of the cubic curve is positioned at (0, 0) while the
last one is at (x z max, z max). The first interior point lie on the line segment defined by (0, 0)
and (0, z max) while the second one on the segment defined by (0, z max) and (x z max, z max).
The exact position of these points is controlled by the tip form factor parameter. The second
part is a quadratic simple Bézier adjacent to the first part and ending on the trailing edge, i.e.,
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Table 1: Parameters’ definition

Nr. Name description symbol actual range

1 Length Length of hydrofoil’s chord L free

2 Max width Maximum width of suction
side wrt chord

max z
[

L
500 ,

L
5

]

3 Camber width Camber maximum width wrt
chord

max c [0, 0.91max z]

4 Max-width posi-
tion

Longitudinal position of suc-
tion side’s max width

x z max
[

L
5 ,

7L
10

]

5 Max-camber-
width position

Longitudinal position of cam-
ber’s max width

x c max
[

0, 3L
10

]

+ 7x z max
10

6 Suction-side an-
gle

Suction’s side angle at trail-
ing edge wrt chord

a b
[

arctan
(

z max
L−x z max

)

, 89
]

7 Camber angle Camber angle at trailing edge
wrt chord

a b p [0, a b]

8 Tip Leading edge form factor tip [0.1, 0.9]

at (L, 0). Its interior control point is positioned at (L−z max
tan(a b) , z max) which ensures first order

geometric continuity at (x z max, z max).

a_b_p

a_b

x_z_max

z

x

x_c_max

c_max

z_max

tip

Length

Figure 5: Parametric model of a hydrofoil and its defining parameters

The camber curve is constructed in a similar way using two quadratic simple Bézier curves.
The aft part construction is equivalent to the aft part of the hydrofoil’s suction side with x z max,

z max and a b being replaced by x c max, c max and a b p. For the fore part, an angular param-
eter is introduced, which corresponds to the tangent of the camber curve at the leading edge and
uniquely defines the position of the interior control point. However, in our optimization examples
this parameter has been kept fixed and is not included in the list of Table 1.

Finally, the pressure side is constructed by mirroring the upper part about the camber curve.
The resulting three2 curve pieces can be exactly represented with a single cubic B-Spline curve,
if quadratics are degree elevated and multiple knot insertion is performed at their endpoints.
Alternatively, if knot multiplicity is to be avoided, the hydrofoil can be approximated by a single
B-Spline curve using Rhinoscript’s FitCurve3 function.

The developed parametric model is sufficiently flexible for our shape optimization purposes
as it can easily generate specific hydrofoils, as the NACA-4412 depicted in Figure 6, or largely
varying general hydrofoils; see shape instances in Figure 7. Figure 7(A) depicts a hydrofoil where

2Two for the suction side and one for the pressure side.
3
FitCurve creates a B-Spline curve of specified degree that matches the input curve(s) within a specified tolerance

value.
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the longitudinal positions of camber’s and suction side’s max-width have moved towards the
trailing edge. Figures 7(B,D,F,H) depict mainly variations in the values of z max and c max,
while Figures 7(A,E,G) depict mainly variations in the relative positions of x z max and x c max.
Finally, Figure 7(C) depicts a symmetric hydrofoil with c max equaling 0.

Figure 6: Approximation of a NACA-4412 profile using the parametric model. Max. deviation 0.1% of chord length

z_max c_max x_z_max x_c_max a_b a_b_p tip

0.842 0.845 0.720 0.771 0.874 0.870 0.592

z_max c_max x_z_max x_c_max a_b a_b_p tip

0.300 0.000 0.200 0.100 0.100 0.100 0.800

z_max c_max x_z_max x_c_max a_b a_b_p tip

0.423 0.732 0.597 0.203 0.254 0.173 0.406

z_max c_max x_z_max x_c_max a_b a_b_p tip

0.647 0.248 0.500 0.244 0.147 0.633 0.474

z_max c_max x_z_max x_c_max a_b a_b_p tip

0.156 0.829 0.511 0.227 0.364 0.683 0.576

z_max c_max x_z_max x_c_max a_b a_b_p tip

0.691 0.567 0.547 0.816 0.537 0.835 0.545

z_max c_max x_z_max x_c_max a_b a_b_p tip

0.491 0.528 0.751 0.553 0.286 0.266 0.552

z_max c_max x_z_max x_c_max a_b a_b_p tip

0.532 0.659 0.523 0.582 0.210 0.606 0.551

(A)

(C)

(E)

(G)

(B)

(D)

(F)

(H)

Figure 7: Various instances of the hydrofoil parametric model

3.3. Shape optimization examples

The optimization environment has been tested for optimizing the shape of a hydrofoil with
respect to the following two criteria: a) maximum lift coefficient and b) minimum deviation from
a reference area. The IGA-BEM solver, described in §2.1, is used to produce an average lift
coefficient calculated for three angles of attack, namely 1, 3 and 5 degrees. The reference area in
the second optimization criterion is set to be the one of the NACA-4412 profile. In the course of the
optimization process, the parameter Length (L) of the hydrofoil parametric model is assumed to
be fixed and is regularized to the value of one, while all remaining parameters, defined in Table 1,
are considered to be free and contribute to the shape evolution of the hydrofoil.

As a first test, we consider that the values of the free parameters range between ±0.05 around
those corresponding to the approximation of NACA-4412 by the parametric model (see Figure 6).
Specifically, the min-max allowed values of the free parameters are given in Table 2. The multi-
objective optimization method gamultiobj, offered by Matlab, is employed to calculate the
Pareto front of the above optimization problem, which is depicted in Figure 8. The Pareto front is
defined to be the set of design points that are Pareto efficient, i.e., it is impossible to make any one
of the objective function values better off without making the other (or more generally, at least
one of the others) worse off. Obviously, the optimum shapes lie on the Pareto front; see green line
depicted in Figure 8. If, for example, we choose to accept a 0.52% deviation of the target area, the
optimum solution would be the hydrofoil instance whose parameter values are depicted in Table 2.
Table 2 includes both the non-dimensional and the corresponding dimensional (in parentheses)
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Table 2: NACA-4412 optimization parameters

Nr. Parameter value for NACA4412 range of variation optimized

1 L 1 (1) fixed 1
2 max z 0.487 (0.0984) [0.437, 0.537] ([0.0882, 0.1083]) 0.459
3 max c 0.450 (0.0403) [0.400, 0.500] ([0.0358, 0.0448]) 0.423
4 x z max 0.300 (0.3500) [0.250, 0.350] ([0.3250, 0.3750]) 0.259
5 x c max 0.610 (0.4280) [0.560, 0.660] ([0.4130, 0.4430]) 0.588
6 a b 0.070 (0.2647) [0.020, 0.120] ([0.1954, 0.3340]) 0.110
7 a b p 0.445 (0.1275) [0.395, 0.495] ([0.1151, 0.1399]) 0.492
8 tip 0.530 (0.5240) [0.480, 0.580] ([0.4840, 0.5640]) 0.511
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 0.57
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 0.59
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C
−
1

ℓ

Figure 8: Pareto front for the inverse of the average lift coefficient, C−1

ℓ
, and the area-deviation criteria. Average lift

coefficient computed for 1, 3 and 5 degrees of angle of attack. Parameters ranging ±0.05 around those corresponding
to NACA-4412.

values of the parameters. The resulting ”optimum” lift coefficient value is 1.768, i.e., ∼3% better
than that of NACA-4412. Finally, Figure 9, depicts the “optimum” instance of the hydrofoil along
with an approximation of NACA-4412.

As a second test, we consider that the range of variation of the free parameters is not restricted
and is the whole of the interval [0, 1]. The resulting Pareto front is depicted in Figure 10. Finally,
Figure 11 depicts six instances of the hydrofoil parametric model lying on the Pareto front. The
hydrofoil instances in Figure 11 correspond to the points marked with the circled numbers in
Figure 10. This second example leads to shapes that are prone to flow separation even for small
Reynold’s numbers. Hence, the potential flow theory should be carefully applied in this case and
we may need to consider a different approach, e.g., boundary layer corrections or viscous flows, if
we are to perform shape optimizations in large feasible spaces.

4. Conclusions and future work

In the present work, an optimization procedure has been developed and used for the shape
optimization of hydrofoils. The optimization environment is based on a geometric parametric
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NACA 4412

optimized

Figure 9: NACA-4412 along with an optimized instance on the Pareto front of Figure 8.
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Figure 10: Pareto front for the inverse of the average lift coefficient and the area-deviation criteria. Average lift
coefficient computed for 1, 3 and 5 degrees of angle of attack.

z_max c_max x_z_max x_c_max a_b a_b_p tip

0.8990 0.8862 0.8520 0.8259 0.8961 0.8915 0.8021

z_max c_max x_z_max x_c_max a_b a_b_p tip

0.8835 0.8826 0.6322 0.8452 0.8842 0.8800 0.6825

z_max c_max x_z_max x_c_max a_b a_b_p tip

0.8371 0.8218 0.5933 0.7868 0.8691 0.8720 0.5409

z_max c_max x_z_max x_c_max a_b a_b_p tip

0.7530 0.7748 0.5404 0.6925 0.8022 0.8706 0.5528

z_max c_max x_z_max x_c_max a_b a_b_p tip

0.8813 0.8880 0.8218 0.8596 0.8978 0.8920 0.7527

z_max c_max x_z_max x_c_max a_b a_b_p tip

0.8885 0.8864 0.8317 0.8190 0.8862 0.8805 0.6480

1 2

3 4

5
6

Figure 11: Instances of the hydrofoil parametric model on the Pareto front depicted in Figure 10. Decreasing lift
coefficient in a left-to-right, top-to-bottom fashion.
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modeler for the hydrofoil, an Isogeometric BEM solver for the potential flow and an optimizer
employing a controlled elitist genetic algorithm. This procedure has been successfully applied for
the multi-objective shape optimization of a hydrofoil with respect to the criteria of maximum lift
coefficient and minimum deviation of the hydrofoil area from a reference area. The isogeometric
BEM solver developed for the steady lifting flow around hydrofoils is robust and effective since it
needs much less degrees of freedom for the same accuracy, compared to classical panel methods.
Further work is needed for the improvement of the rate of convergence of the solution by adopting
adaptive refinement strategies as well as by treating properly the Boundary Integral Equation near
the trailing edge in order to take into account both the corner point of the body boundary and
the existence of the wake.

As future work, the extension of the present methodology to 3D problems seems to be straight-
forward. Moreover, the adoption of boundary-layer corrections to the potential flow should enrich
the obtained solutions, from the physical point of view. More challenging, seems to be the prob-
lem of shape optimization of 3D hydrofoils moving near the free surface since such systems face
major difficulties due to the simultaneous presence of the free surface and the free-vortex systems
generated by the lifting bodies which can lead to non-linear phenomena, as, e.g., wave breaking.
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