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SHAPE OPTIMIZATION OF ELASTO-PLASTIC BODIES
OBEYING HENMNCKY’S LAW
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Abstract. A minimization of a cost functional with respect to a part of the boundary, where
the body is fixed, is considered. The criterion is defined by an integral of a yield function. The
principle of Haar-Karman and piecewise constant stress approximations are used to solve the
state problem. A convergence result and the existence of an optimal boundary is proved.

Keywords: domain optimization, variational inequality, elasto-plastic bodies obeying Hencky’s
law.
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INTRODUCTION

It is the aim of the present paper to solve the following optimal design problem.
Given body forces, surface loads and material characteristics of an elasto-plastic
two-dimensional body, find the shape of a part of its boundary such that a cost
functional is minimized. The cost functional is an integral of the yield function and
zero displacements are prescribed on the unknown part of the boundary.

One of the simplest mathematical models describing the elasto-plastic behaviour
of solid bodies is given by the constituent law of Hencky. The classical boundary
value problems allow a variational formulation in terms of stresses, known by the
name of Haar-Kdrmén principle. In the papers by Mercier [6] and Falk [4], [3],
approximate solutions of two-dimensional problems have been studied, which
consist of piecewise constant stress fields. Using the latter finite element model and
piecewise linear approximations of the unknown boundary, we define some discrete
optimization problem.

The main result of the paper is the convergence analysis of the solutions of discrete
problems to a solution of the original continuous optimization problem.

1. FORMULATION OF THE OPTIMIZATION PROBLEM

First let us recall some basic relations of the elasto-plastic bodies obeying the law
of Hencky.
Let Q — R* be a given bounded domain with Lipschitz boundary 6Q. Assume
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that
Q=r,ur,, r,nl,=0,

each of the parts I', and I', being open in 0.

Let R, be the space of symmetric 2 x 2 matrices (stress or strain tensors). A repeat-
ed index implies summation over the range 1, 2. Assume that a yield function f: R, —

— [R is given, which is convex, Lipschitz and
(1) f{do) = I)Llf(a) VieR, VYoeR,.
These conditions are fulfilled e.g. by the von Mises function
o) = (o707 + 5{0u)?)""* .

where

D _ 1
Gi; = 045 — §5i,'0'kk-

We introduce the following spaces and notations:
S(Q) ={r:Q2-> R, | ;e IXQ) Vi, j},

,
{o,e>q :J 0;i€ij dx, “0'”0,9 = <o, 0'>!12/2 .

Q2

In the space S(Q) we introduce also the energy scalar product
(0’, T)Q = <b0’, T>Q s HUHQ = (0-5 0)512/2 s
where
b: 8(Q) - S(Q)
is the isomorphism defined by the generalized Hooke’s law
e=bowe; = bijklok,.

We assume that positive constants b,, b, exist such that

(2 bollo]ls.o < <bo, 679 < by|o|}e VoeS(Q)

~and
{ba,1yq = {0, brd, Vo,teS(Q).

Assume that a body force Fe [I(Q)]* and a surface traction g e [IX(I,)]* are

given.
We define the set of plastically admissible stress fields

P(Q) = {reS(Q)|f(r) £ 1 ae. in Q}
and the set of statically admissible stress fields

E(Q) = {teS(Q)]| (z, e(v)>q = Lo(v) W e V(Q)},
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where
V(@) = {ve[H(Q))|v=0o0nT,},

e(v);; = Hdvfox; + dv,lox,),
Ly(v) :f Fw,dx +f gw; ds.
o r,

The Haar-Kdrmdn principle says that the actual stress field minimizes the
complementary energy

#(1) = Hl<|a
over the set E(Q) n P(Q).

For the derivation of the principle — see [2] or [4], [3]. Note that the principle
is equivalent to the following variational inequality: ¢ € £(Q) n P(Q),

(3) (6,1 —0)e 20 VreE(Q)n P(Q).

Passing to the shape optimization problem, we introduce the following set of
admissible design variables

U, = {v e C!([0, 1]) (i.e. Lipschitz functions),

a0 < B, |dofdx,| < Cy, '[vdxz = cz},
0

where %, B, C, and C, are given positive constants.
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We shall consider a class of domains Q = Q[v), (Fig. 1) where ve U, and
Q) = {(x;. x,)] 0 < x; < v'x;), 0 < x, < 1}.

For any v € U, the graph I'(v) of v will coincide with the part I", of 8Q(v).
The function v has to be determined from the Optimization Problem

4) F(a(v)) = min.

488



over the set of v e U,,, where

Ao = | o)) dx

2(v)

and o(v) is the solution of the variational inequality (3) on the domain Q = Q(v).
In what follows we assume that Fe [I*(Q,)]* and F e [I*(0Q; — I';)]* are given,
where @; = (0, ) x (0,1), 6 > f and

Ty={(x,%:)] %, =8, 0 < x, < 1.

Moreover, assume that a tensor field o° € E(;) exists such that x — ¢°(x) is
a Lipschitz function in Q5 and

(5) (1 + ¢) 0% e P(%25)
holds for some positive &.

Note that (1) implies f(0) = 0 so that 0 e P(Q;) and ¢° € P(;) follows from (5),
since P{€;) is convex.

Remark 1.1. From the definition of E{Q;) we easily derive that
dive® + F=0 in &,
. v=g on Q;—1T;.
Consequently, g is a Lipschitz function on any side of 0Q; — I';.

Proposition 1.1. The Haar-Kdrmdn principle has a unique solution for any
Qv), ve U,

Proof. We can easily show that P(Q(v)) n E(Q(v)) is non-empty. In fact, the
restriction of ¢° onto Q(v) belongs to this intersection, since the extension w of any
w e V{Q(v)) by zero belongs to ¥(2;) and we may write

(e(w), 0% = (W), 6°Dg, = Lo [W) = Logy(W) .

The sets E(2(v)) and P(Q(v)) are convex and closed in S(Q(v)), the functional
9(0) is quadratic, strictly convex. Hence the existence and uniqueness follow.

AN

2. APPROXIMATIONS BY PIECEWISE CONSTANT STRESS FIELDS
Let N be a positive integer and It = I/N. We denote by e, j=1,2,...,N, the
subintervals [(j — 1) h, jh] and introduce the set
Uty = {y,e Uadl”mej e Py(e)) Vj}

where P, denotes the set of polynomials of k-th degree. Let Q, denote the domain
Q(v,), bounded by the graph I, of v, € U%,. The domain £, will be carved into triangles
as follows (see fig. 2).
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We choose «, (0, oc) and introduce a uniform triangulation of the rectangle
Z = [0, 00] x [0, 1], independent of v, if h is fixed.

In the remaining part @, — 2 let the nodal points divide the intervals [y, v,(jh)]
into M equal segments, where

M =1+ [(f — o) N]
and the square brackets denote the integer part.

te
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I Fig. 2.
o ,0 X,

Thus we obtain a regular family {7 ,(v,)}, h — 0, v, € UL, of triangulations. Note
that for any v, €U}, we construct a unique triangulation 7 ,(v,). Denoting the
triangles of 7, (v,,) by K, we define the finite element spaces

Vi{Q,) = {w,e V(Q)| w,x e [P(K)]* VK € 7,(v})}
H/Q,) = {re S{Q,) |t|x e [Po(K)]* VK € 7 (v,)}
and external approximation of the set E(€,)
Ef2;) = {v, € H(Q,)| {ti, e(Ws)D0, = Lo, (w;) Yw, € V,(2,)} .
Instead of the problem (3) we introduce the following approximate state problem:
find o, € P(Q,) N E(Q,) such that

(6) (O 7w — G4, = 0 V1, P(Q,) 0 E(Q,) .

Lemma 2.1. The problem (6) has a unique solution for any v, e U, h > 0.

Proof. Like in the proof of Proposition 1.1 we can show that

o°|o, € P(Q,) N E(,) .
For any polygonal domain Q and its triangulation 7, we define a projection

mapping
ry: S.Q) - H,(Q)
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by means of the relation
(7) =1, 000=0 Vo, € Hh(Q) .
Henceforth we shall write

Golgh = 0y

and prove that r,6° € E,(Q,). In fact, given a w, e V,(Q,) we have e(w,) e H,(Q,)
so that

<e(wh)’ TIIO’0>Q/| = <€(Wh), UO>Qn = LQh(wh) 4

since w;, € V(Q,).
It is readily seen that
1,0 = (mes K)"lj c®dx VKeT,(v,).
K
Consequently,
fre®) =1 in @,

and r,6° e P(Q,) follows.

The set P(Q,) N E,(Q,) is therefore non-empty. Since it is also convex and closed
in S(€,), we obtain the unique solvability of (6).

Lemma 2.2. Let {v,}, h — 0, be a sequence of v" € U}, v, — v in [0, 1] uniformly.
Then

(8) 6, — o(v) in [LX2)]*,

where &, is the solution of the approximate state problem (6) extended by zero
10 Q; — @, and o(v) is the solution of the problem (3), extended by zero to Q5 — Q(v).

Proof. 1° The sequence {6,} is bounded in S(®;). In fact, we may insert
T, = 1o’ e P(Q) 0 Eh(‘Qh)

into the inequality (6) to obtain
”‘711“?2,, b (Uha Vho'o)gh = ”‘7;.“9;. ”r,,a'OHQ,_ .
* Cancelling and using the inequalities (2) and (7), we may write
bo”[oullo.0n = oulen = [rio®|an =
< 5200 S 170”0, = D170 -
Consequently,
©) l6ilo.0, s C VA

and there exists a subsequence (denote it by the same symbol) such that

(10) &, — o (weakly) in S(Q;), oe5(Q,).
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2° We can show that
(1) olow) € E(2(v)) 0 P(Q)) .

Let w € V(2(v)) be given. Let us construct its extension w by zero into Q; — Q(v).
There exists a sequence {w,}, ¥ — 0, such that

w,e[C°(Q)]*, w,=0 in Q;— Q),
suppw,, nI'(v) =0, i=12,
(12) w,—>w in HYQ).
There exists ho(x) such that w, = 0 on I', if h < hy(x), so that
W, o, € V() Vh < ho(%).

Let us construct the standard interpolation m,w, € V,,(Q,,) and denote its extension
by zero to Q; — @, by the same symbol.
For any g, we have

<G'h* e(nhwx)>!2;, = L,Q,.(nlzwy.> })
which can be rewritten as follows
(13) <&h3 e(ﬂ‘-hwx)>f.’5 = LQ@(T[hw;{) .

Note that
mw, > w, for h—0 in HY Q)

and therefore
e(mw,) - e(w,) in S(Q;).

Passing to the limit with & — 0 in (13) and using (10), we thus obtain
(0, e(W.)>a, = Lo (w.) -
Passing to the limit with s — 0 and using (12), we arrive at
<o, e(W)>aw = <0, &(W)>a, = Lo(W) = Low(¥) »

so that oaq, € E(Q(v)).
Since P(£;) is closed and convex in S{Q), it is weakly closed. Any &, belongs to
P(9Q;) and hence the weak limit o € P(Q;), as well. Therefore oo € P(Q(v)).

3° We show that
(14) =0 ae in Q;— Q).

Let ¢ # 0 on a set M = Q; — Q(v), mes M > 0. Introducing the characteristic
function yr of M, we obtain

(B X005 = <G, kMO0, = |lﬂ'”c2>,M >0.
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On the other hand,

{8 X205 = LGy 0)g,nnr = ”&h”o,m HUHO,QymM -0
by virtue of (9) and mes (2, n M) - 0.
Consequently, we arrive at a contradiction.
4° We show that the restriction ¢/, solves the state problem (3).

Let a t e E(Q(v) N P((v)) be given. We consider a “shifted” domain Qv+ 1) =
= Q,, where A is a positive constant and construct a function

(15) ™ e E(Q;) n P(Q;)

which tends to t in S(Q(v)) for 4 — 0, as follows.
We define the function

(15 ) =+

(see (5), where ¢ has been introduced), and the extension @ of w = © — ¢° by zero
to the negative half-plane x; < 0.

Let us define
(17) oMx, xy) = d(x; — 4, x,), xeQ,,
™ =0, + y(1) .
To prove that t* € E(Q,), it suffices to show that

(0’ e{w))o, =0 Ywe V(Q),
since
" e E(Q))

follows by the argument used in proving Proposition 1.1.
We may use the transformation of coordinates

(18) Xp— A=y, Xy, = Va2,

w(x) = w(y, + 4, y,) = w(y)
and write

(o, fw)dg, = f B(x; — 2, x,) e(w(x)) dx =
£2;
= | oty = )ity ay - o.
2,% Q(v)
Here we used the fact that w € V(Q (v)) and
w=t—0", TCEOu), o cHap).
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It remains to show that t* € P(Q,). Let us denote

ao(y) + ¥(4) fy) = oX(y),
Then

(19) 700 = *()] = [loo(x) = ao(n)]| = €4 ¥xeQ, = (0,4) x (0, 1),
since &, is Lipschitz and [|x — y| = A.
One can prove that
(20) A+ ) oX(y) = (1 + V) feXy) = 1
holds for sufficiently small A and y € Q(v).
In fact, we may write

(L+ JAe* =1+ J)[e® + 9z — )] =
=(1+ \/’1)[‘70(1*}-6)]1:})4—%]:00(1 +a)%+1<1—ﬁ)

e €

and (20) holds for \/1 < &, since f is convex and both 7 and (1 + &) ¢® belong to
P(Q(v)).
Since f is Lipschitz, we have

J@() < F(y) + CJex) — ] < (1 + VA + CCh 51

for A £ 4(CC, ) and any xe Q, — (0,4) x (0, 1). In the strip (0, 2) x (0, 1) it
holds

f(e*) = flog) = 1.

Altogether, v* € P(Q,) and the proof of (15) is complete.
Furthermore, we have

(21) I7* = o0 = [7(4) &* = 00,00 =
< @) o = ofo.aw + 1(4) = 1} [@]o,0m = 0
for A — 0. In fact,
Al =1, P -1-0

A

and

I
(See [7] — Theorem 1.1.)

The function 7% will now be used to construct the test functions in the approximate
problem (6).

It is obvious that

— 030w =0 for A0,

Q, = Q, Vh < hod).
Then

q, € E(Q,) 0 P(Q,)
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and we may construct the projection
ritt € E(2,) n P(Q,)

(cf. the proof of Lemma 2.1).

Let Q,, be a polygonal domain inscribed into €, and such that

(i) & < Qs

(ii) the partitions D, of the interval [0, 1] refine the partition Dp, (i.e. H is a mul-
tiple of h),
holds for the sequence of h under consideration. Let us consider extended triangu-
lations

Twm>T h(le)

of the domain @,,; and the projection mapping

A S(Qu) = H( Q)

defined on the triangulations 7, by means of the relation (7). Obviously, r;"'1*

is an extension of r,* onto Q.
By definition
2
(22) (04 147%)a, Z [ u]lG -
Passing to the limit with i — 0, we may write

(23) (611’ rhtl)ﬂh = (5-/” riHTl){lxu - (U’ Tl)ﬂzﬂ = (0-’ Tl)!)(u)

using (10), the relation
lim et — t[o,0,, = 0
-0

h

and (14).
The weak convergence (10) implies

(24) liminf ||a,]|3, = liminf [6,]3, = ”a“é& = |o[aw -
h—=0 =0

Using (23) and (24) in (22), we obtain
p 2
(@ aw Z [o]aw) -
Passing to the limit with 2 — 0, we arrive at
(J’ T — O-)Q(v) é 0 ’
by virtue of (21).
Using also {(11), we conclude that the restriction oo coincides with the solution
ov) of the state problem (3). Since the latter problem is uniquely solvable — cf.

Proposition 1.1 — the whole sequence {6,} tends to a(v) weakly in S{€2;).
It remains to prove the strong convergence. Inserting © = o(v) into the previous
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argument and writing a(v) = ¢, we obtain
H&h“g22,5 = (O'h: 7'h0'l)sz,, .
Passing to the limit with h — 0, we arrive at
lim sup [|6,]|a, £ (0, %oy YA.
Passing to the limit with 2 — 0 and using (21), we obtain
lim sup ”5,,”!2_,5 < ”o*”éé .
h— 0
Combining this estimate with (24), we are led to the relation
lim 5,5, = [o(v)]a,
B0
which together with the weak convergence implies
lim |6, — o(v)]o, = 0.
B0

On the basis of the equivalence of the norms, the strong convergence in S{€,)
follows.

Lemma 2.3. Let {v,}, h — 0, be a sequence of v, € U, v, > v in [0, 1] uniformly.
Then

H(olo)) = F(a(v))

where 6,(v,) and o(v) are the solutions of the problems (6) and (3) on the domain Q,
and Q(v), respectively.

Proof. Since f(0) = 0, we may write
st = [ rieyax. steto) = [ 1ot ox.
By assumption, we have
[1%(81) = 1%(0)] £ |£(8:) = S(0)| [£(&) + f(o)] =
< Clé, - o ((0) + €3 - o).
Therefore, we may write

#o) — #(o) = | f (126 — (o) dx
lJ 24

<

< csf 16, — o] fio) dx + gf low — o] dx <
Qs 25

= Cs|éy ~ ollo 0, + Cs|ds ~ [5 .0, = 0,

using Lemma 2.2,
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We define the Approximate Optimization Problem:
find u,eU", such that

(25) Ho(uy) £ #oy(vy)) Vo, e Usi -

Lemma 2.4. The Approximate Optimization Problem has a solution for any h.
Proof. Denoting by a e R¥*?* the vector of nodal values
D;,(ih) =a;, i=0,1,...,N,

it is easy to see that
v,eUl, wacs,

where <7 is a compact set.
One can prove that the function
(26) a f(o,(a))
is continuous on the set . In fact, the condition
e(Wi): 0 0,0) = Laya(Ws) VWi € V(Qy(a))

is equivalent with a linear system

A(a) o = F(a)
with continuous functions a — A(a) a +» F(a) (where o denotes the vector of the
values of o, in all triangles K e 7 ,{a)). The positive definite quadratic function

#(9) = Houlan

has coefficients, which depend continuously on a. Consequently, a > o(a) is a con-
tinuous function, as well. The continuity of (26) follows from this fact and the pro-

perties of the yield function f.

Theorem 2.1. Let {u,}, h — 0, be a sequence of solutions of the Approximate
. Optimization Problems (25).
Then a subsequence {u;} exists such that

up—>u in C([0,1]),
(27) Gilu) = o(u) in [LH(2)]*

holds for i — 0, where &; is the solution of the approximate problem (6), extended
by zero 10 Q; — Q;, o(u) is the solution of the problem (3) on Q(u), extended by
zero to 2, — Q(u) and u is a solution of the Optimization Problem (4).

Any uniformly convergent subsequence of {u,} tends to a solution of (4) and (27)

holds.
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Proof. Let us consider a v e U,,. There exists a sequence {v,}, h — 0, such that
v, € Uly, v, = vin C([0, 1]) (see [1] — Lemma 7.1).
Since U,, is compact in C([0, 1]), a subsequence {u;} and u € U,y exist such that

up—>u in C(J0,1]).
By definition (25), we have
How(ur)) = Aoilvp) .
Applying Lemma 2.3 to both the sequences {u;} and {v;}, we obtain
Ho(u)) = #o(v)) .

Consequently, u is a solution of the Optimization Problem (4). The convergence
(27) follows from Lemma 2.2. The rest of the Theorem is obvious.

Corollary. There exists at least one solution of the Optimization Problem (4).

Proof is an immediate consequence of Lemma 2.4 and Theorem 2.1.
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Souhrn

OPTIMALIZACE TVARU PRUZNE PLASTICKYCH TELES
PODLEHAJICICH ZAKONU HENCKYHO

Ivan HLAVACEK
Minimalizuje se ulelovy funkcional vzhledem k Casti hranice, na niZ je téleso upevnéno.
Kritérium optimality je definovano integralem funkce plasticity. K FeSeni stavové alohy se

uziva princip Haara-Karmana a po &astech konstantni aproximace pole napéti na triangulacich.
Dokazuje se existence feSeni a konvergence ptibliZznych feSeni.
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Peszome

OINTUMM3ANUSA ®OPMBI YITPYIO-IINTACTHYECKUX TEJI,
TIOJYUHSAOINXCA 3AKOHY XEHKU

IvAN HLAVACEK

PaccmaTpupaetcs MUHAMU3ANMS UEIeBON (GYHKUMM 110 OTHOLUCHWIO K TOH 4acTH IPaHMLbL, TIE
1en0 Quxcupopano. Ilenesas QyHKUUS OMpeaensiercst WHTerpanoM u3 (QYHKEUKM TUIRCTHYHOCTH.
Jnst permerns podaeMbl COCTOSHAS NpuUMeHseTcst npurnmn Xapa-Kapmana ¥ KyCOYHO IIOCTOSH-
HBIE AIMPOKCMMANMK Hanpsokenui. [[OKa3bplBaeTCa CXOAUMOCTE aNIPOKCUMAIMA B OBPEHEIEHHOM
CMBICIE M CYUICCTBOBAHME ONTUMAJIBHON TPAHULBI.
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