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ABSTRACT. We provide a free discontinuity approach to a class of shape optimization problems
involving Robin conditions on the free boundary. More precisely, we identify a large family of
domains on which such problems are well posed in a way that the extended problem can be
considered a relaxed version of the corresponding one on regular domains, we prove existence of
a solution and obtain some qualitative information on the optimal sets.
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Let D C R? be a design region which we assume to be open, bounded and with a Lipschitz

boundary. Consider B C D open and with a C''-boundary and g € C*(R?) such that
0<cp<g<cy on B.

The main concern of the paper is the following shape optimization problem.

(P) Find 2 with Lipschitz boundary such that B C 2 C D and which minimizes
the shape functional

J(£2):= min [/ f(z, Vu) da:Jr/ B(x)|uP dHY +~|02||,
uwewbhP(2) | J 0 a0
u=g on B
where p > 1,7 >0, f : R? x R? — [0, +oof is continuous, with & — f(z,&) convex
and positively p-homogeneus, and 8 : R? — [0, +oo] is continuous (H%~! stands
for the (d — 1)-dimensional Hausdorff measure).
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The problem amounts to the determination of the “free boundary” 02 of the optimal domain (2
on which the associated state function w (which realizes J((2)) satisfies a boundary condition of
Robin type. In the case p = 2, f(z,£) = |¢|> and B(x) = 3, the condition reduces precisely to the
classical Robin condition

@+5u:0 on 012,
on

where n denotes the unit external normal.

The function u satisfies also extra conditions on 0f2 coming from optimality. Those new condi-
tions, are referred to be overdetermined, but they do not play a fundamental role in our approach
to the minimization problem.

In the two dimensional case with f(x,&) = A(x) &, v = 0 and p = 2, the problem can be
interpreted as that of finding the shape of the membrane with minimal total energy among those
with elastic properties given by the elastic moduli A(x), prescribed transversal displacement g on
the part B, which are elastically supported at the boundary (with elastic forces with constant
B(x)).

The existence of optimal domains for problem (P) is unclear. In general, there are very few
results in shape optimization where the existence of an optimal domain can be proved in a "natural”
way, i.e. without imposing extra restrictive conditions, and the most of them hold for Dirichlet
boundary conditions. For Robin b.c. the only analysis carried to understand existence concerns
the first eigenvalue of the Robin Laplacian. Contrary to Dirichlet b.c., the general relaxed form
of a Robin problem (i.e. a precise description of the limit of a sequence of Robin problems on a
sequence of arbitrary, non-smooth, non-uniform domains) is not known. In this paper, we analyze
a class of energy type functionals generalizing the Bernoulli free boundary problem in a nonlinear
framework complemented by elastic boundary conditions.

The main result of our paper consists in the identification of a class of admissible domains
Ap(D) containing the Lipschitz ones on which the minimization of J can be carried out and can
be considered as a relazation of the original problem.

The class Ag(D) and the extension of J to such a class is suggested by the study of the following
free discontinuity functional

) P [ @ Vdes [ @)+ PRt > o)

on the set of functions
Fp.4(D) :={u € SBV(RY) : supp(u) C D,u >0,u =g on B}.

Here SBV denotes the space of special functions of bounded variation introduced by De Giorgi and
Ambrosio [9] to deal with image segmentation problems. The link between J and F is obtained
easily noticing that if u is the state function of the regular domain {2 (which we can assume
positive), then the extension of u to R? by zero outside (2 yields an element @ of Fp 4(D) such
that

(1.2) F(a) = /Qf(x,Vu) dz+/m B(x)|ul? dH! 4 4]02] = J(£2).

The surface energy in (1.1) is rather unusual, involving the sum of the p-power of the traces of w.
Its form, among the many yielding equality (1.2), is suggested by lower semicontinuity issues for
the functional F'.

We expect that the minimization problem
(1.3) ue}I_I)lBl,Igl(D) F(u)
should provide information for the shape optimization problem (P), in particular we expect optimal
domains being given by the supports of optimal functions. Notice that this approach through a
problem on functions is similar to that employed by Alt and Caffarelli in their pioneering paper [1],
where a free boundary problem under Dirichlet conditions was studied. So the free discontinuity
problem (1.3) is a sort of SBV-counterpart in the context of Robin boundary conditions of the
problem considered in [1].
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Clearly the connection between the free discontinuity problem (1.3) and problem (P) is subor-
dinated to the regularity properties of the optimal functions. We proceed as follows.

First of all, we show that the minimum problem (1.3) is well posed. This is not trivial because
the compactness properties available for minimizing sequences are not compatible with Ambrosio’s
theorem in SBV (see Theorem 2.1). Using standard results in SBV, one shows the existence of
a candidate minimizer u such that u > 0 and v? € SBV(R%) N L>°(R%). The SBV-regularity is
a consequence of optimality and relies on a bound from below on the support of its positivity set
(see Theorem 3.5 and [6])

(1.4) u>a>0 a.e. on {u > 0}.

Such a property is immediately available in the classical context thanks to the Hopf Lemma and
the Robin boundary condition (see Remark 3.8). In the context of the free discontinuity problems
it is a sort of non-degeneracy property, coming from optimality.

In view of the bound from below (1.4) and that from above (given by | g|loc), the first two
terms in the free discontinuity functional F' turn out to be estimated from above and below on
the minimizer v by the Mumford-Shah type functional

(1.5) MS(u) = [ f(z,Vu)dz+HI(J,).

Rd
In particular the minimality property of u for F' entails that (a suitable multiple of) u is an almost-
quasi minimizer of the functional MS (see Proposition 3.11). Such local minimizers are defined as
follows: there exist A > 1, o > 0, ¢ > 0 such that for every B,(z) CC D, v € SBVjo.(D) with
v=gon B and {v# u} C B,(z)

/ f(x, Vu)dz + HIH(J, N B,(z)) < / f(x, Vo) dx + AH(J, N B,(z)) + cap® 1T
B/J(w) B, (w)

This minimality property is weaker than that considered by De Giorgi, Carriero and Leaci in [10]
since it can be A > 1. Under suitable assumptions on f, we show (Theorem 2.3) that this weaker
minimality still yields the essential closedness of J, in D, i.e.,

H((J,\ Ju)N D) = 0.

In the case f(x,&) = |€]2, under certain supplementary hypotheses and without boundary condition
(associated to g), such a result was proved by Siaudeau [13] following the lines of [10]. More
recently, the same result has been proved in [6] on the basis of a monotonicity formula for the
Mumford-Shah functional. Here we extend the analysis [10] to cover more general energy densities
f (for which monotonicity is unclear) and to treat boundary data (as in the case of [7]). A
monotonicity formula similar to [6] can not hold for arbitrary f, but for some particular cases as
f(x, &) = &P, with p € (1,2) this can not be trivially excluded. Such a formula relies on a precise
estimate from below of the ratio

R [op, [VuPdH®!

WEW P (9B ) [5, |Vulpdz

for p € (1,2), which, up to our knowledge, is not known.
The analysis of problem (1.3) thus shows that the support of minimizers of F is given by the
connected component of D\ J, on which v does not vanish. This set belongs to the family
Ap(D) := {2 open : B C 2 C D, is H* '-countably rectifiable with H~1(902) < +oc},
which turns out to be the class we are looking for. Indeed we prove in Theorem 3.2 that

min _J(£2),
QcAgp (D)

where the extension of J to irregular domains is given in (3.3) below and is suggested by the free
discontinuity functional F', is well posed and satisfies

min _ J(2) = inf  J(0),
€A (D) {2 Lipschitz
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i.e., the extended problem is a relaxed version of the original one. This last property is a conse-
quence of density results in the sense of Cortesani and Toader [8] for the functional F' in SBV
(see Proposition 3.12).

The regularity of domains in Ag(D) is in the weak sense of geometric measure theory: in
particular they are open sets with finite perimeter and they can admit in principle inner cracks.
It is our opinion that the class

{2 open and bounded in R? : 912 is H¢™*-countably rectifiable with H?~1(812) < +o0},

provides a natural framework for shape optimization problems under Robin conditions. In [5] we
employed it to deal with the Faber-Krahn inequality of the first eigenvalue and associated semi-
linear variants (including the case of the torsional rigidity) of the Robin-Laplacian: the existence
of an optimal domain in the class above permits to use geometrical arguments typical of shape
optimization problems to show that minimizers are balls.

The paper is organized as follows. In Section 2 we fix the notation employed throughout the
paper, and recall some basic facts concerning S BV -functions and free discontinuity problems. The
main problem and the associated analysis outlined above is detailed in Section 3, while Section 4
contains the proof of the essential closedness of the jump sets of almost-quasi minimizers of (1.5).

2. NOTATION AND PRELIMINARIES

Throughout the paper, B,.(z) will denote the open ball of center z € R? and radius r > 0. We
will write B, in place of B,.(0). We say that A CC B if A is compact and contained in B. If
E C R4, we will denote its volume by |E|, and 1 will stand for its characteristic function, i.e.,
lg(z)=1ifx € Eand 1g(x) =0if ¢ E. We set wq := |By|.

For A C R open set and p > 1, LP(A) will denote the usual Lebesgue space of p-summable
functions, while W1?(A) will denote the Sobolev space of functions in L?(A) whose derivative in
the sense of distributions is p-summable. Moreover ||u|lo will stand for the sup-norm of u, while
supp(u) will denote the set {u # 0}, well defined up to zero Lebesgue measure. We will say that
{u# v} C By(z) if u = v a.e. outside B,(x).

Finally we will use the following notation: for a,b € R

a A'b:=min{a, b} and a Vb := max{a,b}.

2.1. Functions of bounded variation. Let A C R? be an open set. We say that u € BV (A)
if u € L'(A) and its derivative in the sense of distributions is a finite Radon measure on A, i.e.,
Du € My(A;RY). BV (A) is called the space of functions of bounded variation on A. BV (A) is a
Banach space under the norm ||u|| gy (a) := [[ullL1(a) + [[Dul| pm, (a;re). We refer the reader to [2]
for an exhaustive treatment of the space BV.

Concerning the fine properties, a function u € BV (A) (or better every representative of w) is
a.e. approximately differentiable on A, with approximate gradient Vu € L!'(A;R?). Moreover,
the jump set .J,, is a H?!-countably rectifiable set, i.e., J, C UjenM; up to a H¢ '-negligible set,
with M, a C'-hypersurface in R%. The measure Du admits the following representation for every
Borel set B C A:

Du(B) = / Vudz —I—/ (ut —u ), dH* + Du(B),
B JuNB

where v, () is the normal to J, at z, and D is singular with respect to the Lebesgue measure
and concentrated outside .J,. DC¢u is usually referred to as the Cantor part of Du. u* are the
upper and lower approximate limits of u at . The normal v, coincides H% '-a.e. on J, with the
normal to the hypersurfaces M;. The direction of v, () is chosen in such a way that u® () is the
approximate limit of u at = on the sets {y € R? : v,(z) - (y — x) = 0}. Moreover, uT coincide
He~1-almost everywhere on .J,, with the traces v*(u) of u on .J,, which are defined by the following
Lebesgue-type limit quotient relation

1
lim — wx) — yE () (z)|de =0
/W<> 7 (u) (@)

r—0 ’I"d
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where B (x) := {y € B.(x) : vu(x) - (y — x) = 0} (see [2, Remark 3.79]).

If A is bounded and with a Lipschitz boundary, then BV (A) < L%9=1(A). Moreover, the
following compactness result holds: if (u,)nen is bounded in BV (A), there exist u € BV (A) and
a subsequence (uy, )gen such that

U, —> U strongly in L'(A)
and
Du,, — Du weakly* in the sense of measures.

We say in this case that u,, — u weakly* in BV (A).
We say that u € SBV(A) if u € BV(A) and D° = 0. SBV(A) is called the space of special
functions of bounded variation on A. This space is very useful in free discontinuity problems in

view of the following compactness and lower-semicontinuity result due to L. Ambrosio (see [2,
Theorems 4.7-4.8]).

Theorem 2.1. Let A C R? be open and bounded, p €]1,+o0o|, and let (u,)nen be a sequence in
SBV (A) such that

sup/ |V, |P de + Hd_l(Jun) + lunlloo < +o0.
n Ja

Then there exist u € SBV (A) with Vu € LP(A;R?) and a subsequence (up, )ren such that
U, —> U strongly in L'(A),
Vup, = Vu weakly in LP(A;R?)

and

HIY(T,) < liminf HI1(J,,).

n—-4oo
In the following we will use the notation
SBVP(A):={uc SBV(A) : Vu € LP(A;R?Y) and H"1(J,) < +o0}.

2.2. Regularity results for almost-quasi minimizers of free discontinuity problems. Let
2 C R? be an open set, and let £ C R? be open with 2 C 2’ and such that 2’ \ 2 has a C'-
boundary. Let g € C'(R?). For u € SBVi,.(£2") with u = g on '\ §2, let us consider the free
discontinuity functional

(2.1) Flu):= [ f(z,Vu)de+HTHT).
Q/
We assume that f: 2 x R? — [0, +-00[ satisfies the following assumptions.

(Hy) f is continuous and there exist L > 0 and p > 1 such that for every x € (2,
¢ecR%and t >0

fla,te) =t f(x,€),  LTHEP < fla,6) < LIEP.
(Hs) For every x € {2, the map & — f(z,£) is convex.
(H3) There exists g > 0 such that for every zg € 2, p € C}(B;) and & € RY,

p—2
[ Ueoe+90) = fao,)do 2 [ (1P + 1967 T [Vl
We are interested in the following notion of local minimality.

Definition 2.2 (Almost-quasi minimality). Let u € SBV/Y (') be such that uw = g on 2"\ £2.
We say that u is an almost-quasi minimizer for the functional F in (2.1) with boundary condition
g if there exist A > 1, o> 0 and co > 0 such that for every ball B,(zo) CC 2’

/ (. Vu) da+H (Ju N B, (o)) < / F(, Vo) da+ AHE (T, A B (20)) + cap™ 0
B, (x0) By (x0)

for every v e SBVE (£2'), v =g on '\ 22, and such that {v # u} C B,(zo).
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The following result will be pivotal in our analysis. It states that the jump set of almost-quasi
minimizers enjoys the Ahlfors regularity & la De Giorgi-Carriero-Leaci [10], i.e., it is essentially
closed.

Theorem 2.3 (Essential closedness of the jump set). Let 2 C ' C R? be open and such
that '\ 2 has a C*-boundary. Let g € C*(R?) and let f : ' x RY — [0, +oo| satisfy (Hy)— (Hs).
Let u e SBVE (£2) be an almost-quasi minimizer for the functional (2.1) with boundary condition
g according to Definition 2.2.

Given 2 CC (2, there exist eg > 0 and po > 0 depending on 2 such that for every x € Jy,,

z e and p < po

1
(2.2) %f”ZH*%hﬂﬁmﬁzwf”.

In particular
HE (T \ Ju) N 2') =0,

i.e., the jump set of u is essentially closed in (2.

For A = 1, f = |¢|? and ' = £, i.e., for quasi minimizers for the original Mumford-Shah
functional, the previous property reduces to the celebrated of De Giorgi, Carriero and Leaci
[10]. Their approach has then be adapted to cover more general energy densities: the case of
p-homogeneous functions f(£) can be found e.g. in [2, Chapter 7]. The case with boundary
conditions has been dealt by Carriero and Leaci in [7].

Ahlfors regularity for A > 1 without boundary conditions has been proved by Siaudeau in [13]
along the lines of [10], but in the presence of some supplementary a priori hypotheses, and also in
[6] on the basis of a general monotonicity formula for the Mumford-Shah functional.

We will give the proof of Theorem 2.3 in Section 4: the main difference with respect to [13]
is that we consider a weaker setting with more general energy densities f and we take into ac-
count boundary conditions, and so our contribution is essentially technical. The reader already
acquainted with the ideas of [10] and of [7] could skip the proof of Theorem 2.3 without prejudice.

2.3. A density result for free discontinuity functionals. We will make use of a density result
in SBV due to Cortesani and Toader [8]. In order to formulate the statement, we will say that
u € SBV(£2) with §2 open set in R? has polyhedral jumps if .J, N 2 is the intersection with §2 of
the union of a finite number of (d — 1)-dimensional simplexes. The density result is the following
(see [8, Theorem 3.1]).

Theorem 2.4. Let 2 C R? be open and with Lipschitz boundary, and let p > 1. Let u €
SBV(£2) N L>(£2) be such that Vu € LP(2;R?) and HI1(J,) < +oo.
There exists (un)nen such that the following items hold true for every n € N.

(a) H ((Ju, \ Ju,) N 2) =0.
(b) Ju, is polyhedral in 2.
(¢) u, € WE(0Q\ J,,)) for every k > 1.

Moreover

Up — U strongly in L'(£2),

Vu, = Vu strongly in LP(2;R?).

and

limsup/ oz, ut u, vy, ) dHI §/ oz, ut, u,v,) dHI!
JunNA

n—-+00 J,NA

for every open set A CC 2 and every upper semicontinuous function ¢ : 2 x R x R x 91 —
[0, +-00[ such that ¢(x,a,b,v) = @(x,b,a,—v) for every x € 2, a,b € R and v € S9~1.
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3. A FREE BOUNDARY PROBLEM WITH ROBIN CONDITIONS

With the notations of Section 2, let 2/ = R? and f : R? x R? — [0, +o0[ satisfy the assumptions
(Hy), (Hs),(H3). Let 3: R? — [0, 4+o00[ be a continuous function such that

(3.1) Vz e R? : 0 < By < B(z) < By < +00

for some positive constants £, 82. Let D C R? be a design region which we assume to be an
open bounded set with a Lipschitz boundary. Consider B C D open and with C'-boundary, and
g € C1(R?) such that

3.2 0<ci1<g<ecy on B.
( g

For every domain {2 with Lipschitz boundary such that B C {2 C D, let us consider the shape
functional

uwewl,P(Q)
u=g on B

J(§2) == min {/ f(z, Vu) dx +/ B(x)|uP dHH| +~]02,
Q a0
where v € [0, +o0].

We are interested in the minimization of J among all admissible domains. Unfortunately, the
existence of domains which minimize J is unclear, due to the lack of compactness properties for
minimizing sequences of Lipschitz sets.

In order to achieve the existence of optimal domains, following [5] we relax the previous problem

to the family of sets
Ap(D) := {2 open : B C 2 C D,dR is H% '-countably rectifiable with H~1(92) < +oo}
by setting for 2 € Ap(D)
(3.3) J(2) = min [/ flz,Vu)dz +/ Blx)[Jut P + |u [P]dHIL| + 4|92
weWw P (Q2)NL>® (2) 0 a0n
u=g on
To make sense of the previous expression, notice that if we extend u to zero outside {2, we obtain
a function of bounded variation on R? such that J, C 82: uT are thus the traces of u on 9 in
the sense of BV -theory, which turn out to be well defined up to a H% '-negligible set. Notice that
we admit two traces since the geometry of 2 is compatible with the presence of inner cracks. If
{2 is regular, then the previous expression for J coincides clearly with the classical one.

Remark 3.1. The existence of a minimizer u in the definition (3.3) of J such that
0<u< gl

is easily proved. Indeed, if (u,)nen is a minimizing sequence, by truncation we may assume
0 < up < ||glloo- If u € WHP(£2) is a limit point of the sequence in the weak topology, then it is a
minimizer since

/f(a:,Vu)dacgliminf/ f(z, Vuy,) dx
0 n—+oo [o

and, using a standard slicing argument (see e.g. [5, Lemma 6.16))

/ B@)[[u™ P + |u” [Pl dHT < hminf/ Bl uz P + fuy P AR
a8 on

n—-4oo
The main result of the paper is the following.

Theorem 3.2. Let D C R be an open, bounded set with Lipschitz boundary, let f : R? x RY —
[0, +oo[ satisfy (Hy) — (Hz), and let B : R — [0, 400 satisfy (3.1). Given B C D open and with
a C'-boundary, and g € C*(R?) satisfying (3.2), the shape optimization problem

3.4 i J(2
(38.4) &35y 7D

admits a solution {2, which moreover satisfies

(3.5) J(2)=  iof  J().
QecAp(D)
§2 is Lipschitz
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Theorem 3.2 thus proves that the new shape optimization problem (3.4) is well posed and it is
a relazed version of the original one on regular domains.

In order to address problem (3.4) we consider the free discontinuity functional
6O F= [ @ Vodes [ @ity + a0
Rd Ju

on the set
Fp.4(D) :={u € SBV(R?Y) : supp(u) C D,u >0,u =g on B}.

The basic idea is that the minimization of F' defined on functions should be easier than that of
J defined on sets. Moreover we expect to recover an optimal domain by considering the support
{u > 0} of an optimal function u. The key point for this to hold true is to show that minimizers
of (3.6) are regular enough to guarantee that their support belongs to Ag(D).

Existence of minimizers for (3.6) on Fp 4(D) is by no means obvious, since coercivity properties
of minimizing sequences are not compatible with the usual compactness in SBV given by Ambro-
sio’s theorem. Let indeed (u,)nen be a minimizing sequence. By truncation, is not restrictive to
assume

0 < up < [gloo-
Then we get by comparing with g1p
(37) [ e [y juant < c.
D Un

with C independent of n. We thus see that no bounds on the H%!-measure of the jump sets are
available, so that a direct application of Ambrosio’s theorem is forbidden.
We have however the following compactness result.

Proposition 3.3. There exists u € L™ (R?) with u > 0, supp(u) C D and u? € SBV(R?) such
that, up to a subsequence,
Uy, — U a.e. in R

Moreover for every v € Fp 4(D)
f(x, Vu) dz +/ B@) () + (™)1 dH ™ + 9| {u > 0}| < F(v)
R Ju

(notice that u is approzimately differentiable a.e. since u? € SBV(R?)).

Proof. By the chain rule in BV we get that w,, := uf, € SBV(R?) with
Vw,, = pufifqun.

In view of (3.7) and since u,, < ||g|lcc We obtain

sup | Dw, |(RY) < 4o0.

Up to a subsequence we get
(3.8) Wy — W strongly in L*(R?)

for some w € BV (R?) with w > 0 and supp(w) C D. Notice that Ambrosio’s theorem can be
applied locally to w, V € for every ¢ > 0. We thus get w Ve € SBVj,.(RY) for every ¢ > 0, so that
w e SBV(RY).
We set
wi=w"?,

so that the first part of the statement is proved.



SHAPE OPTIMIZATION UNDER ROBIN BOUNDARY CONDITIONS 9

Let us come to the minimality property of u. Notice that the sequence ((u, — €)1 ), cysatisfies
the assumptions of Ambrosio’s compactness theorem for every € > 0. By the lower semicontinuity
for surface energies [4, Theorem 2.12] we get in view of the arbitrariness of e

(3.9) /J B@)[(u")? + (u ] dH < lim in / Bla + (up )] A,

n—-+o00

If up to a subsequence
Vu, = ®  weakly in LP(R%R?)
we deduce from (3.8) and the equality V(u, —¢)+ = Vuylyg,, >c) that
¢ =Vu a.e. on {u > 0}.

By lower semicontinuity we have

(3.10) fz,Vu)dz < f(z,®)dr <liminf [ f(z,Vu,)dz.
R R4

n—4oo R

Since we also have
Hu >0} < lim inf {un, > 0},

the minimality follows collecting (3.9) and (3.10) O

The function provided by the previous proposition does not a priori belong to Fp 4(D) since
the SBV-regularity is unclear. In order to address such an issue, we introduce the following notion
of subsolution.

Definition 3.4 (Subsolution). We say that u € Fp 4(D) is a subsolution for the functional
(3.11) U f x, Vu) da:+/ B(x + (u™)P]dH?
if for every v € Fp 4(D) with 0 < v < u we have

F(u) < F(v).

Clearly, for every v > 0 any minimizer given by Proposition 3.3 is also a subsolution in the
sense defined above. The following non degeneracy result for subsolutions, which is related to the
Hopf principle (see Remark 3.8), holds true.

Theorem 3.5 (Bound from below). Let u be a subsolution for (3.11). Then there exists o > 0
such that

(3.12) u> a.e. on {u>0}.

Proof. Let e < ¢ (defined in (3.2)) be such that uly,s., € SBV(R?). Then such a function
belongs to Fp 4(D), so that, by comparison with u

f(x, Vu) dz + / B(@)[(uh)P + (u™)P] dHi!
R4 Ju

< / f(z, Vu)dz + / B(x)(uh)P dHI ™+
{u>e} {u=<e<ut}nJd,
- / B@)[(uT)P + (u™)P]dHT + / B(x)e? dH.
{e<u—<ut}nd, oc{u>e}\Jy
By the assumptions on f and 8 we deduce
Lt / |Vul? dz + 51 / [(w™)P + (u)P]AHTY < BoePHEH (0w > e} \ Ju)
{u<e} {u—<ut<e}nd,
which entails for a.e. 0 < < ¢

/ \Vul? dx + LB PHYTH (08 <u < e} N Jy) < LBaePHTH O u > e} \ Jo).
{u<e}
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Setting

(3.13) E(e) = / [Vul? dz, v(3,€) == HIH0{6 < u < e} N Jy),
{u<e}

and h(e) :=HITH(0fu > e} \ Ju),
we deduce thus that fora.e. 0<d<e <
(3.14) E(e) + LB16Py(6,¢) < LBaePh(e).
Let n > 0 and set

5 27" 2 27"
3.15 ;== d 8; = —n— )
(3.15) = gnt - an 315"
We have for i — 400
2
Ei = Eoo 1= =1 and 0; — oo := 577'
Setting
(3.16) 200,e) ={d<u<e},
we will see that there exists 1y > 0 small enough such that for n < ng
2 5 81
(3.17) 21 =n-=n / h(s)ds = 0.
376 2y
3
Since in view of the isoperimetric inequality we have
(3.18) 122(6,)| T < Ca(h(e) + h(0) + (8, ¢)),

relation (3.17) together with (3.14) entails that
2 5
2(=-n,-=n)|=0.
2 (5men)

5
u > g a.e. on supp(u).

Since 1 < ng is arbitrary, we get that

The proof of (3.17) will be the outcome of an iteration scheme which resembles under certain
aspects the iteration a la De Giorgi in the study of elliptic regularity. We divide the proof in
several steps.

Step 1: The main inequalities. Let us set for i € N

€i
a; ::/ h(s)ds and bi := [£2(0;, i),
3;
where h is defined in (3.13), while £2(d,¢) is given in (3.16).

We claim that there exist ¢q, co > 0 depending only on d, p and 8 such that for every i > 1

1
s a7
a; <120/ a4

4 \?
Co (Qﬁ) di
b L

i < d a

(3.19)

where p' :=p/(p —1).
Let us start with the second inequality. For every n/2 < § < & < 5, the isoperimetric inequality
(3.18) together with inequality (3.14) entails

(3.20) 12(6,8)] T < Cap(1+27)[h(e) + h(5)],
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where Cy g := Cqf2/61. Integrating in € between [e;,¢;_1] we get

[ 106017 de < Castr v | [ hedet hG) e - )

so that, recalling the definition of ¢; in (3.15)

1. 1 . gi1 1. 1.
[£2(, 51)|dT [62_”177 — 62_’77] < Cygp(1+27) {/ h(e) de + h(9) <62_’+177 — 62_177)] .

Integrating in ¢ on [0;—_1, d;] we deduce

1026, 20)| T | Lottty — Lo :
iy E€q 6 n 6 n

1 . 1 . €i-1 d;
< Cqp(l+2P) [62—z+1n _ 62—177} [/ h(e) de +/5 h(9) dél .

/_ h(e) de + /:_ h(5) d6] ,

i

We get

1 .9t
12(8i, )| T < Cap(1 +2P>6n l

so that the second inequality in (3.19) follows.
Let us come to the first inequality. Notice that for every /2 < § < e < n, the coarea formula,
inequality (3.20), and the main inequality (3.14) entail

/h(s)ds:/ |vu|da:g|rz(5,g)|i/ VP da
5 2(8,¢) £2(8,e)

1 d—1
’

< |92(6,6)|7 (LBs) 7 eh(e) = |£2(6,¢)|77|02(8, )| 7¢ (LBs) 7 eh(e)
< |92(8,€)[77 [Cap(1 + 27)]7" [(e) + (5)]

¥ (LBa)veh(e)7

< [92(0,2)[77[Ca,p(1 + 27)(LB>) ¥ | elh(e) + (6)].

Integrating in € on [g;,¢;_1] we get

ya

/ [/5 h(s) ds} de < [Cap(142°)(LB3) 717|200, 211|772 U e de +hid)leir - &]}

so that

’

| s [ém} < [Cap(1 +27)(LB2) 517 |26, 11 P21 [ [ neyde+ h(&ém} .

Integrating now in ¢ on [§;_1, ;] we obtain

Eq 1 i 2
/ h(s)ds {2_177}
5 6

1 1 1 . €i—1 di
< [Cap(1+2°)(LB2) 7|7 [£2(05-1,€i-1]7"7 41 {62_17]} l/ h(e) de +/6 h(&)dé]

(3

which imply the first inequality in (3.19) since ;-1 < 7.

Step 2: Combining the main inequalities. We claim that we can find a > 0 such that setting
U; == ai'b;
we have for i > 1
&

d

nd—l

(3.21) Ui < —— AU,

where ¢, A > 0, and ¥ > 1.
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Indeed using (3.19) we have for @ >0 and i > 1

@ e gp_d
b = %[2a+‘%l]lb;—plaiid4
Writing
{a + % = Ja
=
we obtain
1+, /14 2
(3.22) o= MG
v
and
4
1 +-1/1,+'£7C;:jj
9= 7 > 1,

so that inequality (3.21) follows

Step 3: Decay for E(g). We claim that there exists €9 > 0 and ¢y > 0 such that for ¢ < g
(3.23) E(e) < coel.

Indeed from the inequality F(e) < LB2ePh(e) we infer using the coarea formula

2¢e 2¢e 2e
eE(e) S/ E(s) dsg/ LB2sPh(s) dsgLBﬂpsp/ h(s)ds

1
P
1

— L3y2ne? / IVl dz < L2eP / VP dz | |92, 26)| 7
2(e,2¢) 2(e,2¢)

so that . )
E(e) < LBo2PeP 1 (e, 2¢)|7 E(2¢)7.
Let g > 0 be such that
1

L622p|0(0,2€0)|1’ < 1.
Then for € < g5 we have

=

E(e) < P71 E(20)
and (3.23) is a consequence of Lemma 3.6 below.

Step 4: Conclusion. Using the notation of Step 3, we claim that we can find 1 so small that

1

~ T -1
(3.24) Up < ( i) AT = T AT T
ndfl
where « is given in (3.22). Then it is easily seen by induction that U; < Afﬂ%on so that
i—+00

and equality (3.17), concluding the proof of the theorem.
In order to verify that (3.24) can be achieved for n small enough, we write

UOZIQ@,U)H " h(sms] el [, e

n/2
n 1 n
<le Gl [z e (5n)
< ‘ 51| [E) 511
so that thanks to the decay for E(n) obtained in Step 3 we deduce

~ n 1+ﬁ
UOSCo’Q(???)‘ n“

[

~f

T -lo (@) s
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for some Cy > 0. Then (3.24) is achieved if 7 is so small that

A~ 1+ 7

O

In the previous proof, we made use of the following simple lemma.

Lemma 3.6. Let ¢ : [0, +00[— [0, +00[ be a monotone function such that for every r < rg
p(r) < (2r)%p(2r)?,
where rg,a >0 and 0 < B < 1. Then there exists C > 0 such that for r <rg
o(r) < CrT=7.

Proof. Let r < 1y and m € N such that %0 < 2™r < rg. We can write

p(r) < (2r)%p(2r)7 < (2r)*[(4r)*p(4r)")”

<...< [21+2B+362+---+m5’"‘1r1+6+ﬁ2+---+ﬂ’"‘1]aw(gmr)ﬁm
< Cresr- = < Cris (2*7"*17"0)_% < COrie,

and the result follows. O

Remark 3.7. An inspection of the previous proof shows that the estimate from below on the
support is a consequence of the following inequality (according to the notation introduced above)

E(g) + c16779(0,¢) < c2ePh(e) for a.e. 0 <9 < e < e,

where c1,co > 0, which is a consequence of the comparison between u and ul,>.} (e smaller
than the constants appearing in (3.2)).

Remark 3.8 (Bound from below and the Hopf Lemma). In the classical setting with
p =2, f(z,€) = |£* and B(z) = B, the bound from below of u on the associated regular domain
{2 is a consequence of the classical Hopf lemma in view of the Robin condition at the boundary.
Let indeed the subsolution u € W2(£2), u > 0, be associated to 2. We get easily that u is
subharmonic in 2. Let z be a minimum point of u on 2\ B. We can assume zg € 942, otherwise

the bound from below is trivial. Since by Hopf Lemma $%(z) < 0, the Robin condition entails

ou
ﬁu(xo) = _5(1'0) >0
so that u > u(xzg) > 0 on 2.

Remark 3.9. In the case p = 2 and v > 0, the result of Theorem 3.5 was proved in [6] for
subsolutions of

(3.25) u »—)/Rd |Vu|? dz + ﬂ/J (™) + (u)?]dHIY 4+ ~[{u > 0},

where S > 0. In this paper, based on an iteration technique a la De Giorgi, we also cover the limit
case 7 = 0.

We can now show that the free discontinuity problem is well posed.

Theorem 3.10. Let u be the function given by Proposition 3.3. Then u € Fp 4(D), and it is a
minimizer for the free discontinuity functional F in (3.6).

Proof. The SBV regularity of u follows by the chain rule formula in BV in view of the lower
bound (3.12) and of the fact u? € SBV(R?). The minimality is a consequence of Proposition
3.3. O

The following result is fundamental to prove some regularity for minimizers of F'.
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Proposition 3.11 (Almost-quasi minimality). Let u be a minimizer of F' on Fp (D) with
0 <u<||glloo- Then there exists o > 0 with

(3.26) u> o a.e. on supp(u)

and such that function (281)"/Pau is an almost-quasi minimizer of the Mumford-Shah functional
MS(u) ;:/ 2, V) do + H 1 ()
D

on D with Dirichlet condition w = g on B according to Definition 2.2.

Proof. The existence of a > 0 satisfying (3.26) is a consequence Theorem 3.5. Coming to almost-
quasi minimality, let B,(z) C D and v € SBVj,.(D) be such that v = g on B and {v # u} C
B,(xz) € D. Let us consider

w:= (v Alg|leo) V0.

Clearly w € SBV (D) with {w # u} € B,(z) and still w = g on B. Comparing v and w we get
/ f(x, Vu) dz + 28,aPH* (J, N B,(x))
By(z)

< / o, V) da + 2Ba |l gIE 1O (o O By (2) + Awar®
B, (z)
so that

/ f(x, Vu) dz + 28,aPH* ™ (J, N B,(x))
B, (x)

< / f(z, Vv) dx+2,6’2\|g||§o7-ld_1(Jv ﬂBp(ac)) + ywar?,
B,,(a:)

and the result follows. O
We complete our analysis of the free discontinuity functional F' with the following density result.

Proposition 3.12. Given v € Fp 4(D) N L®(R?) with HI¥~1(J,) < +oo, for every e > 0 there
exists w € Fp 4(D) N L= (RY) with J,, CC D\ B, H4"Y(J,) < +oo, and such that
F(w) < F(v) +e.

Proof. We can assume that g € CH(D) with ¢ > 0. Let &1 > 0 to be fixed below, and let
U cc D\ B open such that

HEY T, N(D\U)) < e1.
Since D\ B has Lipschitz boundary, for every x € 9D U B we can find an orthogonal coordinate
system y = (y',y4) with origin at x, two numbers r, s > 0, and a Lipschitz function f* : R?~! — R
such that setting

Ve =AW < lyal < s}
we have V7, N U = () and

(D\B)NVZ, ={y €V, : ya < f*(y)}.
We can also assume that for £ > 0 small enough
(I <r o) —&<ya< f(y) + € C VT,

By compactness, we can cover D U 0B with a finite number of neighborhoods Vi, ..., V,, of the
type Vi := V%, , and associated function f;. Moreover it is not restrictive to assume that the

H41-measure of the part of 9D on which the Vj’s overlap is less than e;. Let 91,..., 9., be a
partition of unity for 0D subordinated to the V;’s. We write
v=yPv+t - F v+ (L=t — - —p)vi=v1 4+ -+ Uy + V.

Notice that vg = v on U, and that v; has compact support in V; (so that we can assume that they
are defined on the entire R? for the operations performed below).
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We proceed to approximate each v; by “pushing inside” the jumps occurring at the boundary.
Given £ > 0 small, we consider

(y) = {Ui(ylayd +&) iy < fi(y) ¢
Wig) W' fi(y) i ya > fiy') =&
Let us consider
vt = 0§ 4 0, 4.

By construction, v* € SBV(RY) N L>(R?) with the jump set with finite H¢~1-measure, and well
contained in D, being v¢ Lipschitz regular in a neighborhood of dD.

Concerning the behaviour of the functional F, for £ — 0 we get that the volume energy of v¢
and the measure of its support are arbitrarily closed to that of v. As for the surface energy, which
we denote by £%, thanks to the continuity of 5(z) we get with obvious notation

E5(v°) < E%(wo, U) + £%(v,0D U DB) + Cey,

where C depends only on m, g and ||v||«. The last term takes into account the jumps in (D\ B)\U,
and the possible interference of the vf obtained by the translation of the v;’s. The result thus
follows if C'e; < € and £ is small enough. O

We are now in a position to prove the main result of the paper.

Proof of Theorem 8.2. Let u be a minimizer of F' on Fpg 4(D) with 0 < u < ||g||oc: its existence is
secured by Proposition 3.10. Thanks to Proposition 3.11 and to Theorem 2.3, we deduce that

(3.27) H ((Tu\ Ju) N D) =0,
i.e., the jump set of u is essentially closed in D. Moreover the lower bound (3.26) entails
(3.28) HIY(T,) < +oo.

Let §2 be given by the connected component of D \ .J, on which u does not vanish (we have
just one component by minimality). Recalling (3.28), and since

002 C (J,ND)UD,
we get that 2 € Ag(D). Moreover
(329) |ty ot <o,

O\ T,
Indeed thanks to (3.27)
HL ((002\ J,) N D) =0,
while
ut =0 H 1 ae. on (02\ J,) NOD

since, being D Lipschitz, we have u~ = 0 H% !-a.e. on dD.

Since
un € Wl’p(Q),
and taking into account (3.29), we conclude that
(3.30) J(2) < / f(z, Vu)dx +/ B(x)[[ut? + |u~ |P]dH! = F(u).
o) Y]

Let us prove that {2 is a minimizer of the shape optimization problem (3.4). Let us consider
2 € Ap(D) with associated function v € WP (£2) N L (£2) which realizes J({2). By extending v
to zero outside {2 we get v € Fp 4(D), J, C 02, and

Fv) = f(z, Vo) da:—|—/J Bx)[[vT P + |v [P]dHE?

Rd

z. Vov)dzx ) [lvT|P + v~ |P d-1 7
S/ﬁf( Vo)d +/mﬁ( Vot + o~ [P dHe = 1(9)
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so that in view of (3.30) we infer J(£2) < J(£2) and the optimality of 2 follows. Moreover we infer
J(2) = F(u).

Let us finally prove the “relaxation condition” (3.5). By Proposition 3.12, for every ¢ > 0 we
can find w € Fp 4(D) N L=®(RY) with J,, well contained in D \ B and with finite H?~!-measure,
and such that

F(w) < F(u) +e.
By the density result Theorem 2.4, truncating and using a cut-off function to accommodate the
Dirichlet condition on B, we can find wy, € Fg 4(D) N L>®°(R?) with J,, CC D\ B essentially
closed and polyhedral (i.e., given by the union of the intersection with D of a finite number of
(d — 1)-simplexes), wy, is of class W'? on D\ J,,, for every k, and such that
w = W strongly in LP(D),
Vwi — Vw strongly in LP(D;R%),
and
F(wk) — F(’LU),
Note that the convergence for the measure of the supports can be obtained by replacing wy, given
by Theorem 2.4, if necessary, by (wy — )+ for suitable i, — 0.

If we enlarge the jump set creating small holes Hy with polyhedral boundary, we get that the

domain

2y =D\ Hy, € Ag(D)
is Lipschitz regular. The restriction of wy to {2 is moreover an admissible function to compute
J(£2). We can thus consider the holes so small and k so large that

J2) < | f(x, V) dz + B(x)|wi|P dH < Fwg) 4+ ¢ < J(u) + 2.

Now the result follows by letting € = ¢, — 0 and selecting the associated k = k.

4. ESSENTIAL CLOSEDNESS OF THE JUMP SET OF ALMOST-QUASI MINIMIZERS OF FREE
DISCONTINUITY FUNCTIONALS

The present section is devoted to the proof of Theorem 2.3. As explained in Section 2, we
follow the approach a la De Giorgi-Carriero-Leaci [10] along the lines of [2, Chapter 7]. The main
point is to recover a decay lemma for the energy (see Theorem 4.8). This is achieved through
a contradiction argument in which the analysis of sequences of almost-quasi minimizers with
vanishing jump set play a key role. As in the classical setting, we need to prove that our weaker
minimality still entails that they converge to a function without jump which is a local minimizer
of the volume energy.

We divide the section in several parts. In Subsection 4.1 we collect some regularity results
for local minimizers of integral functionals. In Subsection 4.2 we prove some technical lemmas
concerning the behaviour of almost-quasi minimizers on the unit ball with vanishing jump set.
In Subsection 4.3 we prove the basic decay lemma, while Subsection 4.4 contains the proof of
Theorem 2.3.

4.1. Regularity results for local minimizers of integral functionals. We will need suitable
gradient bound estimates for local minimizers of the bulk energy. Let f : R? — [0, +oc]. For every
r<1and ue€ WYP(B,), let

F(u,By) := f(Vu)dz
B

Definition 4.1 (Local minimizers). Let r > 0. We say that u € W'P(B,) is a local minimizer
Of F(aBT) Zf
F(u,B,) < F(v,B,)

for every v € WP (B,.) with {u # v} CC B,.
The following result has been proved in [11, Theorem 2.2].
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Theorem 4.2 (Interior gradient bound). Assume that f : R — R is a continuous function
satisfying (Hy) and (Hsz). Let u € WYP(By) be a local minimizer of F(-,By). Then u is locally
Lipschitz in By, and there exists a constant Cy = Cy(d,p, L, u) > 0 such that

sup |VulP < QS |Vul|Pdx  for every p < 1.
B, /2 P JB,
We need an analogous result for the case with boundary conditions. Let us introduce, for § > 0,
Hs = {z = (z',2q) €R?: 24 > =0},
and for every r <1 and u € WP(B,), let

f(Vu)dzr if u=0a.e. in B, \ Hy,
Fo s(u, B,) = /B V) \Es

400 otherwise.

The definition of local minimizers is adapted to Fp s, taking into account the boundary condition.
The following result has been proved in [3, Theorem 3.8].

Theorem 4.3 (Boundary gradient bound). Assume that 6 € [0,1/2] and that f : R — R
is a continuous function satisfying (H1) and (Hz). Let u € WYP(By) be a local minimizer of
Fo5(-,B1). Then, for each Ry < 1, there exists a constant Cy = C{(d,p, L, 1, Ry, ||Vull,) > 0
(independent of §) such that w is locally Lipschitz continuous in By and

1
sup |VulP < C}) (pd/ |VulP da + 1) for every p < Ry.

p/2 p

4.2. Some lemmas on the unit ball. In the footsteps of [2, Chapter 7], we study the behaviour
of sequences of functions in SBV (B;) with vanishing jump set which satisfy a suitable minimality
property for the functional (2.1).

More precisely, let f,, : By x R? — [0, +o0[ be a Caratheodory function with

(4.1) fa(@,8) < L(1 + [€7)

(4.2) & fo(x,€) is convex for a.e. x € By,
and such that
(4.3) fn—= foo uniformly on the compact sets of By x R<.

Here L > 0 and p > 1. We are interested in the behaviour of a sequence (up)nen in SBV(Bj)
which satisfy the minimality property

(4.4) ful, V) dz + ¢, HE " (J, N By)
B,

< / fnlz, Vv)dx + Acn’}-ldfl(Jv N B,.) + D,(r)
B.

for every v € SBV(B;) with {v # u,} C B, and r € [0,1]. Here A > 1, ¢, > 0 and D,, : [0,1] —
R™ is such that
(4.5) D, —0 pointwise.

Following [10], we will make use of a suitable truncation of a function in SBV(Bj). For every
s € [0,wq], let us set
Ug(s,By) :=inf{t e R : |[{u < t}| > s}.
If

Wq

_d
(271 (J,) T < >

where v4 is the constant appearing in the relative isoperimetric inequality, let

77 (u, By) = u. ((zymdluu))dfl ,Bl>
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and
7T (u, By) := u, (wd - (2’yd’}—ld*1(,]u))ddf1 ,Bl) )
Notice that 77 (u, B1) < m < 7% (u, By) for every median m of u, i.e.,
{z € B : u(x)<t}\§% for every t <m

and w
Hz € By : u(z) >t} < él for every ¢t > m.

The following result holds true (see [10, Theorem 3.5] and [2, Proposition 7.5]).
Lemma 4.4. Let (up)nen be a sequence in SBV (By) such that

n n—-+oo

sup/ |[VulP de < 400 and lim HY“Y(J,, ) =0
By

for some p > 1, and let m,, be medians of u,. Then there exists a subsequence (Un,)reny and
u € WHP(By) such that

Uy — My, —> U a.e. in By.

Moreover the truncated function
(4.6) Up,, 1= (unk \/Tf(unk,Bl)) ATF (U, , Br)
satisfies

Un,y, — Mp,y, = U strongly in LP(By)
and

74

(4.7) [ty # o} < 2 (2001 ()

We begin with the following lemma.

Lemma 4.5. Let f, satisfy (4.1) and let (up)nen be a sequence in SBV (B1) satisfying the min-
imality property (4.4) and such that

(4.8) sup [/ |Vun|P dz + and_l(Jun)] < +0o0 and  H"Y(J,,) — 0.
B,

n

Then there exists E C [0,1] with [[0,1] \ E| = 0 such that the truncated functions u, defined in
(4.6) still satisfy the minimality property (4.4) for every r € E, with D,, replaced by Dy, : E — R
such that D,, — 0 pointwise.

Proof. Thanks to Lemma 4.4, in view of assumption (4.8), we have

Cn|{un i an}‘ < Ydcn (,7"[d_1(=]u,,t))df_’1 — 0.

Since )
iy # G} = / H {uy, # 1, } N OB, )dr
we deduce that for a.e. r € [0,1] '
en M {un # @, Y NOB,) — 0.

Let us consider now v € SBV(B;) with {v # 4, } C B,, where r satisfies the previous property.
Comparing u,, with w :=vlpg, +u,1lp,\p, We get

/ fon (2, Vu,) dz + ¢, H (T, N B,
B,
< / falz, Vo) de + Ae, H (T, N By) + Acy HH({v # un } N OB,) + Dy (r)
B,

< / fn(z, Vo) de + Ae, (T, N B,) + Acy HE ({un # 1, } NOB,) + Dy (7).
B,
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Since in view of (4.1)

fn(z, V) dz + ¢, (Ja, N B,)
B'r

fn(@, Vuy) da + ¢, HE 1 (T, N By) + Li{un # s},
B

we conclude
/ fn(2, Vi) dz + c,H 7 (Ja, N B,) < / fn(2, Vo) dx + Ay H Y (J, N B,) + Dy, (r)
B, B,

where
Dn(r) = L|{u, # an}| + Ac7l7-Ld71({un # U} NOB,) + Dy(r) = 0,
and the result follows. O

Lemma 4.6. Let f,, satisfy (4.1), (4.2) and (4.3). Let (un)nen be a sequence in SBV(Bj)
satisfying the minimality property (4.4) such that

(4.9) sup/ |Vug|P de < 400, HIY(T,,) = 0,
n JB,
(4.10) sup [ fon(@, V) dz + ¢, HEH(Ty,) | < +oo
n B,
and
U, — u € WHP(By) pointwise a.e.

Then u is a local minimizer in WYP(By) of the functional

v foolx, V) dz,

By
and for every r € [0, 1]
(4.11)  lim / fnl(x, Vuy,)dz —/ fool(z, Vu) dx and lim cn’del(Jun N B,) =0.
n—-4o0o n—-+4o0o

Proof. Let @, denote the truncation of u,, according to (4.6). We have thanks to (4.7), (4.9) and
(4.10)

(4.12) enl{tn # un}| = cn /01 H {dy # un} NOB,) dr — 0.

By Helly’s theorem, up to a subsequence we can assume that for every r € (0,1)

n——+oo

lim [/ Fule, Vi) d + ex O (Jo, A B)| = ar),
B,

where « : [0,1] — [0, 4+00[ is an increasing function.
In view of Lemma 4.4 we get easily

(4.13) Uy — U strongly in LP(By),

and

(4.14) {@, # un}| — 0.

Following [12, Theorem 2.6] we have

(4.15) / foo(z, Vu) dx < lnlglfg/ fn(x, V) de

Indeed, by Chacon biting lemma (see e.g. [2, Lemma 3.52]), there exists a decreasing family of
Borel sets Ay C By with |Ax| — 0 as k — oo and such that

(IVun|P1p,\ 4, Jnen  is equintegrable.
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Then for every m € N

lim inf/ fn(z, Vi) de > liminf fn(z,Vi,)dz

n—-+4oo n—-+oo [Br\Ak]ﬁMn,m

> lim inf/ foolx, Viiy,) de — lim sup/ L(1 + |Va,|?) de — e(m)
Br\Ay [Br\AR\Mp,m

n—-+00 n—-+00

where
My m:={z € By : |Vi,| <m}

and e(m) — 0. Then, thanks to (4.13) and in view of the lower semicontinuity result [2, Theorem
5.29] we get

lim inf/ foolx, Vi) dx > / foo(z, Vu) dz
Br\Ak

n—-+o00 B\ Ay

so that (4.15) follows by letting m — 400 and then k — +oc.
In view of (4.15) and (4.14), for every r € (0,1) we obtain

(4.16) / foolz, Vu)da < hmlnf/ folx, Vi) de < hmmf/ fulx,Vuy,)d

n——+00 n——+00
Let us consider v € WP(By) and r € (0,1) such that {v # u} C B,. Considering the measures
fin = caH T,
we can assume up to a subsequence that
(4.17) i — 1 weakly™ in the sense of measures
for some finite positive measure p on By. Let us consider
r<r <r’<1
with
w(@By)=0 and " €E,

where E C [0,1] is given by Lemma 4.5. Let ¢ € C°(B;) be a cut-off function between B, and
B, and let us compare @, with gv+ (1 — ¢)a,. Since " € E we can write

ful@, Vi) dz + ¢, HE (Ja, N By
B,,,//

< fn(:E,QDVU+(1*@)Vﬂn+v<p(vfﬂn))d$
B’V‘”
+ A, ™ (Jg, N (Bor \ By) + Da(r")
<[ fu(@Vo)de + / B (14 Vol + [Vl + [VolP|v — n]?) do
B, B, \B,.
+ ACan_l (Jﬂn n (BT” \B,,J) + Dn('r'//),

where L > 0 is independent of n. Letting n — 400 we get using the uniform convergence of f,, to
foo and (4.17)

n—-+4oo

lim inf [ fon(2, Vi) dz + ¢, H (T, N Byr)
B 11

< fool, VV) da:+i;/ (1+|VolP)dz 4+ Ap(B, \ By).
Br’ BTII\BTI

Letting " — ', and since u(9B,) = 0 we deduce

a(r') < foo(z, Vv) dx.

Br’
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Moreover, thanks to (4.16), for 7" — r we obtain

foo(z, Vu)dx < a(r) < foo(z, V) dx
B, B,

We conclude that u is a local minimizer in W (By) for

v foolx, V) dz,
By

/fooxVu

We note that the previous equality together with (4.15) entails that for every r € (0,1)

and that for every r € (0,1) (take v = u)

n—-+4o00 n—+00

(4.18) lim / Sz, Vi) da:—/ foolz, Vu) dx and lim ¢, M1 Y(Ja, NB,) =0.

In order to obtain (4.11), we need to replace 4, with u,. Let 7 > r be such that according to
relation (4.12)

(4.19) en MY ({ty # un} NOBz) — 0

Comparing u,, with @,1p, +u,1p,\ B, We get
/ fon(2, Vuy,) dz + ¢, H (T, N Br)
Br

< / Ful@, Vi) dz + Acy M (Ju. O Br) + Aen ! ({@in # wn} N OB5) + Do(F)
Br

so that recalling (4.16), (4.18) and (4.19)

/ foo(z, Vu) dx < liminf {/ fn(z, Vuy,)dx + cn’Hd_l(Ju" N BT)}
B,

n—-4oo

< limsup |:/ fn(z, Vuy,) deFCn/Hdil(Jun mBr):| < / fool@, Vu) dx
n—+oo B, By
from which (4.11) follows letting 7 — r. O

We need now to adapt the previous lemma to the case with boundary conditions. Let ¢, :
R%1 — R be a sequence of continuous functions, and let

T, = {lL’ = (x/,l’d) €B x4 < Son(x/)}

Assume that (@, )nen is locally uniformly converging to the constant function —d, with ¢ € [0,1).
Let (gn)nen be a sequence in C*(By) such that

(4.20) lgnlloc + [Vgnlloo — 0.
Let (un)nen be a sequence in SBV (B) with w,, = g, on T},, which satisfy the minimality property

(4.21) / fnlz, Vuy,) dz + andfl(Jun N B,)
B,

< / fa(@, Vo) dz + Acy 1 (J, N B,) + Dy (r)
B,

for every v € SBV(B;) with v = g, on T, {v # u,} C B,, r € [0,1], and with D,, satisfying
(4.5). Let finally F§5 : WLP(By) — [0, +00[ be given by

Fo () = I, foolz,Vu) ifu=0on{z € B : x4 < -0}
0,61 400 otherwise.

We say that u is a local minimizer of Fg if for every v € W'P(By) withv =0on {z € By : x4 <
—6} and {v # u} CC B; we have FO’(;( u) < F55(v).
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The following lemma holds true.

Lemma 4.7. Let (un)nen be a sequence in SBV(By) with u, = g, on Ty, and satisfying the
almost-quasi minimality property (4.21). Assume that

sup/ |Vu,|P de < +o0, HI7(T,,) = 0,
B1

n

n

sup [ ful@, V) dz + e, H7H(J,,) | < 400
B,

and
Up — u € WHP(By) pointwise a.e.

Then u is a local minimizer in WYP(By) of the functional F5s and for every r € [0,1]

(4.22)  lim / fn(z, Vuy,) dx :/ foo(z, Vu) dx and lim ¢, H*(J,, NB,)=0.
B, B

n—-+00 n—-4oo

Proof. If we set v, := u,, — gn, We get easily that for n large enough

Up =0 on T,.
Setting
Up = Gn + Up
we have
Up — U strongly in LP(By)
and

1+ cp){an # untl — 0.
We can then follow the proofs of Lemma and of Lemma 4.6 to get the conclusion: it suffices to
note that every v € WHP(By) with v =0 on {z € By : x4 < —4}, in view of (4.20), there exists
v, € WHP(By) with v, = g, on T}, and such that v,, — v strongly in W1?(By). O

4.3. The decay lemma. For every ball B,(x¢) CC 2’ let us write
F(u, By(x0)) := /B f(x, Vu)dz +H*(J, N B,).
Let us denote by Devg a(u, By(z0)) the infimum of those constants D such that
/B - f(@,Vu)dz + H* (T, N By(ao)) < / f(2,Vv)do + AR (J, N By(x)) + D
p(@o

Bp(wo)

for every v € SBVP(§2') with v = g on £’ \ 2 and such that {v # u} C B,(xo).
The decay lemma with boundary conditions which we will use is the following.

Lemma 4.8 (Decay). Assume that f satisfies assumptions (Hy) — (Hs). For every 7 € (0,1)
and £2 CC (2 there exist &(1,12),9(r,£2), p(7,$2), x(7,82) > 0 such that if w € SBVP(£2") with
u=gon2\Q2, 2N, p<p(r,2), B(x) CC 2,

HI YT, N By(x)) <e(r,2)p?™r  and  Devya(u, B,(x)) < 9(r, 2)F (u, B,(x))

then
F(ua BTP(I)) < Cle IIlaX{F(’U,, BP(‘T))v X(T7 Q)pd [Lipo(a:)g]p}a

where C7 > 0 depends only on the dimension d and on the constants L, pu,p associated to f.

Proof. Tt suffices to consider the case 7 € (0,1/4) (otherwise we can choose C; = 49). Let C; > 0
to be fixed below. By contradiction, let us assume that there exist

7€ (0,1), en — 0, ¥, — 0, pn — 0, Xn — +00, z, €2
such that B, (z,) CC {2,
/Hdil(‘]u N By, (zn)) = 5npg,71a Devg a(u, By, (70)) = U F(u, By, (x2)),
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and
(4'23) F(u7 BTpn (xn)) > Cle maX{F(uv Bpn (xn))a an7dz [Lipon (I”)g}p}_
We consider the rescaled function v, € SBVP(By) given by

1-p 1

(4.24) vn(y) = pn” chu(@n + puy).
where
F(un, By, (@)
We thus get
(4.25) (g, Vou(y)) dy + e B (J,) = 1,
B
where
In(y, &) == f(xn + pny,§),
and
(4.26) Sup/ Vo, |P dy < 400 and HEY(T,, ) — 0.
n JB;

If we define g,, starting from g as in (4.24), we get
(4.27) / fn (¥, Vun(y)) dy + Cn,Hdil(Jvn N BT) > Cle max{l, Xn [LipBl gn]p} > Olea
B,

so that in particular

. 1

Finally vy, satisfies the minimality property (4.21), with respect to the region 7,, corresponding to
(2"\ 2)N B,, (xy), the given datum g, and D,(r) = 9, for every r € [0, 1].

Up to a subsequence, we may assume that z,, = T, € f), so that
fu(y, &) = f(00, &) uniformly on compact subsets of By x R%.
It is not restrictive to assume xo, € §2 (otherwise for n large we have v = g on B, (z,), and the
result is trivial). We now divide three cases.
Case 1 Assume that T, = () for n large. Thanks to Lemma 4.4 and Lemma 4.6, and since the
energy is invariant under the addition of a constant, we may assume that
vy — v € WHP(By) pointwise a.e.

with v local minimizer of w > [, f(2oo, Vw(y)) dy on W'P(B1), and such that every r € [0,1]

n—-+oo n—-+oo

lim / fn (y, Vo, (y)) dy = / f(@oo, Vu(y)) dy and lim andfl(Jvn N B,) =0.
B, B,

In particular

f(Zso, Vo(y))dy = 1.
B,

However, by Theorem 4.2 v is Lipschitz continuous with

C C
sup |Vo|P < =0 f(Zeo, Vo) dy < —0,
Bi)s wq JB, wd
where Cy = Cy(d, p, L, 1v). Hence we get
/ f(zeo, Vo(y)) dy < L/ |[VoulP dy < Lwgr® sup |[VoulP < LCyT.
B, B, Bi/a

We get a contradiction with (4.27) if we choose C; > LCj.
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Case 2 Assume that T, # () for n large. Since p, — 0, we get 7o, € (2" \ 2). Since 2’ \ 2 has

Cl-boundary, there exists a coordinate system such that, up to a subsequence,
Tn={y=(,ya) € Br : ya < ¢n(y)}

for some ¢, € C*(R?~!) locally uniformly converging to a constant —d, with § € [0,1] (see e.g.

[3, Lemma 6.4]).

Thanks to (4.26) and to Lemma 4.4, there exists v € WP(By) such that up to a subsequence
(not relabelled)

Vp — My — U a.e. in By,

where m,, denotes a median of v,,.

Assume now that 0 < § < 1. In view of (4.28), we conclude that v is constant on {y = (', y4) €
By : yq < —0}. It is not restrictive (since the energies are invariant by addition of a constant) to
assume that m,, =0,

v=0 on{y=(yY,ya) € B1 : ya < —6}
and that
Uy —> U a.e. in Bj.

By Lemma 4.7 we deduce that v is a local minimizer of the functional F< 5 associated to the energy
density f(2o, ),

lim / Fo (4, Vou(y)) dy = / f@w, Vo) dy,  lim c,HO (T, N B,) =0
. B,

n—-+oo B n—+oo
and
f(Zoo, V) dy = 1.
B1

In view of Theorem 4.3, v is locally Lipschitz in Bj, and there exists a constant Cf = C{(d, p, L, i)
such that

sup |Vo|P < Cj [/ |Vo|P dz + 1] .

B, B

Consequently we have

/ [ (Zoo, Vv) dy < LC)) {/ |VolP da + 1} war?
B, By

and we get a contradiction with (4.27) if
C1 > L(L + 1)Cjwa.
Let now % < § < 1. Then for n large enough
T, N Byjs = 0.

By Lemma 4.6 we infer that v is a local minimizer of Fi, associated to f(zs, &) on By s,

Jim [ @) dy= [ faeTode i 10, 0B =0
for every 0 < r < 1/2 and
f(Zoo, VV)da < 1.
B2
Since v is Lipschitz continuous thanks to Theorem 4.2 with
C C,
sup [VolP < =2 | f(zag, Vo) dy < =2,
Bi/a Wd JB, s wd

where Co = Co(d, p, L, 1), we get as 7 < 1/4

/ f(zso, Vo(y)) dy < L/ |VolP dy < Lwgr? sup |V|P < LCy7e.
B, Biy

We get a contradiction with (4.27) if we choose C; > LCy. The proof is now concluded. O
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4.4. Proof of Theorem 2.3. By comparing u with ulp, () for B,(z) CC £, we get easily that
HIT (T, N By(x)) < Awgp®™ ' + cap® < (Awg + 1)p¢!

for p small enough (depending only on « and ¢,). Let 2 CC £’ be fixed. We claim that we can
find gg, pp > 0 depending on (2 such that the relations

z € 0, B,(z) ccC and HIT( T, N B,y(x)) < gop?™t  for some p < po
entails
. S5, () IVul? dz + H1 (T, N Br(2))
r—0 rd—1
Then the thesis follows since thanks to [10, Theorem 3.6] relation (4.29) implies « ¢ J,,. We can
thus achieve inequality (2.2) by reducing ¢ if necessary.

In order to prove (4.29), it is not restrictive to assume pg < 1. We will use the almost- quasi
minimality property of Definition 2.2 only on balls with radius p < pg, so that we can assume
without loss of generality that a < 1.

We proceed as follows. Let 7 € (0,1) be such that
(4.30) Cyrd < ri%,
where C} is the constant given by the Decay Lemma 4.8. Let o € (0,1) to be fixed below. We
claim that there exists pg > 0 such that if for some p < pg

Hdil(Ju N By(x)) < 5(‘7)Pd71

(4.29) =0.

then

(4.31) F(u, Byyn,) < e(r)7% (a7 p)?.

Here &(7) and £(0) are the numbers associated to 7,0 and £2 according to the Decay Lemma 4.8.
From this inequality, relation (4.29) easily follows, and the thesis is proved by choosing gy = (o).

We prove (4.31) by induction. In what follows, L, will denote the Lipschitz constant of g on
2. For h =0 it reads

(4.32) F(u,By,) < &(7)(op)* .
If
Devg,z(u, By(z)) < 9(0)F(u, By(z)),

we get according to Lemma 4.8, and using the almost-quasi minimality property of u in comparison
with glp () + ulon B, ()

F(u, Byp(x)) < Cro® max{F (u, B,()), x(0)p"[Lipg,z)9]"}

< Cro max{wap L[Lipp, ) 9)° + dwap™™" + cap® T, x(0)p[Lipp, ) 91"}
< (pa)d_lC’lamax{wdpLLz + dwa + cap®, x(0)pLh} < e(7) (op)?~?

provided that

1
4.33 <minq ——,1
3 w < min{ i1}
and
(4.34) Cromax{wg LLY + dwg + co, L} < &(7).

If on the other hand
Devya(u, By(2) > 9(0)F(u, B,(x))
then by the minimality property of u

Flu, B, (x)) < F(u, B,(x)) < —— Devy x(u, B,) < Cap” 1t < e(r)(op)?!
T TR T (o) T T (o) T

provided that
(4.35) capl < e(T)9(o)o? L.
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Relation (4.32) is now completely proved.
Assume now that (4.31) holds true. We want to see that

a(h+1)

(4.36) F(u, Byrni1,) < e(T)7 2 (o7 *1p)d—1,
From (4.31) we infer that

HY Ty N Bypn,) < e(7) (0" p)4
If
Devg A (u, Born (1)) <O(7)F(u, Byrnp)
then by the Decay Lemma 4.8

F(u, Byrni1,) < C17%max{F (u, By,n,), X(T)(O’Thp)dLg}
h

< i max{e(r)r ¥ (97" p)* L, x(r) (07" p) 15}
1

ah (2—a)h

= C17%o7"p) 17 % max{e(r), x(1)oT 2 pLb}.

If
(4.37) x(T)poLh < e(7),
and since a < 1, we infer taking into account also (4.30)

ah

a a(ht1)
F(’U,, BUTh+1p) < S(T)Tdij(UThp)dilTT = 8(7’)7’170‘7'%

(orh+1p)d1 < 8(7_)7_a<h2+1>

If on the contrary
D@’Ug’A(Uq Barhp(x)) > ﬂ(T)F(Uﬁ Borhp)

we have using the minimality property of u

F(u, Bypnis (@) < Flt, By () < ﬁpevg,A(u, By (1) <
Ca O'Th «@ O'Th+1 d—1
- (19(7>p) A ety

provided that
(4.38) capd < e(m)9(r)rd1Te,

Relation (4.36) thus follows.
Summarizing, we conclude that (4.31) holds true provided that o satisfies (4.34) and pg satisfies
(4.33), (4.35), and (4.38). The proof is now concluded.
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