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Abstract 
Least squares polynomial splines are an effective tool for data fitting, but they may 
fail to preserve essential properties of the underlying function, such as monotonicity 
or convexity. The shape restrictions are translated into linear inequality conditions on 
spline coefficients. The basis functions are selected in such a way that these 
conditions take a simple form, and the problem becomes non-negative least squares 
problem, for which effective and robust methods of solution exist. Multidimensional 
monotone approximation is achieved by using tensor-product splines with the 
appropriate restrictions. Additional interpolation conditions can also be introduced. 
The conversion formulas to traditional B-spline representation are provided. 
 
Keywords: Least squares splines, monotone splines, monotone approximation, 
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Introduction 
Interpolation and approximation with spline functions under monotonicity and 
convexity constraints have attracted substantial interest in the literature, specifically 
in computer aided design [1-3,6,7,15,16,19-21,24-27,31-45]. For certain sets of data, 
interpolating polynomial splines introduce extraneous inflection points [10,21], 
whereas in the problems of smoothing the data itself may not posses the desired 
characteristics due to observation errors. Monotonicity and convexity of the splines 
can be enforced by various methods. One of the early approaches to constrained 
splines (or splines in tension) is based on piecewise exponential interpolation 
[34,38,39]. The exponents arise as solutions to certain differential equations 
describing the physical model of constrained spline, the elastic band passing through 
the interpolation knots, pulled until all the extraneous inflection points have been 
straightened out.  
 
The approaches involving polynomial splines [2,3,6,7,11,15,18,20,24-26,31,35,37] 
rely on introduction of additional interpolation knots or increasing spline deficiency. 
Typically, quadratic [15,26,31,37] or cubic C2 or C1 interpolants [2,6,7,11,21] are 
constructed. The corresponding algorithms and FORTRAN source code are widely 
available [16,17,26]. Projection approach was recently discussed in [40]. When the 
data is not monotone or convex, constrained smoothing splines can be used [41]. As 
with interpolation, additional approximation knots are introduced [3,16,18]. 
Extensions to bi-variate approximation of data on a rectangular grid have also been 
developed [7,11,15,25,27]. A review of these methods is given in [21]. 
 
The bi-variate and multivariate approximation of scattered data are substantially more 
complicated. One method is to use Powell-Sabin splines, with the additional shape  
restrictions if necessary [12,44]. Variational approach to spline approximation results 
in thin plate splines, and the constraints can be introduced there as well [42,43]. This 
approach is very general, but it requires at least as many basis functions and 
coefficients to represent the spline as the number of data points, which could be large, 
and the solution of the corresponding restricted quadratic programming problem of 
that size is numerically expensive [42].  
 
A different approach to spline approximation, advocated by P. Dierckx [16], is to use 
the least squares splines. The approximation knots do not coincide with the data, and 
usually the number of spline segments is less than the number of data points. The 
coefficients of the spline are found as a solution to the linear least squares problem. 
When the knots of approximation coincide with the data, the least squares spline 
becomes the usual interpolating spline with the appropriate conditions imposed on the 
derivatives at the ends of the interpolation interval. One advantage of least squares 
splines is that they require substantially less coefficients and basis functions to 
represent the spline, and are easy to extend for multivariate case using tensor 
products. On the negative side is that fact that the quality of approximation critically 
depends on the position of the approximation knots [16,32]. The most simple 
uniformly distributed knots are often a bad choice. The methods of automatic 
optimisation of knots positions exist, but they involve minimisation of a nonlinear 
function with many local minima [10,16]. 
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It is also possible to impose monotonicity or convexity conditions on the least squares 
splines. In the univariate case these conditions were discussed in [16,32]. Less 
attention has been given to shape preserving multivariate spline approximation. 
 
The case of monotone multidimensional least squares spline approximation seems to 
be important for the following reasons. Firstly, in many problems the data is scattered 
rather than given on a rectangular grid. Powell-Sabin and thin plate splines can be 
used to solve this problem [42-44], but the construction is rather complicated. Tensor 
product least squares splines provide a much simpler solution, although not without 
its drawbacks [24,32].  Secondly, the scattered data usually contain observation 
errors, and the use of interpolation is not appropriate. Thirdly, the least squares 
splines significantly reduce the number of basis functions and coefficients required to 
approximate a given function, specifically in the case of well behaved functions and 
large number of data. However, even linear least squares splines may not preserve the 
monotonicity of the data (Fig. 1), let alone the cases of higher order splines and non-
monotone data. The monotonicity or convexity properties of the underlying function 
may be semantically important (e.g. monotone transformation, dose-response, cost 
and growth curves [24,32,33], utility or membership functions, aggregation operators 
[8,9,28,46]), and enforcing these properties is critical. 
 
Present paper addresses the issues of shape preserving univariate and multivariate 
least squares splines. Initially we consider the cases of univariate monotone and 
convex approximation. We will formulate the least squares problem using a basis 
different from traditional B-splines, but closely related to it. The key advantage of 
doing this is to express the restrictions on spline coefficients in the most simple way. 
Then, multivariate approximation will be considered. We will impose monotonicity 
conditions in respect to one variable only and in respect to all variables. Finally we 
will illustrate our method on a useful application of approximating aggregation 
operators in fuzzy sets theory.  
 
Univariate monotone approximation 
Suppose, there is a given set of data points {( , )}x yi i i

I
=1  on the interval [ , ]a b , and a 

prescribed set of approximation knots { }t j j k
N k
=−
+ +1 , such that t a0 = , t bN+ =1  and 

t t t t tk N N k− + + +≤ ≤ < < < ≤ ≤... ... ...0 1 1 1 . The position of the knots outside [ , ]a b  is 
arbitrary [16]. Let N xj

k+1( )  denote normalised B-spline of order k+1 (degree k) with 
knots t tj j k, ..., + +1 . The recursive relation for B-splines is well known [10,16,36] 
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The least squares spline S(x) is a piecewise polynomial of order k+1 
 

S x a N xj j
k

j k

N

( ) ( )= +
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∑ 1         (1) 
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which minimises the least squares criterion  
 

( )S x yi i
i

I

( ) −
=
∑ 2

1
. 

The linear space of polynomial splines of order k+1 defined on the knots { }t j j k
N k
=−
+ +1   is 

denoted by ],...,[ 1
1

++−
+

kNk
k ttS  . Its dimension is N+k+1. 

 
Functions N xj

k+1( )  are well known in the literature, and they possess many useful 
properties, including local support, partition of unity, numerical stability, etc. When 
the knots { }t j  are fixed, the problem of least square approximation is linear, and can 
be solved by standard methods, such as QR decomposition. 
 
Even if the data I

iii yx 1)},{( =   is monotone, the r esulting least squares spline does not 
necessarily preserve this property. This is illustrated in Fig.1 for linear spline. To 
enforce monotonicity, additional restrictions should be imposed on the coefficients 
a j . In the case of linear spline, it amounts to a a j Nj j≤ = − −+1 1 1, , .., , that trivially 
follows from the partition of unity and local support properties. However in a more 
general case the restrictions on a j  are not simple. 
 
In order to express the restrictions on spline coefficients in a more suitable form, we 
change the basis of ],...,[ 1

1
++−

+
kNk

k ttS  to a new set of functions T xj
k+1( ) , defined by 
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Clearly, the functions T xj

k+1( ) , which we call trapezoidal, or T-splines because of 
their form (Fig.2), are linearly independent, and therefore form a basis in 

],...,[ 1
1

++−
+

kNk
k ttS . Every spline S(x) of order k+1 can be represented as 
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The new splines possess a list of useful properties: 
1.  The support of  T xj

k+1( )  is [ , ]t tj N k+ +1 ; 

2.  The derivative ( ( ))
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( ( ))T xj
k+ ′1 is proportional to N xj

k ( )  for x t tk N∈ − +[ , ]1 ; 

3.  T xj
k+ =1 1( )  for x t tj k N∈ + +[ , ]1  and j k N= − −, ..., 1; 

4.  They are easily computed from B-splines. 
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T-splines are closely related to integrated I-splines from [32], which have been also 
proposed for monotone approximation. The difference merely lies in the way they 
were defined, as a linear combination of B-splines of the same order, or integrals of 
M-splines (differently normalised B-splines) of lower order. They coincide on [a,b] 
but differ on ( , )b ∞ .  
 
T-splines basis is well conditioned for numerical calculations (although slightly less 
than B-splines). Indeed, the matrix Tij j iT t= ( )  can be obtained from the (well 
conditioned [10,36]) basis N ij j iN t= ( )  by multiplication NLT = , where L is a 
lower triangular matrix with unit entries below the diagonal. Its inverse is the two-
diagonal matrix with 1 on the diagonal and -1 on the lower co-diagonal, and its 
condition number is 2M, M is the size of L.  
 
Let us utilise the property 2 to obtain the necessary and sufficient conditions for 
spline monotonicity (we consider monotone non-decreasing splines, for monotone 
non-increasing splines the results are analogous). When k=1 (linear spline), its 
derivative is defined by a linear combination of piecewise constant functions with 
non-intersecting supports, and consequently by the sign of the coefficient of the only 
non-zero B-spline N xj

1( )  for x t tj j∈ +[ , )1 . Therefore, the necessary and sufficient 
condition for monotonicity in this case is that all bj  be non-negative, except b−1 , 
which by itself determines the value of the spline at a t= 0 . 
 
The non-negativity of the coefficients is a sufficient condition of monotonicity of 
higher order splines as well [32] (indeed, a non-negative linear combination of non-
negative functions, such as B-splines, is non-negative). Let us now establish the 
necessary condition for quadratic splines. 
 
Proposition. 
For quadratic spline  

S x b T xj j
j

N

( ) ( )=
=−
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2
 

the necessary and sufficient condition for monotonicity is  
bj ≥ 0 , j=-1,…,N. 
 
Proof. 
The derivative of S(x) on [a,b] is a piecewise linear spline whose positivity on [a,b] 
follows from its positivity at the knots { }t j j

N
=
+
0
1 . The only spline which is not zero at t j  

is N xj−1
2 ( ) , and therefore the sign of the derivative ′S x( )  at t j  is determined by the 

sign of the coefficient bj−1 , j=0,…,N+1. ♦ 
 
Thus, in order to construct non-decreasing linear or quadratic spline, one has to solve 
the linear least squares problem with linear restrictions on the coefficients: 
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This problem of non-negative least squares has been thoroughly studied, and efficient 
algorithms have been developed [14,22,23,29,30]. NNLS algorithm or its successor, 
BVLS, are available from NETLIB [17,22] or in printed form in [22,23]. In [13,14] an 
improvement to branch-and-bound technique [4], which further reduces the search 
space, is described. The algorithm LSEI [22,23] is more general and allows one to 
handle inequality and equality constraints simultaneously, which is useful to force the 
spline to pass through certain points.  
 
If strict monotonicity is required, say ′ ≥ >S x d( ) 0  (different d may be required at 
different knots t j ), it can immediately be translated into b dj ≥ , j=-k+1,…,N  (or 
b dj j≥ , if ′ ≥S t dj j( ) ). Moreover, if upper and lower bounds on the derivative are 
specified, d S t ej j j≤ ′ ≤( ) , then the restrictions will be d b ej j j≤ ≤ . The problem 
then can be solved using standard BVLS algorithm from [29]. 
 
Monotonicity of higher order spline can also be imposed by requiring non-negativity 
of the coefficients, however, because this is not a necessary condition, the resulting 
monotone spline is not guaranteed to be the best approximation in least squares sense. 
 
Fig. 3 illustrates approximation of monotone and non-monotone data using T-splines. 
Calculation of the coefficients has been performed using LSEI algorithm. The 
additional restrictions on the function, f a( ) = 0  and f b( ) = 1, can be derived from 
noticing that the only basis function not zero at a is T x1( ) , whereas at b all basis 

functions are equal to 1. It implies that b k− = 0  and 1=∑
−=

N

kj
jb . 

 
Once the coefficients of the spline { }bj  are found, the value of S(x) can be calculated 
using the Eq.(3). However, this may not be as efficient as using B-splines, because the 
sum in (1) involves at most k+1 terms (due to local support of N xj ( ) ). It could be 
better to return to the traditional B-spline representation using the following 
conversion formulas: 
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These conversion formulas follow from 
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Convex least squares splines 
The convexity condition for least squares splines ′′ ≥S x( ) 0  is not readily translated 
into simple restrictions on the coefficients. Let us again change the basis for 

],...,[ 1
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kNk
k ttS . The new basis functions N
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+ }{ 1  are defined as 
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where T xj

k+1( )  are given in (2). Fig. 4 shows the quadratic basis functions. It is clear 

that N
kj
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+ }{ 1  are linearly independent and form a basis in ],...,[ 1
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k ttS . The 
second derivatives of the new functions are calculated using the formula 
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It is clear that on [a,b] only the part involving N xj

k−1( )  is not zero. If we use quadratic 
spline (k=2), the second derivative is expressed as linear combination of constant 
splines (of order 1), and in the case of cubic splines, the second derivative is a 
piecewise linear function. Similarly to the monotone splines, the necessary and 
sufficient condition for convexity of the spline, represented as 
 

∑
−=

=
N

j
jj xTcxS

3

4 )()( , 

 
is non-negativity of the coefficients c j ≥ 0 , j N= −1,..., . 
 
Again, the problem becomes non-negative least squares problem, and it can be solved 
using existing techniques, such as NNLS, BVLS or LSEI algorithms [14,22,23,29]. 
Higher order splines can also be used, however, as with monotone splines, the non-
negativity of the coefficients may be too strong a restriction, and the spline will not be 
the best approximation to the data in the least squares sense.  
 
Interpolation and other conditions 
Least squares splines can also interpolate the data, provided that at least the same 
number of basis functions as the number of data is selected (Whitney-Schoenberg 
conditions are presumed throughout this paper) . If monotonicity or convexity 
restrictions are imposed, they effectively reduce the number of degrees of freedom, 
and the resulting spline may fail to satisfy some of the interpolation conditions. 
Similar to interpolating or smoothing splines, where additional knots or additional 
discontinuities (cf. cubic C1 splines [6,7,11], quartic C2 splines [25]) are introduced, 
additional basis functions are required. If we select a bigger number of interpolation 
knots N, then we can construct an interpolating monotone (or convex) spline by 
solving the least squares problem with both equality and inequality constraints 
(provided that the data itself is monotone or convex). This is most easily done using 
LSEI algorithm [22,23]. 
 
The LSEI algorithm solves the following problem 
 
Eb e= , Ab y≈ , Gb g≥ , 
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where the matrix E and vector e define the strict equality conditions, matrix A and 
vector y define equations to be approximately satisfied (least squares sense), G and g 
define inequality constraints (in our case G=I and g=0), and b is the vector of 
unknown coefficients.  
 
The LSEI algorithm is very robust with respect to matrices E,A and G not being full 
column rank, and returns minimal length solution if Eb e=  is inconsistent [22,23]. 
Fig. 5 shows the results of monotone interpolation with the least squares splines 
whose knots coincide with the data (additional knots are in between data points). 
 
On Fig. 6 convex cubic spline is presented. Interpolation can also be achieved using 
additional knots and basis functions. On Fig. 7 11 basis functions were used to 
interpolate 6 points with a convex spline, one extra knot per interval, like in 
McAllister and Roulier algorithm [26,31]. 
 
In certain problems the interpolation and approximation conditions are mixed. For 
instance, probability and possibility functions are monotone and have range [0,1]. 
Thus, to reconstruct such functions from data one needs to solve non-negative least 
squares problem with additional interpolation conditions f(a)=0 and f(b)=1. In 
multidimensional case, which we consider in the next section, similar but more 
complicated conditions are imposed. The solution to this problem is straightforward 
using LSEI algorithm. The matrices E and A contain the values of T-splines at 
corresponding data points, whereas the matrix G is the identity matrix. 
 
Tensor product splines 
In this section we extend the univariate monotone least squares splines to the bivariate 
and multivariate cases. We will use tensor product of linear and quadratic T-splines 
for this purpose [5,10,16,27]. 
 
The tensor product T-spline is the construction 
 

∏
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The function of V arguments is approximated with 
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We assume that all the univariate splines have the same order, although this 
restriction can be dropped. In the two-dimensional case these formulas take the form 
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The monotonicity condition implies that all partial derivatives of the spline have to be 
non-negative at every point. Because functions ),( 21 xxTmn  are tensor products, their 



 9

partial derivatives are multiples of the derivatives of the univariate T-splines, which 
are non-negative in the region of approximation: 
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−= + −
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mn xTxN
tt
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In follows that the coefficients }{ mnb  have to satisfy the following inequalities 
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Differentiation with respect to the other argument results in 
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These inequalities form part of the constrained quadratic programming problem:   
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subject to (5a) and (5b). jix  denotes j-th coordinate of i-th observation. 
 
This problem can be solved by traditional methods [29,30], in particular using BVLS 
[14,29] or LSEI [22,23] algorithms, both available via NETLIB [17]. 
 
For multidimensional case the linear inequality restrictions are similar: 
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The sums are taken over all combinations of upper index limits Nl , vl ≠ . Altogether 
there are at most VNNV ××× ...1  inequalities (some are redundant). They can be 
easily represented in matrix form, and the matrix consists of 0s and 1s arranged in a 
fashion consistent with the indexing system.  
 
Let now suppose that monotonicity is required with respect to one argument only, say 
x1 . Consider bi-linear case. In this case the problem can be reduced to non-negative 
least squares problem by the following artifice.  The tensor product spline will be 
represented as 
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n
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We mix two bases here, T-splines are used to express monotonicity condition, 
whereas B-splines are used because of their localised support. Differentiating with 
respect to the first argument results in  
 

)()(),(
2

2
1

1

11

21 xNxN
tt
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xxS
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Therefore, monotonicity with respect to x1  implies 0≥mna . 
 
Thus we again arrived to the non-negative least squares problem which can be solved 
using a somewhat faster NNLS algorithm from [29]. The extension of this method for 
V dimensions is straightforward.  
 
Additional constraints f ( )0 = 0  and f ( )1 = 1 can also be imposed. The first 

condition implies 0... =−− kka  and the second implies ∑ ∑
−= −=

=
1

1

1
1... ...

N

kj

N

kj
jj

V

V

V
b  . Another 

restriction important for triangular conorms [8,9,28,46] is f x xi i( , , ..., , ... )0 0 0 = . It 
can be achieved by forcing the spline to interpolate the values jj ttf =)0,...,...,0,0( , 
where jt  are the knots of approximation in respect to coordinate ix . The restriction 
f xi( , , ..., , ... )11 1 1=  is imposed by setting the appropriate interpolation conditions 

1)1,...,...,1,1( =jtf , easily specified as the input of LSEI algorithm [22,23]. 
 
Algorithm and numerical results 
Given that calculation of spline coefficients is reduced to standard quadratic 
programming problem with linear inequality constraints, the implementation of the 
algorithm is straightforward. In matrix form it can be written as 
 
Solve yTb ≈ , given that 0Gb ≥ , 
 
with ≈  standing for “approximately equal”. T is I N×  matrix with the entries given 
by the values of basis functions T xj i( )  at data points xi , and G is the identity matrix 
I. Both matrices serve as the input of the algorithm LSEI (or NNLS, which requires 
only T).  
 
Computation of the entries of T can be performed in a very effective way using B-
splines basis )(xN j . Let the entries of matrix N be )( ijij xNN = . Then 
 

NLT = , 
 
whete L is the lower triangular matrix of size MM × consisting of 0s and 1s, and 

1++= kNM  is the number of basis functions. Once the coefficients b have been 
found, they can be transformed to the vector of coefficients a of B-spline 
representation (1) by  
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Lba = . 
 
For convex splines the calculations are similar. The matrix T  consisting of the values 
of )( ij xT  at data points can be calculated using 
 

NLΔTΔT == , 
 
where Δ  is the lower triangular matrix with the elements at each row given by 

ikiij tt −=Δ + . 
 
The vector a of B-spline representation is calculated using  
 

bLΔa = . 
 
It should be noted that the numbering starts at -k, so that the upper left element of the 
matrices is (-k,-k). 
 
In multivariate case the matrices have more complicated structures. T consists of the 
values of products  
 

∏
=

=
V

v
vjVjjj xTxxT

vV
1

1... )(),...,(
21

 

 
at data points, whereas G consists of 0s and 1s, and its structure depends on the way 
of indexing of the basis functions. Both matrices serve as input to LSEI. 
  
Figures 3 - 9 illustrate the results of univariate and bivariate monotone spline 
approximation.  
 
 
 
Conclusion 
Least squares splines provide a rather simple method of data approximation and 
interpolation, easily expandable for multivariate case using tensor products. The 
quality of approximation demands very much on the positioning of the knots, and 
even in the simplest cases such splines may fail to preserve some of the properties of 
the data or underlying function. Optimising knot positions is one way of improving 
the quality of approximation, but it often runs into the problem of many local 
maxima.  
 
Another way to achieve this is to enforce known properties of the function, such as 
monotonicity or convexity. These properties translate into certain restrictions on 
spline coefficients, and the problem becomes linear restricted least squares problem. 
The form of restrictions depends on the choice of the basis in the space of polynomial 
splines. The T-spline basis presented in this paper expresses monotonicity and 
convexity conditions in the most simple way, as non-negativity of coefficients, and 
the problem becomes the non-negative least squares problem, for which the methods 
of solution as well as program code are readily available. Since T-splines are simple 
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linear combinations of B-splines, effective methods of computing matrix entries and 
B-spline coefficients can be implemented by using matrix multiplication. On the other 
hand, generic restricted least squares algorithms allow one to specify additional 
interpolation conditions, useful when the function is supposed to pass through certain 
points. 
 
Tensor product T-splines allow one to enforce shape restrictions in nR , by using the 
same technique of non-negative least squares. This technique is very effective for 
scattered data approximation, where other techniques (Powell-Sabin splines, thin-
plate splines) are rather complicated and require at least the same number of 
coefficients as data. Besides, various interpolation conditions can be imposed 
simultaneously as well. This is useful for reconstruction of functions with certain 
properties, such as triangular norms and co-norms. The extensive research in 
restricted least squares problem and robustness of corresponding algorithms make 
spline computation straightforward.  
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Figure captions 

Figure 1.  Linear least squares spline fails to preserve monotonicity of the data.  

Figure 2. Trapezoidal basis functions. 

Figure 3. Approximation of monotone (a) and non-monotone (b) data using linear and 
quadratic monotone splines. The underlying function is ])5.1(,1min[)( 4xxf = . In 
case (b) the uniformly distributed in [-0.1,0.1] noise is added. 

Figure 4. Quadratic basis functions for convex approximation. 

Figure 5. Monotone interpolation of monotone  data from [26,37]. 

Figure 6. Convex (a) and strictly convex ( 00008.0)( ≥′′ xf ) (b)  cubic approximation 
of the first 31 points of titanium heat data [10,18]. 

Figure 7. Convex cubic interpolation using 5 additional knots (data from [26]). 

Figure 8. Monotone bi-linear interpolation of scattered data. Six basis function for 
each variable and 50 noisy data points were used. The underlying function is 
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Figure 9. Monotone bi-linear approximation of the triangular co-norm 
( ) ),1min(),( 2

122 yxyxf += . The data is scattered and contains small random noise 
uniformly distributed in [-0.1,0.1]. 
 


